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Abstract

We present an allocation algorithm for small L0 compiler-managed instruction

stores (cmiss) that significantly reduces the energy consumed by the instruction stor-

age hierarchy. With our algorithm, cmiss simultaneously achieve low access energy,

low performance overhead, and high filter rate. Despite the lack of associativity in

cmiss, our algorithm achieves filter rates similar to those of filter caches by pinning—

allocating frequently executed instructions to exclusive locations. An evaluation of

our algorithm on 17 embedded applications shows that the energy consumed by the
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instruction storage hierarchy is reduced by 84%, with a performance overhead of 2%.

1 Introduction

Instruction delivery accounts for a large fraction of the energy consumed by embedded pro-

cessors. For example, instruction delivery accounts for 54% of the total energy consumption

in the StrongARM processor, of which half is contributed by the instruction cache [13]. To

reduce the energy consumed by the L1 instruction cache, researchers have proposed extend-

ing the instruction storage hierarchy with small instruction stores (typically 512 bytes or

fewer) between the L1 instruction cache and the processor; in this paper, we call these L0

instruction stores.

A filter cache (fc), shown in Figure 1(a), is a small cache whose organization is identical to

that of a conventional cache except for its size [9]. Filter caches reduce the energy consumed

by the instruction storage hierarchy by filtering accesses to the larger and more expensive

L1 instruction cache. However, performance can suffer because the small capacity can result

in high miss rates [5].

A loop cache (lc), shown in Figure 1(b), is a small store for instructions in loops [11]. The

organization of a loop cache restricts it to handling loops with straight-line code (no branches)

that fit entirely within the loop cache. Since the execution of such loops is completely

predictable, loop caches do not impose additional cache misses. Loop caches can offer lower

access energy than filter caches because there is no need for a tag check on each access.

However, because loop caches are limited to handling straight-line loops, they filter fewer

instruction fetches than filter caches of the same capacity. Preloaded loop caches (pllcs) [5]

and compiler-managed loop caches (cmlcs) [15] expand the range of code that can be fetched

from loop caches. However, they still filter fewer L1 cache accesses than comparably sized

filter caches.
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Figure 1: L0 instruction stores

Table 1: Comparison of L0 Instruction Stores

Access Energy Filter Rate Performance
(A) (B) (C)

fc [9] − + +/−a

lc [11] + − +
pllc [5] + − +
cmlc [15] + +/− +
cmis + + +

a [5, 9] report filter caches’ large performance overhead, but, in Section 5, we show that a filter cache’s
performance overhead can be less than 2%.

A compiler-managed instruction store (cmis), shown in Figure 1(c), is a small compiler-

managed store which, like a filter cache, resides between the processor and the L1 instruction

cache. However, replacement and mapping in the cmis are completely controlled by the

compiler, and no tags are used to associate a location in the instruction store with a memory

address. Unlike loop caches [5, 11, 15], instruction fetches cannot bypass the cmis. Instead,

an instruction must reside in the cmis to be executed.

We can evaluate L0 instruction stores using the three metrics shown in Table 1: (A) the

L0 access energy, (B) the L0 filter rate, and (C) the L0 performance penalty typically due
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to stall cycles that occur when there is a miss in the L0 store. Ideally, we want an L0 store

that simultaneously optimizes all three metrics. cmiss achieve low access energy (metric

A) because they do not require tags, and low performance overhead (metric C) because

the compiler can proactively load instructions from the L1 cache. However, conventional

tagless L0 stores, such as loop caches, have failed to achieve filter rates (metric B) that are

competitive with filter caches.

While a filter cache’s advantage with respect to the filter rate (metric B) stems from its

associativity, in this paper, we show that associativity is not required to achieve high filter

rates for loops. We show that an allocation algorithm that pins instructions—i.e., maps

them to exclusive locations so that they do not conflict with other instructions in the same

loop—can exploit flexible software mapping to overcome a cmis’s lack of associativity.

To illustrate the advantage of flexible mapping, consider mapping loops to a 4-entry

instruction store. If the loop size is bigger than 4 instructions, a fully associative cache

with a least recently used (lru) replacement policy misses every instruction in the loop.

As shown in Figure 2(a), a direct-mapped cache misses 6 instructions per iteration for a

loop with 7 instructions. However, as shown in Figure 2(b), pinning instructions 1–3 and

mapping the others to the remaining entries of the instruction store reduces the number of

misses per iteration to 4. By assigning frequently executed instructions to exclusive locations,

a compiler-managed instruction store can achieve a filter rate similar to that of filter caches

with the same capacity.

