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ABSTRACT

We present a scheduling algorithm of stream programs for
multi-core architectures called team scheduling. Compared
to previous multi-core stream scheduling algorithms, team
scheduling achieves 1) similar synchronization overhead, 2)
coverage of a larger class of applications, 3) better control
over buffer space, 4) deadlock-free feedback loops, and 5)
lower latency. We compare team scheduling to the latest
stream scheduling algorithm, sGMs, by evaluating 14 appli-
cations on a multi-core architecture with 16 cores. Team
scheduling successfully targets applications that cannot be
validly scheduled by saMs due to excessive buffer require-
ment or deadlocks in feedback loops (e.g., GSM and W-CDMA).
For applications that can be validly scheduled by sGMS, team
scheduling shows on average 37% higher throughput within
the same buffer space constraints.
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1. INTRODUCTION

In order to support the ever-increasing computation re-
quirements of mobile devices while achieving a high level of
energy efficiency, there has been growing interest in stream
architectures [18, 14] and programming systems [35, 28, 9].
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In a stream programming language, an application is ab-
stracted as a stream graph [20] whose nodes are actors and
whose edges are streams. Computation is described by ac-
tors that are fired when enough input stream tokens ar-
rive (e.g., in Figure 1(a), actor b represents a computation
that consumes 30 tokens and produces 20 tokens per fir-
ing). Unidirectional data flow between actors is described
as streams, providing two benefits to the compiler. First,
the compiler can easily detect parallelism by analyzing data
dependences exposed as streams. Second, the compiler can
efficiently orchestrate data movement by explicitly manag-
ing local memories and keep data coherent by maintaining
queues, without relying on expensive hardware cache co-
herency protocols. By exploiting these benefits, stream com-
pilers have shown a consistent speedup even for applications
with low computation-to-communication ratios. For exam-
ple, a StreamlIt compiler shows an average of 14.8x speedup
on a 16-core Cell [14] platform [20].

Static parts of stream programs, in which the number of
tokens consumed and produced per actor firing are compile-
time constants, follow the model of computation called syn-
chronous data flow (SDF). SDF provides a theoretical back-
ground by which we can dramatically reduce synchroniza-
tion overhead and buffer requirements. Lee and Messer-
schmitt [25] present an algorithm that constructs single-core
static schedules with bounded buffer requirement and no
synchronization overhead. Bhattacharyya et al. [4] present
an algorithm that significantly reduces the buffer require-
ment of single-core static schedules. For multi-core archi-
tectures, [25, 24, 5, 31] present scheduling algorithms based
on homogeneous SDF graph (HSDFG), a graph in which every
actor consumes and produces only one token from each of
its inputs and outputs [24]. However, constructing an Hs-
DFG from an equivalent SDF graph can take an exponential
amount of time [31], and their algorithms do not fully ex-
ploit pipeline parallelism [34]. These issues are resolved by
Stream Graph Modulo Scheduling (SGMS) implemented in a
Streamlt compiler [20].

SGMS applies software pipelining [22, 32] to the entire
stream graph and synchronizes steady states of the pipeline
with barriers. Consider a part of a stream graph shown in
Figure 1(a). The partitioning phase that precedes schedul-
ing has assigned actor a to core 0 and actors b and ¢ to core 1.
Numbers at each edge denote the number of stream tokens
that are consumed or produced per actor firing. SGMS first
finds the minimum steady state [16] in which the number of
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Figure 1: An example of Stream Graph Modulo Scheduling (sGMs). We assume that actor a is assigned to
core 0 and actors b and c are assigned to core 1 in the partitioning phase that precedes scheduling. Numbers
at each edge denote the number of stream tokens that are consumed or produced per actor firing. For
example, actor b consumes 30 tokens and produces 20 tokens per firing. DMA denotes direct memory access.

produced tokens and consumed tokens are balanced at each
edge with the minimum number of actor firings. For exam-
ple, a must be fired three times per b’s firing to produce 30
tokens required by b as shown in Figure 1(b). An efficient
algorithm to find such a minimum steady state is described
in [25]. After finding the steady state, SGMS constructs a
software pipeline as shown in Figure 1(c). By starting ex-
ecution of a producer actor and its consumer actor! at dif-
ferent stages [32] (a starts at stage 0 while its consumer, b,
starts at stage 2), SGMs eliminates intra-stage dependencies
so that processor cores do not need to synchronize with each
other within a steady state. An actor periodically writes to-
kens to its output buffer, whose data is DMA-transferred at
the next stage. Barriers between each stage guarantee that,
whenever an actor fires, the input tokens required by the
actor are already in place.