We have implemented our algorithm in an llvm-based [10] compiler and evaluated it

using 17 of the MiBench [6] applications. We compare various L0 instruction store configu-

rations and show that, when our algorithm is used, a 256-instruction cmis reduces the energy

consumed in the instruction storage hierarchy by an average of 84%. The cmis simultane-

ously offers a low performance overhead (less than 2%) because instructions are proactively

fetched from the L1, eliminating stalls on most misses.
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Figure 2: Two mappings of a 7-instruction loop to a 4-entry instruction store. The instruc-
tion store misses shaded instructions for each iteration. A direct-mapped cache misses 6
instructions for each iteration, while an alternative mapping misses 4 instructions.

The remainder of this paper is organized as follows. Section 2 describes our target

architecture. Section 3 describes the concept of pinning on which our algorithm is based.

Section 4 describes our algorithm. Section 5 presents the results of our evaluation. Section 6

reviews related work, and Section 7 concludes.

2 Architecture

A compiler-managed instruction store uses a dual-port (1 read and 1 write) ram so that

the processor can continue to execute instructions from the cmis while instructions are

being loaded. The read port is addressed by an instruction store pointer (isp) to select the

current instruction. The write port is controlled by a transfer engine that transfers blocks

of instructions from the instruction cache to the cmis.

Two instructions “fetch a b n” and “jfetch a b n” transfer n instructions from the

instruction cache at address b to the cmis at address a. Address a is a short index into

the cmis, while address b is a global virtual address that is stored in the immediate field of

an instruction or in a register. For example, “fetch i0 1000 58” transfers 58 instructions
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1000: 

1054: fetch i58 1058 6
...
1057: 
1058: 

1063: jfetch i58 1064 6

999: fetch i0 1000 58

1075: fetch i0 1076 8
1076: 

i58

i0
64-entry CMIS

1064: 

1069: jfetch i58 1070 6
1070: 

1074: jump.lt i0

76 
instructions

18 
instructions

Figure 3: A code snippet of a loop and its mapping to a 64-entry cmis

from the instruction cache, starting at address 1000, to the cmis locations 0–57. In addition

to fetching instructions, jfetch jumps to the target cmis index. All branch targets are

specified by short cmis indices. To synchronize execution with instruction transfer, the

processor stalls when the entry specified by the isp waits for a pending instruction transfer.

Figure 3 shows how a loop is mapped to a 64-entry cmis. The initial instruction loads 58

instructions, starting from address 1000, into cmis locations 0 to 57. These 58 instructions

remain pinned in these locations for the duration of the loop. Control enters the loop as

the isp wraps from 63 to 0. Before the end of this block is reached, the instruction at cmis

location 54 prefetches the next six instructions into the remaining locations, 58 to 63. By the

time execution reaches location 58, these instructions will have been loaded and are ready

to execute. The last 18 instructions of the 76-instruction loop all share locations 58 to 63

with a jfetch instruction transferring each block just before it is needed. Instruction 1074

conditionally jumps back to the start of the loop in location 0. If this jump is not taken,

control falls through to instruction 1075, which loads a different block of code into location

0 and then falls through as the isp wraps to 0.
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Figure 4: The number of misses per iteration for straight-line loops where C = 64

3 Approach

This section demonstrates that, for loops, pinning maximizes the filter rate of L0 stores

without associativity.

For a cache of size C and straight-line loop of length L, the number of misses per iteration

(y) for a fully associative filter cache (fa), a direct-mapped filter cache (dm), and a loop

cache (lc) are as in the following equations. Here, we ignore compulsory misses and assume

that a loop cache can partially capture a loop [12].

yfa =


0 if L ≤ C,

L if L > C

(1)

ydm =


0 if L ≤ C,

2(L− C) if C < L ≤ 2C,

L if L > 2C

(2)
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Figure 5: Reducing L1 cache accesses of loops with branches with pinning
(a) An initial fetch schedule
(b) A schedule after pinning 1, 2, L-1, and L. Fetches of 1, 2, L-1, and L inside the loop are
eliminated by adding fetches of them at the incoming edge of the loop.
(c) A schedule after pinning 1, 2, L-1, and L when the inner loop 3 is big so that it conflicts
with pinned instructions.

ylc =


0 if L ≤ C,

L− C if L > C

(3)

Just as a loop cache keeps C instructions and misses the other L− C instructions, if we

exclusively assign (pin) x instructions, a cmis misses L− x instructions. When we account

for the overhead from adding fetch instructions, we get

ycmis = L− x +

⌈
L− x

C − 2− x

⌉
(4)

Figure 4 summarizes our analysis. In the graph, cmiss use the optimal x for each L

value. For straight-line loops, a loop cache suffers the fewest misses because the captured

loop segment does not conflict with the remaining segment (however, a loop cache does not

work for loops with branches). After loop caches, cmiss have the fewest misses. We can see

that, for straight-line loops, associativity does not help and pinning minimizes the miss rate

of cmiss.
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However, associativity can be beneficial in loops with branches. If an L0 store has

associativity as filter caches do, we can assign instructions with weak temporal relations [3]

to the same location without incurring many conflict misses. Suppose that a loop has

instructions a and b, and that the loop typically executes a during its first half iterations

and b later. In this case, assigning a and b to the same L0 location introduces few conflict

misses. On the other hand, if an L0 store lacks associativity, as cmiss do, the compiler must

conservatively assume that b may have been executed between consecutive executions of a.

Consequently, if we assign a and b to the same location, the compiler must fetch a from

the L1 either immediately before every execution of a, or immediately after every execution

of b. Although many of these fetches will transfer instructions that are already in the L0,

the compiler needs them to make sure that a is present in the L0 before every time it is

executed. Instead of relying on temporal relations, we pin frequently executed instructions

to exclusive locations so that they do not conflict with other instructions in the same loop.

In Appendix A, we formally show that pinning achieves a near-optimal L1 access reduction

for cmiss.

Figure 5 shows examples of pinning a loop with branches. In (a), as an initial schedule

we fetch every instruction just before it is needed. In (b), we pin 1, 2, L-1, and L and

fetch them before entering the loop. By doing this, we can eliminate fetches inside the loop

because there are no conflicts with other instructions for the duration of the loop. In (c),

we pin the same instructions, but the loop has a big inner loop which conflicts with the

pinned instructions. In this case, we can still reduce the number of L1 accesses by fetching

the pinned instructions after executing the inner loop, provided that pinned instructions are

more frequently executed than the inner loop.
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procedure allocateCMIS(ControlFlowGraph cfg) {
T = constructLoopTree(cfg);
relayout(cfg, T );
initialSchedule(cfg);
for each non-leaf node L of T in a post-order {

pin(L, T );
schedule(L, T );

}
addFetchesAndJumps();
allocate(T );
emitCode();

}

Figure 6: A high-level description of the algorithm

4 Algorithm

Based on the approach just described, this section details how our algorithm finds the set of

instructions to be pinned to minimize the number of L1 accesses. We process each control

flow graph by traversing the call graph in a reverse post order. For each control flow graph, we

construct an initial schedule, optimize the initial schedule by pinning loops starting from the

inner-most ones, and finally generate assembly code. Figure 6 shows a high-level description

of our algorithm whose sub-steps are described in the following sections.

Relayout To determine which instructions should be pinned, we estimate the relative

frequency at which the basic blocks in a loop are executed. The execution frequency can be

estimated using either a static analysis or profiling information. Both methods are compared

in the evaluation section. In the static analysis, we build a sub-region graph, a directed acyclic

graph in which the back-edge is removed and inner loops are contracted as nodes, as shown

in Figure 7(a). In the sub-region graph, starting from the loop entry, we propagate the

execution probability assuming that each branch direction is independently taken with 50%

probability. The basic blocks in Figure 7 are numbered to reflect the frequency at which

10



5, 6, 7
4

3

1

2

0.5

0.5

0.25
0.25

0.25

0.25

(a)

5

6

7

4 call

3

1

Entry

2

Exit

fetch 2

fetch 1

fetch 3

fetch 4

fetch 2

fetch 2

fetch 5

fetch 5

fetch 1

fetch 6

fetch 7

size 66

size 2

size 2

(b)

51

6

7

4 call

3

1

Entry

2

Exit

fetch 2

fetch 1

fetch 3

fetch 4

fetch 2

fetch 2

fetch 51

fetch 1

fetch {6, 7}

size 58

52aa

fetch 52

53aa

size 4

size 4

fetch 53

size 2

size 2

(c)