SGMS has the advantage of low synchronization overhead
(one barrier per steady state), but has the following three
drawbacks. First, SGMS requires information that may not
be available at compile time. For example, the number of to-
kens to be produced can vary at run-time for certain streams.
We call these variable-rate streams (e.g., the output of the
Huffman encoder in JPEG). Second, sGMs has little con-
trol over buffer space; the minimum buffer space for each
stream? is imposed by the minimum steady state. For ex-
ample, in the steady state shown in Figure 1(b), we require
buffer space that accommodates at least 3000 tokens at the
incoming stream of actor a. We cannot reduce this buffer
requirement because the minimum number of a firings be-
tween barriers is set to 3 by the steady state. If each core
has a 2k-word local memory and the unit token size of a’s
incoming stream is 1 word, a remote memory must be ac-
cessed to further buffer the tokens. This leads to higher en-
ergy consumption and less predictable execution time, which
makes guaranteeing load balance and real-time constraints
at compile-time a challenge. Our evaluation and [27] show

! More specifically, its consumer actor at a different core
since SGMS starts producer and consumer actors at the same
stage if they are assigned to the same core.

2 More specifically inter-core stream: the buffer requirement
for intra-core streams depends on how to schedule actors
assigned to a single-core, which is described in [4, 16].

(a) A stream graph with
feedback

(b) Minimum steady state
with a deadlock

Figure 2: A deadlock in a feedback path caused
by saMs. (a) An example stream graph. “D” at
edge (b, c) denotes a single initial token that makes
the stream graph deadlock-free. (b) The minimum
steady state used by sGMS in which ¢ never fires.

that buffer space requirements can grow exponentially in
the minimum steady state of real-life applications such as
W-CDMA. Third, sGMs does not handle feedback loops satis-
factorily. In [20], the authors mention that a feedback loop
is naively handled by fusing the entire loop into a single ac-
tor, which results in complete serialization of the loop. If
we do not fuse feedback loops into single actors to avoid
serialization, SGMS is prone to deadlock. Consider a feed-
back path ¢ — b — ¢ shown in Figure 2(a). This feedback
path is deadlock-free due to an initial token at edge (b,c)
denoted as D. The value of the initial token is specified by
the programmer and adds a unit delay at (b, ¢), thus the use
of the symbol ‘D’ commonly found in signal processing [29].
However, in the steady state shown in Figure 2(b), actor ¢
cannot be fired because it never receives enough input to-
kens. The compiler cannot create additional initial tokens
because doing so changes the semantic of the application.
Our evaluation (Section 3) shows that a similar deadlock
occurs in a real-life application, GSM.

In this paper, we present an alternative algorithm called
team scheduling that addresses the drawbacks of sGMS, while

maintaining a similar synchronization overhead. Team schedul-



while (...) {
doB();

doC();

while (...) {

while (...) {

if (!bino.isEmpty() and !beyto.isFull())

if (!cino.isEmpty() and !cin1.isEmpty() and !couto.isFull())

(a) Initial schedule

if (Icin1.isEmpty() and !couto.isFull()) {
doB(); doC(); doC();

(b) Team formation

if (!¢in1.isEmpty() and !couto.isFull()) {
doB(); doB(); doC(); doC(); doC(); doC();

(¢) Amortization

Figure 3: An example team scheduling and its generated code for core 1. (a) An initial schedule (b) Form
team {b, c} and construct its static schedule, which eliminates synchronization between b and c. Section 2.1
describes why synchronization between a and b can also be eliminated. (c) Amortize the team {b,c} by a

factor of 2.

ing starts with a simple initial schedule as shown in Fig-
ure 3(a). Actor firings are pair-wise synchronized through
queue empty and full checks. This initial schedule involves
high synchronization overhead (i.e., frequent queue empty
and full checks). Nevertheless, this is a correct schedule for
a wide range of applications including the ones that can-
not be validly scheduled by sGms. Moreover, the synchro-
nization overhead can be minimized with aggregation and
amortization of actors as follows. We assume that the par-
titioning phase precedes scheduling similar to SGMsS, where
actor-to-core mapping is predetermined when reaching the
scheduling phase.

First, we selectively aggregate actors that are assigned to
the same core, and form a team in which actors are statically
scheduled. By statically scheduling actors in a team, we
eliminate intra-team synchronizations. For example, in Fig-
ure 3(b), we form a team by aggregating actors b and ¢, and
eliminate synchronization between them (boyzo.isFull() and
Cino-iSEmpty() checks are removed). We can also eliminate
inter-team synchronization such as the one between a and
b (explained in Section 2.1). In order to construct a static
schedule of team {b, c}, we find its steady state — fire b once
and c twice. This is in contrast to scMs, which must use a
steady state of the entire stream graph; in team scheduling,
the unit of steady state construction is a team whose for-
mation is under the compiler’s control. We continue team
formation as long as it does not violate constraints such as
maximum buffer space per core.