51aa

6

7

4 call

3

1

Entry

2

Exit

fetch {1,2}

fetch 3

fetch 4

fetch {1,2}

fetch 51

fetch {6,7}

size 58

52aa

fetch 52

53aa

size 4

size 4

fetch 53

fetch {1,2}

size 2

size 2

(d)

Figure 7: An example of allocating loops to a 64-entry cmis.
In (b)-(d), pinned instructions are shaded. Basic blocks are numbered according to the or-
dering after relayout; we generate the code following this ordering in our algorithm’s output
assembly code. Block 4 has a function call whose callee uses the entire cmis.
(a) The sub-region graph of the loop {1, 2, 3, 4, 5, 6, 7}, in which each edge is annotated
with the execution probability per iteration computed by a simple static analysis
(b) A schedule after pinning loop {6}. Since this loop fits within the cmis, the entire loop
is pinned.
(c) A schedule after pinning loop {5, 6, 7}. An optimum size of pinning is 58, so 58 instruc-
tions of block 5 are pinned and extracted as a separate block 51.
(d) A schedule after pinning loop {1, 2, 3, 4, 5, 6, 7}. This loop has an inner loop bigger
than the cmis size and a function call. According to the probabilities annotated in (b), the
probability of executing the inner loop or the function call per iteration is 0.5. Since 1 and
2 are the only ones with execution probability higher than 0.5, we pin 1 and 2.
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blocks are executed, with the more frequently executed blocks assigned smaller numbers.

The basic blocks are laid out so that the most frequently executed blocks are contiguous in

memory and can be fetched as a single group.

Initial Schedule We construct an initial fetch schedule in which each instruction is

fetched just before it is executed. Though correct, this schedule is inefficient and we optimize

it as follows.

Instruction Pinning For each loop L, we select instructions to pin, which we call

fetch block P . We find P with the lowest cost (fetching the smallest number of unpinned

instructions per iteration) subject to the following three constraints:

1. |P | ≤ C, where C is the cmis size.

2. P is a contiguous block of instructions that includes the loop entry.

3. Let S = {inner loop M in L such that |M ∪ P | > C}. ∀ instruction x ∈ P , Pr(x) >

Pr(S), where Pr(x) is the probability of executing x per iteration.

The first constraint is trivial. The second constraint ensures that the pinned instructions

are contiguous in memory. The third constraint minimizes the conflicts between pinned

instructions and unpinned inner loops. Since an inner loop M and pinned instructions P

cannot both fit within the cmis if |M ∪ P | > C, we need to fetch the conflicting part of P

after executing M . This constraint ensures that instructions in P are executed at least once

after they are fetched into the cmis.

For a function call, if the call does not belong to a cycle in the call graph, we propagate

pinning information from the callee. If the call does belong to a cycle, we treat the function

call as if it is an inner loop with size bigger than C. Figure 7(d) shows an example of applying

the third constraint: 3 is not pinned because the probability of executing it does not exceed

the probability of executing the function call in 4 or the inner loop {5, 6, 7}.
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For each pinned fetch block candidate, P , we form unpinned fetch blocks from remaining

instructions. First, each unpinned basic block bigger than C − |P | is divided into multiple

blocks that are smaller than C − |P |. For example, in Figure 7(c), we divide 5’s unpinned

instructions into 52 and 53. Then, unpinned fetch blocks forming a chain are merged if their

collective size does not exceed C − |P |. For example, in Figure 7(c), we merge 6 and 7.

For each candidate P , we compute the following cost function which sums up the ex-

ecution probability of unpinned instructions. There are at most C candidates because of

constraints 1 and 2. Among them, we select a P that minimizes the cost function.

cost(P ) =
∑

∀unpinned fetch block U of P

Pr(U) · |U | (5)

Fetch Scheduling We add fetches of pinned fetch blocks at incoming edges of the loops

(e.g., fetch {1, 2} is added at the edge from the entry to 1 in Figure 7(d)). If there is an

inner-loop or a function call that conflicts with the pinned instructions, we also add fetches

to load the conflicting pinned instructions at the outgoing edges (e.g., fetch {1, 2} at the

edge from 4 to 2 and the edge from 7 to 2 in Figure 7(d)). Then we eliminate redundant

fetches of pinned instructions inside the loop (e.g., at the edge from 1 to 2 in Figure 7(d)).