Second, we selectively amortize communication overhead
of teams by increasing the number of actor firings per syn-
chronization. Each amortized actor accumulates its output
tokens in its local buffer and transfers the accumulated to-
kens in bulk to the consumer’s local memory. For example,
in Figure 3(c), we amortize team {b, ¢} so that its actors fire
twice as often as they do in the minimum steady state of the
team. Actor ¢ accumulates 120 tokens in its local buffer and
transfers them at once. Amortizing communication over-
head is an important optimization scheme, especially for ac-
tors with a low computation-to-communication ratio: the
locality of memory access is improved, and the fixed cost
associated with each data transfer initiation is amortized.
In Section 3, we show up to 2.1x speedup from amortiza-
tion. The same optimization can be done in sGMs but with
limited flexibility: minimum amortization factors are prede-
termined by the minimum steady state; and if we want to
amortize an actor by 2, we must amortize all the other actors
by 2 as well. Note that the flexibility in choosing amortiza-
tion factor is crucial for finding the right trade-off between
synchronization overhead and buffer requirement. For ex-
ample, in Figure 3(c), team scheduling is able to selectively
amortize b and ¢ without excessively increasing the buffer
requirement. On the other hand, SGMS incurs a large buffer
requirement increase in order to amortize b and ¢ because
it must amortize a as well. As we do in team formation,
we continue amortization as long as it does not violate con-
straints such as maximum buffer space per core.



The contributions of this paper are as follows: 1) We
present an algorithm for scheduling stream programs on
multi-core architectures that has better control over buffer
space, lower latency, and better support for variable-rate
streams than sGMS. 2) We present a method to compute
minimum queue lengths to avoid deadlock or serialization
that can be introduced by team scheduling. 3) We evalu-
ate team scheduling with 14 stream applications on ELM [1],
a multi-core architecture for energy-efficient embedded com-
puting. Our evaluation shows that team scheduling achieves
a similar throughput to that of sGMs with lower latency and
smaller buffer requirement. Our evaluation also shows that
team scheduling has better control over buffer space: when
we set maximum buffer space per core as a constraint, team
scheduling consistently satisfies the constraint while saGms
does not.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the details of team scheduling. Section 3
presents simulation results comparing team scheduling with
SGMS. Section 4 reviews related work and Section 5 summa-
rizes our work.

2. TEAM SCHEDULING

This section describes details of the team scheduling al-
gorithm. Pseudo-code for the algorithm is presented in Ap-
pendix E.

2.1 Team Formation

We start from an initial schedule in which each actor forms
a separate team. For example, in Figure 3(a), actors a, b,
and c each form teams on their own. In a pair-wise manner,
we merge teams in the same core starting with the pair that
leads to the highest gain. We compute the gain as synchro-
nization reduction divided by additional buffer requirement
resulting from team merge. This is a greedy heuristic cho-
sen to maximize synchronization overhead reduction (i.e.,
the reduction of queue empty or full checks) per additional
buffer space requirement. We maintain a team graph that
represents the connectivity of teams. The team graph is ini-
tially identical to the stream graph, and then we contract
the corresponding nodes for each team merge.

We adhere to the following four constraints when merging.
First, we do not merge across variable-rate streams. Second,
we do not merge teams if doing so exceeds the buffer limit
per core. Suppose that actors a, b, and ¢ are all assigned to
the same core in Figure 3. If each core has a 2K-word local
memory and the unit token size of a’s incoming stream is 1
word, we avoid merging a with any other actor. A detailed
method of computing buffer sizes is described in Section 2.3.
Third, we must not introduce a cycle to the team graph
since it may result in deadlocks. Suppose again that actors
a, b, and c are all assigned to the same core in Figure 3. We
avoid merging a with ¢ because it forms a cycle b — {a,c} —
b. Fourth, a merge must not introduce any deadlock in an
existing cycle (i.e., in a feedback loop). We can check for
such deadlocks by inspecting precedence expansion graphs
(PEG) [25] of each cycle containing the merged team in the
team graph. If every PEG is acyclic, it is guaranteed that
the team merge does not introduce any deadlock. This is
because a PEG has a cycle if and only if the corresponding
stream subgraph has a deadlock [25]. Suppose that we are
about to merge a and c in Figure 2(a). If we construct a
PEG of the cycle b — ¢ — b after the merge, we see a cycle

in the PEG since merging a and c introduces a deadlock. For
the details of PEG construction, refer to [25, 24, 31]. A PEG
can grow exponentially when the number of actor firings in
the minimum steady state of a team or the number of cycles
in the stream graph is exponential. In this case, we use a
heuristic described in [31] that conservatively but quickly
checks for deadlocks.

After merging a team, we construct a static schedule of
the actors within the team. There are several ways of con-
structing such a single-core schedule [4, 16], but we find that
loose interdependence scheduling framework (LISF) [3] works
well in our evaluation (Section 3). For most applications,
LISF finds a single appearance schedule in which each ac-
tor lexically appears only once, resulting in a minimal code
size [3]. For example, b 2¢ (fire b once, then fire ¢ twice)
is a single appearance schedule of team {b, c} shown in Fig-
ure 3(b). Other single-core scheduling methods such as push
schedule or phased schedule save significant buffer space at
the expense of marginal increase in code size when applied
to the entire stream graph [16]. However, when we target
multi-cores, applications are partitioned into small pieces,
and applying either scheduling method to each piece shows
little buffer space saving (on average 8% for 16 cores).

By constructing a static schedule of a team, we eliminate
intra-team synchronizations such as the one at edge (b, c) in
Figure 3(b). We can also eliminate certain inter-team syn-
chronizations such as the one at edge (a,b). This is possi-
ble because the production-to-consumption ratios of streams
between a given team pair (with no variable-rate streams)
are constant (proof shown in Appendix A). For example,
at (a,{b,c}) in Figure 3(b), production-to-consumption ra-
tios are % = %. To generalize, consider the streams from
team T to team U denoted as Sy (in Figure 3(b), Srv =
{(a,b), (a,c)} when T = {a} and U = {b,c}). Let s; be the
stream in Sy that is enqueued last in T’s static schedule
(in Figure 3(b), s1 is (a,c) if T enqueues tokens to (a,b)
before (a,c)). Let sz be the stream in Sty that is dequeued
last in U’s static schedule (in Figure 3(b), s2 is (a,¢)). Then
among the conditions with respect to Sty that we need to
check before firing U, we can eliminate everything except the
check for whether s; is not empty (in Figure 3(b), checking
whether the queue at (a,b) is not empty is redundant when
s1 is (a,c¢)). Similarly, among the conditions with respect
to Sty that we need to check before firing 7', we can elimi-
nate everything except the check for whether s2 is not full.
More details of inter-team synchronization elimination are
described in Appendix B.

2.2 Amortization

After team formation, we amortize communication cost
of teams starting from the one that leads to the highest
synchronization reduction per additional buffer requirement.
As in the team formation procedure, we do not amortize a
team if doing so exceeds buffer space limit or introduces
deadlock in a feedback path.

We define amortization as follows: The minimum repeti-
tion vector [25] g of stream subgraph G is a vector such
that g (a) is the number of @ firings in the minimum steady
state of G. For example, the minimum repetition vector of
the stream graph shown in Figure 1(a) is (3,1, 2) where we
index the vector in the order of a, b, and ¢; the minimum
repetition vector of team {b,c} in Figure 3(b) is (1,2). For
each stream subgraph G that is statically scheduled (the en-



tire stream graph in SGMS or a team in team scheduling),
we define the repetition vector ¢ such that 7¢(a) is the
number of a firings in the current static schedule of G. We
call 7¢(a) the repetition of actor a. For example, the rep-
etition vector of team {b,c} in Figure 3(b) is the same as
its minimum repetition vector, (1,2), because the team has
not been amortized. In Figure 3(c), the repetition vector of
team {b,c} is (2,4). In this paper, amortization of stream
subgraph G by a factor of k means multiplying G’s repeti-
tion vector by k. For example, in Figure 3(c), amortization
of team {b,c} by a factor of 2 has updated its repetition
vector from (1,2) to (2,4).

Note that in saMs the repetition vector is identical to the
minimum repetition vector of the stream graph before any
amortization. If we amortize a schedule by a factor of 2,
we multiply the repetition of every actor by 2. In team
scheduling, each team has its own repetition vector, and
each team is amortized separately.

We use the following method of selecting amortization fac-
tors: Suppose that we are about to amortize team T in
stream graph G. If 3 an integer k > 1 such that Va €
T, qc(a) = k - 77(a), we amortize T by the smallest integer
bigger than 1 that divides k. For example, for team {a} in
Figure 3(b), ¢¢(a) = 3 and (4} (a) = 1, thus k = 3. Other-
wise, we amortize T' by a factor of 2. We use this method in
order to first amortize T up to the minimum steady state of
the entire graph and to additionally amortize T" by a factor
of 2 thereafter.