Post-processing We modify the code by adding fetches and jumps, allocate instructions

to cmis locations, and finally generate the modified assembly code.

To avoid an unnecessary fetch at a basic block with outgoing edges with different fetch

sets (e.g. basic block 3 in Figure 7(d)), we modify jumps as shown in Figure 8. For function

calls, we always jump to i0 and returns to i0 as shown in Figure 9. We generate an entry

code for the callee and a resuming code for the caller starting from i0 (see @callee entry

and @caller resume). The caller pushes the address of the resuming code, and the callee

returns by a jfetch to the pushed address.

We allocate instructions to CMIS locations as we traverse the loop tree in a post-order.
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@bb_i: ...

...

jump.lt @taken

@nontaken: ...

(a)

@bb_i: ...

...

jump.lt @bb_i_t

jfetch i17 @nontaken 15

@bb_i_t: jfetch i32 @taken 7

@nontaken: ...

(b)

Figure 8: Modifying a jump to avoid an unnecessary fetch when outgoing edges of bb i have
different fetch sets. (a) Before and (b) after the modification.

push @caller_resume

jfetch i0 @callee_entry 1 // function call

@caller_resume: jfetch i32 @caller_next_fblock 4

// always allocated to i0

...

@callee_entry: fetch i1 @callee_first_fblock 5

// always allocated to i0

...

pop r0

jfetch i0 r0 1 // return

Figure 9: A function call code snippet
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Table 2: Experimental Setup

Baseline
No L0 instruction store

4-way 16kb L1 I-cache with 8-entry cache lines
lc Loop cache with flexible loop size scheme [12]

fa
Fully associative cache with lru replacement policy

and 8-entry (32-byte) cache lines
dm Direct-mapped cache with 8-entry cache lines
cmis Baseline compiler-managed instruction store
cmis p cmis with profiling
opt fa with optimal replacement policy

When we visit a loop, we first sequentially allocate pinned instructions starting from the

current base address, then we allocate unpinned fetch blocks to the remaining CMIS entries

as shown in the pseudo code Figure 10.

5 Evaluation

This section describes the experimental setup for our algorithm evaluation and analyzes the

results.

5.1 Experimental Setup

For our evaluation, we use ELM [1], a multi-core architecture with an explicitly forwarded

inorder dual-issue pipeline with 4 stages, software-managed memories, and a mesh on-chip

interconnection network. To make our evaluation less sensitive from ELM-specific features,

we modify the architecture model to a single-core one with a run-time forwarded single-issue

pipeline and an L1 instruction cache, and change the compiler and the simulator accordingly.

Our algorithm is implemented in elmcc, a compiler back-end for ELM that reads fully-

optimized llvm intermediate representation [10].
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procedure allocate(LoopTree T ) {
allocateRecursive(T.root, 0);

}

procedure allocateRecursive(Loop L, int base) {
G = sub-region graph of L;
V = nodes of G sorted by the ordering

constructed from relayout in Figure 6;
cmisIndex = base;
for each pinned v in V {

if v is a loop
cmisIndex = allocateRecursive(v, cmisIndex);

else {
allocate v at cmisIndex % C; // C is the CMIS size
cmisIndex += |v|;

}
}
unpinnedBase = cmisIndex;
for each unpinned v in V {

if cmisIndex + |v| ≥ base + C and L is not the root
cmisIndex = unpinnedBase;

if v is a loop
cmisIndex = allocateRecursive(v, cmisIndex);

else {
allocate v at cmisIndex % C;
cmisIndex += |v|;

}
}
return cmisIndex;

}

Figure 10: A pseudo code of allocation
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We use all the integer and fixed-point applications of MiBench [6]. We also use fft in

MiBench after converting its floating point operations to fixed-point ones. We exclude the

other applications because our processor does not support floating point operations.

Table 2 summarizes the configurations used in the evaluation. We compare cmiss with

32–512 instructions to fully associative (fa) filter caches [9], direct-mapped (dm) filter caches,

and loop caches (lc) [11,12] with the same size. To provide a lower bound for the number of

L1 cache accesses, we include fully associative caches with an optimal replacement policy [2]

(opt). For fa and dm, we use 8-instruction (32-byte) cache lines, which achieve the best

energy-delay product [4], under the assumption that the instruction cache consumes 27% of

the total energy as in the StrongARM processor [13]. To control for improvements due to

code relayout, we apply the same relayout algorithm for dm when it is beneficial. The basic

cmis configuration uses a simple static method for computing execution frequency, while the

cmis p configuration uses profiling. We use a 16kb L1 instruction cache with 8-instruction

cache lines and 4-way set associativity. The L1 instruction cache with no L0 instruction

store is the baseline of our comparison.

Table 3 lists the energy of each operation estimated from detailed circuit models of caches

and memories realized in a commercial 45 nm low-leakage cmos process. The models are val-

idated against hspice simulations, with device and interconnect capacitances extracted after

layout. Leakage current contributes a negligibly small component of the energy consumption

because low-leakage devices are used. dms use srams to store tags and instructions; the tag

array and data array are accessed in parallel, and the tag check is performed after both

arrays are accessed. fas use cams to store the tags and srams to store the instructions. fas

are designed so that the sram is only read when there is a hit in the tag cam; consequently,

a miss consumes less energy, as only the tag array is accessed. When transferring instruc-

tions from the L1 cache, the L1 tag is checked once and the instructions are transferred over

multiple cycles.
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Table 3: Energy per Operation in pJ. “Refill” is per cache line size energy.

Hit [pJ] Miss [pJ] Refill [pJ]
32-entry fa 0.28 0.09 3.76
64-entry fa 0.50 0.17 6.04
128-entry fa 0.92 0.33 10.60
256-entry fa 1.74 0.62 19.70
512-entry fa 3.37 1.18 37.93
32-entry dm 0.23 0.23 3.73
64-entry dm 0.39 0.39 5.99
128-entry dm 0.72 0.72 10.50
256-entry dm 1.35 1.35 19.55
512-entry dm 2.64 2.64 37.64
32-entry cmis 0.11 — 0.33
64-entry cmis 0.18 — 0.61
128-entry cmis 0.33 — 1.16
256-entry cmis 0.63 — 2.26
512-entry cmis 1.22 — 4.47
16kb L1 20.35 2.68 37.01

5.2 L1 Cache Accesses

Figure 11(a) compares the number of L1 cache accesses for each configuration. The number

of L1 cache accesses is normalized to that of the baseline (no L0 store) and accounts for the

additional fetch instructions in the cmis configuration. As expected, the number of accesses

declines as the capacity increases. At smaller capacities, cmiss perform better than filter

and loop caches. At larger capacities, filter caches perform better because they capture

instruction reuse that spans multiple function invocations. Larger loop caches offer little

improvement because there are few straight-line loops with more than 32 instructions, which

is consistent with [5].

Figure 11(b) shows the number of L1 cache accesses for each benchmark for the 256-

instruction configurations. The cmiss perform better than the dm filter cache on applica-

tions dominated by loops that exhibit regular control flow (mad, blowfish, rijndael, and
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(d) Normalized energy of L0 instruction stores with 256 entries
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(f) Sensitivity of energy saving on the L0 to L1 access energy ratio.
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256-instruction dm normalized to that of L1.

Figure 11: L1 accesses, energy consumption, and execution time results. The averages are obtained by
computing arithmetic means over per-instruction-value of each benchmark and then normalizing the means
to the baseline processor configuration.
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gsmencode). The dm performs better on applications with less predictable, irregular control

flow (cjpeg, patricia, ispell, and pgp), where its associativity allows it to capture reuse

that the compiler is not able to exploit due to its conservativeness; 34% of the L1 cache ac-

cesses by the 256-instruction cmis p in these applications are unnecessary ones which fetch

instructions that are already in the cmis.

5.3 Energy Consumption

Figure 11(c) shows the energy consumed in the L0 and L1 stores for each configuration.

Figure 11(d) shows the energy consumed in each of the benchmarks. The best cmis config-

uration (the 256-instruction cmis p) achieves an 84% reduction; the best fa and dm filter

cache configurations (the same size fa and dm) achieve 73% and 78% reductions, respec-

tively. While the 256-instruction cmis p reduces the energy consumed in the L0 by 45%

compared to the same size dm, its overall energy reduction from the dm is 26%. This is

because the cmis p and dm consume about the same L1 energy, which constitutes 43% of

the total energy consumed by the L0 and L1 stores in the dm configuration.

To provide context, an 84% reduction in the energy consumed by the instruction storage

hierarchy would result in a 23% reduction in the total dynamic energy consumed in processors

such as the StrongARM [13], in which 27% of the total dynamic energy is consumed by the

instruction cache.