2.3 Sizing Queues to Avoid Deadlocks

When each team is amortized separately, deadlock or se-
rialization due to insufficient queue capacity can occur as
shown in Figure 4. In Figure 4(a), after firing a 6 times, the
queue at (a,c) is full and “b x 3” does not have enough input
tokens to be fired, resulting in a deadlock (assume that each
actor is assigned to different cores). Note that this is a differ-
ent kind of deadlock from the ones that occur in the feedback
loops shown in Figure 2(b). In Figure 2(b), deadlock is in-
herent in the stream graph: we cannot avoid deadlock no
matter how large a queue we use for each stream. To avoid
the deadlock shown in Figure 4(a), we need to increase the
length of queue at (a,c) to 180. However, this still is not
large enough to support serialization-free execution during
the latency along path a — b — ¢ as shown in Figure 4(b).
To avoid such serialization, the queue length must be at
least 400. This section presents a method that computes
the minimum queue length needed to avoid deadlock and
serialization.

Before team merge and amortization, we first determine
the queue lengths of streams along feedback loops. We can
bound the queue length of a feedback stream s as (see [5])

min (sum of delays along C).
cycle C containing s
When we compute queue lengths of other streams, we use
the acyclic team graph which is constructed by removing
a stream with non-zero delay from each cycle in the team
graph.

After merging or amortizing a team, for each stream s

that is adjacent to the team, we set the queue length of s to

2(prod(s) + cons(s) — ged(prod(s), cons(s))),

where prod(s) is the number of tokens produced per s’s pro-
ducer firing and cons(s) is the number of tokens consumed

I
o [ [ (]

time

(b) Serialization when (a,c) queue
length is 180

(a) Deadlock

Figure 4: An example of deadlock and serialization
from insufficient queue capacity. In (a), b is amor-
tized by a factor of 3. ® denotes that actor a must
be fired at least 9 times to provide enough input
tokens for ¢ firing. Assume that the queue at (a,c)
can buffer 128 tokens. A deadlock occurs after firing
a 6 times. (b) shows a steady state execution when
the queue length of (a, c) is 180.

per s’s consumer firing. Appendix C shows that this pre-
vents serialization between a producer and consumer pair.
After sizing queues only based on the information associ-
ated with their producers and consumers, we consider global
information. First, we find split-join patterns that contain
a team that has been merged or amortized. A team is a
splitter if it has multiple successors, while a team is a joiner
if it has multiple predecessors. We define the split-join pat-
tern of S and J, Gsy, as the teams that are reachable from
S and reachable to J. In Figure 4(a), assume that a, b,
and ¢ each form teams of their own, then {b} belongs to
G{a}{c}- Second, we compute z;(U) for each U € Gsy,
the minimum number of U firings to fire J. In Figure 4(a),
z{cp({a}) = 9. This can be computed by an algorithm sim-
ilar to backward data-flow analysis [15] whose details are
shown in Appendix D. Third, we find the longest latency
path from S to J with the latency defined as follows: Let
q(T) be the minimum repetition of T that can be computed

by T for any d € T. In Figure 4(a), q({b}) = L. Let

77 (d) 3
T,U) = CZJ(—(TJ;) be the latency of edge (T,U), which rep-
resents the latency introduced at (7', U), normalized to the
period of repeating the minimum steady state of the appli-
cation. In Figure 4(a), {({a},{b}) = 2, I({b},{c}) = ﬁ,
and [({a},{c}) = 2. Therefore, the longest latency path is
{a} — {b} — {c} with normalized latency 6, which means
that buffers along each path from {a} to {c} should support
serialization-free execution during the latency equivalent to
the time for repeating the minimum steady state 6 times.
Denote the number of S firings during the longest latency as
ysu = [q(S)- (longest latency from S to J) |. In Figure 4(a),
Y{a}{c} = 36 = 18. Fourth, we simulate firing actors in the
split-join pattern until S is fired ysy times. This can be
done by an algorithm similar to forward data-flow analysis.
In the simulation, we do not fire J and we set queue lengths
of J’s incoming streams to infinity. Let zss(s) be the num-
ber of tokens in J’s incoming stream s after the simulation,
which is the minimum number of tokens to start a steady
state with respect to s’s producer and J, while supporting
serialization-free execution during the longest latency from
S to J. During the steady state, the buffer at s requires
prod(s) + cons(s) — ged(prod(s), cons(d)) additional space
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Figure 5: Steady state execution time when team scheduling and sGMs amortize actors within different buffer
space constraints. Execution times are normalized to those of saMs without any amortization.

(Appendix C). Therefore, we increase the queue length of
s to zs(s) + prod(s) + cons(s) — ged(prod(s), cons(d)). In
Figure 4(a), {a} is fired 18 times during the simulation and
leaves 360 tokens at (a,c) (2{a}{c}((a,c)) = 360). We in-
crease the queue length of (a,c) to 360 + 20 + 30 - 10 =
400.

3. RESULTS

This section describes the experimental setup for our al-
gorithm evaluation and the analysis of results.

3.1 Experimental Setup

We use the same set of StreamIt benchmark applications
that were used for saMs evaluation [20] plus GsM encoder
and W-CDMA searcher [36]. We have ported the StreamIt ap-
plications into a language called Elk [8] that extends StreamlIt.
Elk supports multiple input/output streams and variable-
rate streams, though language difference is not essential in
our evaluation. W-CDMA searcher is ported from a propri-
etary benchmark from Qualcomm™. GsM encoder is ported
from MiBench [12] and contains a feedback path.

We use ELM [1], a multi-core architecture for energy-efficient
embedded computing. ELM has tiled multi-cores connected
through an on-chip interconnection network [7]. Each core
executes instructions with mips-like 1SA in a 4-stage in-order
dual-issue pipeline. ELM supports DMA-like stream memory
instructions that transfer a block of data to other cores’ lo-
cal memory in the background, and these stream memory
instructions are used to implement queue operations. ELM
has an ensemble organization in which four cores share their
local memory. We made each core have its own separate
local memory, changed the local memory size to 256KB, and
used 16 cores to make the evaluation setup similar to that
of the sams paper [20] which uses Cell processors.

The Elk compiler generates C++ code from Elk code, and
an LLVM-based [23] C++ compiler [30] generates ELM assem-
bly code. The assembly code is executed in a cycle-accurate
ELM simulator. We model interconnection as a mesh net-
work with word-wide channels and canonical 4-stage pipeline
routers [7]. Therefore, the latency of a message is 4(d + 1)
cycles if the Manhattan distance to the destination is d. For
SGMs, we idealistically assume that every core can access a
dedicated memory in 1 Manhattan distance latency (8 cy-
cles), and we implement a sense-reversing barrier [13] using
fetch-and-add instructions on the dedicated memory. This
results in 75 cycles per barrier while each barrier takes 1600

cycles in the sGMs paper [20].

As in previous work [11, 10, 20], partitioning is done be-
fore scheduling. We first fission stateless actors with high
computation requirement so that every stateless actor has
at most 1/16 of the total computation requirement. Then
we assign actors to cores using METIS, a graph partitioning
package [17].

In the first experiment, we compare the throughput of
team scheduling with that of SaMS as we change the buffer
space limit per core from 16KB to 128kB. This experiment
measures the efficiency of using limited local memory space,
which is critical for multi-core embedded processors. In
the second experiment, we intentionally avoid exploiting the
amortization flexibility of team scheduling by limiting the
maximum repetitions to the ones in the minimum steady
state of the entire stream graph, and compare throughput,
latency, and buffer usage of the two algorithms. This ex-
periment compares performance of the two scheduling algo-
rithms independent of amortization effects.

3.2 Buffer Space Limited Experiment

Figure 5 compares throughput of both algorithms as we
change the buffer space limit per core from 16KB to 128KB.
Steady state execution time is measured as the time be-
tween the generation of the first and the last output of the
furthest downstream actor, and is inversely proportional to
throughput. Steady state execution times are normalized
to those of sGMs without any amortization. The average
speedup from single-core executions is 11x. The results for
WCDMA are not shown here because SGMS requires an exces-
sive buffer space even without amortization, which will be
shown in Section 3.3. We fuse feedback loops in GSM to sin-
gle actors for SGMS since SGMS results in a deadlock similar
to that shown in Figure 2(b) without fusion. For the partic-
ular case of GSM, SGMs does not show its disadvantage with
respect to complete serialization of feedback loops since the
feedback loops in GsM do not have parallelism that can only
be exploited by team scheduling.

SGMS does not satisfy the buffer space constraint for £ft,
gsm, mpeg2, and vocoder when the space constraint is as
small as 16kB. In contrast, team scheduling satisfies buffer
space constraints across all configurations. The averages are
computed only on the applications that satisfy the buffer
space constraint with both scheduling algorithms (e.g., the
averages for team16KB and sgms16KB are computed exclud-
ing fft, gsm, mpeg2, and vocoder). When the buffer space



limit is as large as 128KB, team scheduling achieves an av-
erage of 37% higher throughput than that of sGMms, which
is especially apparent in fft, fmradio, and serpent. We
can see the importance of amortization from its up to 2.1x
speedup (serpent at team128KB).