The fetch instructions increase the code size by, on average, 6%. This increases the energy

consumed by the next level memory (an off-chip main memory or an L2 cache) by fetching

more instructions from it. However, even if we pessimistically assume that an access to the

next level consumes 100× more energy than that to the L1, cmiss’ energy saving is still

bigger than other L0 stores: the 256-instruction cmis saves 75% of the energy consumed by

the instruction hierarchy (including the next level memory energy), while the 256-instruction
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dm saves 72%.

To illustrate the sensitivity of these results to the memory energy models, Figure 11(f)

shows how the energy consumption changes as the ratio of the 256-instruction dm hit energy

to that of L1 varies. Since the cache architecture assumed by cacti [16] mainly targets

caches that are bigger than or equal to typical L1 cache sizes, it tends to overestimate

energy consumption in small L0 stores, as shown at the points denoted as “cacti” in Fig-

ure 11(f). Consequently, the cacti model over-emphasizes a weakness of filter caches that

they consume more L0 access energy than other L0 stores.

5.4 Performance

Figure 11(e) compares the performance overhead of L0 stores. We assume a penalty of 1

cycle for each filter cache miss as in [8,9] and a load-use penalty of 1 cycle for cmiss. For an

indirect fetch whose target memory address is stored in a register, we assume a penalty of

2 cycles. The processor allows one outstanding fetch and stalls when a second is attempted

before the first completes. To focus on the aspect of instruction fetch, we ignore L1 cache miss

and branch miss prediction penalty in Figure 11(e). Within this setup, the 256-instruction

cmis incurs a 1.8% performance overhead1.

Gordon-Ross et al. [5] report more than 20% performance overhead for filter caches, while

Hines et al. [8] report about 4% overhead. We find that the 256-instruction dm filter cache

incurs a 1.7% performance overhead, which is more closely aligned with Hines et al. [8]. This

is because, whereas Gordon-Ross et al. [5] assume a penalty of 4 cycles for each filter cache

miss, we assume a penalty of 1 cycle as in Hines et al. and Kin et al. [8, 9]. The 1 cycle

penalty can be achieved by critical word first technique [7]. We also optimize the cache line

1 This is an upper bound of cmiss’ performance overhead because its baseline is an ideal case without
L1 cache and branch miss prediction penalty; e.g., if we assume an L1 cache miss penalty of 32 cycles, an
128-instruction bimodal branch predictor, and a branch miss penalty of 2 cycles, the 256-instruction cmis’s
performance overhead reduces to 1.1%.
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size for the best energy-delay product [4]. By increasing the cache line size, we capture more

spatial locality and miss fewer instructions, resulting in a lower performance overhead [7].

However, at the same time, this leads to the transfer of more unnecessary instructions from

the L1 cache. We find that 8-instruction cache lines balance this trade-off and achieve the

best energy-delay product. For example, by increasing the cache line size from 2 to 8, the

performance overhead of the 256-instruction dm filter cache decreases from 5.8% to 1.7%,

while the reduction of normalized L0 and L1 store energy changes minimally (from 78.4%

to 78.3%).

6 Related Work

Filter caches [9] have been criticized for their performance overhead. However, in this paper,

we show that a filter cache can achieve a low performance overhead. Although they consume

more energy than cmiss on average, filter caches can be useful for applications with irregular

control flows.

Loop caches [11, 12] are L0 stores that serve well for applications in which straight-line

loops dominate the performance. However, Gordon-Ross et al. [5] and our results demon-

strate that the original loop cache design [11,12] is inflexible in dealing with diverse embedded

applications. Gordon-Ross et al. [5] address this by pre-loading performance critical loops

with arbitrary shapes. However, as Ravindran et al. [15] show, the pre-loaded loop cache

design cannot overlay loops in different program phases, and thus cannot use the loop cache

capacity efficiently.

Ravindran et al. [15] have an approach similar to ours in that the compiler modifies code

for an L0 store to dynamically load instructions. However, their algorithm unnecessarily

uses data structures such as a temporal relation graph [3] without considering that their

loop caches lack associativity, as cmiss do. If a store has associativity, assigning instructions
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with weak temporal relations [3] to the same location introduces few conflict misses. However,

if a store lacks associativity, as their loop caches do, the same assignment is not useful for

maximizing the filter rate due to the compiler’s conservativeness, as described in Section 3.

In addition, whereas profiling information is required for the algorithm in Ravindran et

al. [15], profiling is dispensable in ours as demonstrated in Figure 11(c), which simplifies the

compilation procedure.

Hines et al. [8] propose an L0 instruction store design called tagless hit instruction cache

(th-ic). th-ics determine if an instruction fetch will be a hit by looking up its metadata,

which consumes less energy than checking tags. However, the authors do not report how

much energy is spent on maintaining the metadata and the control logic. Even if we com-

pletely ignore this energy and use the best policy reported in [8] (tl policy), our evaluation

shows that their best energy reduction is 83%, which is smaller than that of cmiss.

A significant amount of research has been done on scratch-pad memories [14]. Although

both scratch-pad memories and cmiss are tagless and managed by the compiler, cmiss

are smaller than typical scratch-pad memories and mainly target locality that comes from

loops. In addition, a cmis is another level of the instruction storage hierarchy that every

instruction must go through to be executed, whereas a scratch-pad memory is often an

alternative location to store instructions or data.

7 Conclusion

This paper presents an allocation algorithm based on pinning that achieves a near-optimal

fetch count reduction of cmiss for loops. In spite of the lack of associativity, pinning allows

cmiss to achieve L1 cache access reductions similar to those of filter caches, with low L0

access energy and performance overhead. This is in contrast to loop caches [5, 11, 15] that

achieve low L0 access energy and performance overhead at the expense of more L1 cache
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accesses than filter caches.

This paper also re-evaluates filter caches. Although filter caches are not as energy efficient

as cmiss, accurate memory energy modeling and line size tuning can make filter caches’

energy consumption and performance overhead smaller than what previous work [5, 9] has

reported.
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A Appendix

Let G be the subgraph of the control flow graph induced by a loop without any inner loops,

L. Let the target and source of L’s back-edge be the entry and the exit of G, respectively.

A set S dominates a node x, denoted by S dom x, if every path from the entry to x must

go through at least one element in S. A set S post-dominates a set T , denoted by S pdom

T , if every path from an element in T to the exit must go through at least one element in

S. Let F (x) be the set of program locations in L where a “fetch x” resides. Let Xi be the

set of instructions that are allocated to the ith cmis location.

We can easily show the following Lemma by proving its contrapositive using the definition

of dom and pdom.

Lemma A.1 For a correct fetch schedule,∀x ∈ Xi,

(F (x) dom x) ∨

((F (x) pdom Xi − {x}) ∧

(x resides at the ith cmis location at the incoming edge of L)).

Let p(x) be the execution count of x and p(S) =
∑

x∈S p(x). Let the baseline be a schedule

such that ∀x ∈ L, p(F (x)) = p(x); e.g., fetch x right before executing x. If x satisfies the

first clause of Lemma 1 (i.e. F (x) dom x), then p(F (x)) ≥ p(x). Therefore, the only way of

reducing p(F (x)) from the baseline is the second clause, but at most one instruction in Xi can
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satisfy the second clause because only one can reside at the ith cmis location at L’s incoming

edge. Hence, the implication of Lemma 1 is that, among the instructions allocated to the

same cmis location, at most one can have a smaller fetch count than the baseline. Using

this, we can show that pinning achieves a near-optimal fetch count reduction as follows.

Proposition A.1 Let OPT be the optimal fetch count reduction 2from the baseline. Let C

be the size of a cmis. Allocating C − 1 highest frequency instructions to exclusive locations

and allocating all the others to the remaining location achieves a fetch count reduction no

smaller than C−1
C

OPT .

Proof of Proposition A.1. By Lemma 1, we can reduce fetch count of at most C instruc-

tion, one each from X1, X2, ..., XC . Let p(xj) be the jth largest among {p(x) | x ∈ L}.

Then OPT is bounded by
∑C

j=1 p(xj): map C highest frequency instructions to locations 1

to C and reduce their fetch counts to 0. Let PIN be the fetch count reduction by allocating

C − 1 highest frequency instructions to exclusive locations.

PIN ≥
C−1∑
j=1

p(xj) =
C∑

j=1

p(xj)− p(xC) ≥ OPT − 1

C
OPT

�

2 It is optimal under the assumption that modifying the structure of control flow is not allowed. For
example, we can split a loop by its iteration space and specialize each split loop by optimizing for the
locality in its sub-iteration space.
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