As mentioned in Section 2.1, there are several ways to
schedule actors that belong to a team (in team scheduling)
or that are assigned to the same core and the same software
pipeline stage (in saMs). However, push schedule — the
most buffer space efficient single-core schedule [16] — saves
only an average of 8% of buffer space compared to single
appearance schedule. In addition, push schedule does not
make SGMS meet buffer space constraints of any application
which does not already satisfy the constraint in single ap-
pearance schedule. If we apply push schedule to the entire
stream graph, we achieve a significant reduction in buffer
space requirement compared to single appearance schedule
as shown in [16]. However, when we target 16 cores, the
application is already partitioned into 16 pieces, and there
is little difference between using either scheduling method
on each small piece.

In this experiment, we show that team scheduling has bet-
ter control over buffer space than sGMS has: given buffer
space constraint, team scheduling has a better chance of
satisfying the constraint and achieves higher throughput by
efficiently utilizing the limited buffer space for amortization
(i.e., team scheduling achieves balanced trade-off between
synchronization overhead and buffer space requirement).

3.3 Amortization Factor Limited Experiment

Figure 6 shows throughput, latency, and buffer require-
ment of both algorithms while we limit repetition factors
to those in the minimum steady state of the entire stream
graph. In this experiment, we set the buffer space limit per
core to 64KB for team scheduling, which achieves a similar
(0.4% higher) throughput to that of saMs as shown in Fig-
ure 6(a) — a larger buffer space limit improves throughput
at the expense of longer latency. In Figure 6(b), latency is
measured as the time until the first output of the furthest
downstream actor is generated. Team scheduling shows 65%
lower latency and 46% smaller buffer requirement when its
throughput is similar to that of sGmMs. sGwMs has high la-
tency because of poor load balancing in its software pipeline
prologue, resulting in idle cycles while the processor waits
for barriers. Team scheduling does not suffer from this prob-
lem since actors are pair-wise synchronized and can be fired
whenever input tokens are ready.

Since we set the buffer space limit to 64KB for team schedul-

ing, team scheduling uses less than 64KB for every applica-
tion as shown in Figure 6(c). sGMs requires 2MB buffer space
for wedma, which is well over the local memory size of each
core, 256KB. Hence, we omit wcdma in Figure 6(a) and (b).
In wedma, there is a series of reduction actors that produce
fewer tokens than it consumes, thus actors upstream must
be executed hundreds of times, consuming hundreds of KB
of data in steady state. Team scheduling avoids excessive
buffer requirement from the upstream actors by decoupling
the scheduling of upstream and downstream actors.

4. RELATED WORK

Lee and Messerschmitt [25] lay the foundation of SDF in-
cluding a necessary and sufficient condition to the existence
of a valid static schedule which does not deadlock and re-
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Figure 6: Results of amortization factor limited

experiment with team scheduling and scwms for 16
cores.

quires bounded buffer space. Bhattacharyya et al. [4] present
an SDF scheduling algorithm for single-core architectures
that reduces the buffer size of single appearance schedules.
They use pairwise grouping of adjacent nodes (PGAN) heuris-
tic, in which some aspects are similar to our team forma-
tion procedure, but in the context of single-core scheduling.
In [5], Bhattacharyya et al. present a post-pass optimiza-
tion scheme that eliminates redundant synchronization in an
existing multi-core SDF schedule. Their method eliminates
the same set of redundant inter-team synchronizations (e.g.,
synchronization at (a,b) in Figure 3(b)) as team schedul-
ing, but team scheduling does so without running a sophis-
ticated analysis by exploiting a property of team schedul-
ing, namely constant production-to-consumption ratios of
streams between a team pair. They also present a method
of reducing synchronization overhead by introducing a few



feedback paths that make full checks of other queues un-
necessary. However, this method requires additional buffer
space, and it will be interesting to evaluate whether using
the buffer space for eliminating queue full checks as in [5] is
more beneficial than using the same buffer space for amor-
tization as in team scheduling.

The body of sDF work [25, 24, 4, 5, 34, 31] provides a
solid theoretical background for optimizing static parts of
stream programs. However, their multi-core scheduling al-
gorithms [25, 24, 5, 31] are based on homogeneous SDF graph
(HSDFG), whose construction from an equivalent SDF graph
can take an exponential amount of time [31]. In addition,
their algorithms do not overlap the execution of different HS-
DFG iterations, resulting in a smaller degree of parallelism.

[33, 21, 19] present SDF wvectorization that amortizes the
cost associated with actor interactions. For example, Ko et
al. [19] develop a vectorization algorithm that reduces con-
text switch overhead and increases memory locality within
memory constraints, which is similar to amortization de-
scribed in this paper in some aspects but is done in the
context of single-core scheduling. Amortization, or vector-
ization, plays a more important role in multi-core scheduling
because it not only improves the locality of memory access
but also minimizes fixed costs associated with each DMA ini-
tiation.

Lin et al. [27] point out exponential buffer space growth
in their W-CDMA evaluation and present an algorithm that
applies software pipelining in a hierarchical manner. How-
ever, in their algorithm, the programmer must define the
hierarchy, and the authors failed to keep the scheduling al-
gorithm free from exponential buffer space growth when they
designed their later work, sams [20].

Gordon et al. [11] point out deadlocks in split-join pat-
terns. However, their deadlock resolving method targets a
subset of what is described in this paper and does not handle
the case shown in Figure 4(a).

5. CONCLUSION

Previous scheduling algorithms such as SGMS make several
assumptions on target applications, e.g., the entire applica-
tion should follow synchronous data flow (SDF) model. On
the contrary, team scheduling starts from an initial schedule
that makes minimal assumptions, thus targeting a larger
class of applications. Team scheduling successively refines
the initial schedule by aggregation and amortization of ac-
tors, achieving low synchronization overhead similar to that
of saMs. In addition, team scheduling realizes key perfor-
mance features such as deadlock-free feedback loops, low
latency, and flexible buffer space control since it is less con-
strained by the minimum steady state of the entire appli-
cation. Due to its flexibility in buffer space control, team
scheduling efficiently utilizes limited local memory space of
each core. This is clearly shown by the fact that team
scheduling consistently satisfies the buffer space constraint
whereas sGMS fails to do so when the space limit per core
is small (no larger than 16KkB). In the case where the space
limit is as large as 128KB, team scheduling achieves on av-
erage 37% higher throughput than sGMs. These results

demonstrate team scheduling as a critical optimization scheme

in stream compilers for a large class of applications target-
ing embedded multi-core processors, which commonly have
limited local memory space.
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APPENDIX

A. Constant Production-to-Consumption

Ratios between a Team Pair

Let g¢ be the minimum repetition vector of stream sub-
graph G. For teams T and U in stream graph G, according
to [4]:

3 an integer m such that Va € T, ¢é(a) =m-gr(a) (1)
3 an integer n such that Va € U, ¢é(a) =n-qv(a) (2)

For stream s, let src(s) be s’s producer and dst(s) be s’s con-
sumer. Since the number of tokens produced and consumed
at a stream are equal in the minimum steady state of G,
qc (src(s))-prod(s) = qé(dst(s))-cons(s), which is called the
balanced equation [4]. Substituting Equation (1) and (2) into
the balanced equation shows that, for each stream s from T’
to U, m- gz (src(s)) - prod(s) = n-qu(src(s)) - cons(s). This
means that the ratio of the number of tokens produced at s
by each T firing (g7 (src(s)) - prod(s)) to the number of to-
kens consumed from s by each U firing (q¢ (dst(s)) - cons(s))
is a constant, *.

B. Inter-team Synchronization Elimination

Let Sty be the streams from team 7' to team U. Let s1 be
the stream in Sty that is enqueued last in T’s static sched-
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ule. Consider the situation when we check conditions to fire
U. Assume that we have checked that s; is not empty. This
implies that all the other streams in Sty are also not empty,
which makes checking if any of those streams is empty un-
necessary. This can be shown through contradiction as fol-
lows. Suppose that the queue at s3 € Spy — {s1} is empty.
Then due to the constant production-to-consumption ratios
of Sty, the queue at s;1 must be empty which contradicts
our assumption.

Let s2 be the stream in Spy that is dequeued last in U’s
static schedule. Suppose that the queue lengths of Sty are
proportional to their respective number of tokens produced
by each T firing. Consider the situation when we check
conditions to fire T'. Similarly, we can show that, if s2 is not
full, all the other streams in STy must not be full as well.

C. Serialization-free Queue Length for
Producer-consumer Pairs

Consider a stream s. Let p be the number of tokens pro-
duced per sre(s) firing. Let ¢ be the number of tokens con-
sumed per dst(s) firing. Assume that src(s) is fired every
p time steps and dst(s) is fired every ¢ time steps (perfect
load balance). Suppose that s has z(0) tokens at time step
0, when a steady state with respect to src(s) and dst(s)
begins. At time step t, the number of tokens at s is

w(t) = 2(0)+ |- 12) e
= z(0) + (¢t mod ¢) — (t mod p)
(rt= L%J -p+ (t mod p) = LEJ -c+ (t mod c))

Let I be the queue length. When src(s) finishes, t mod p =
0, thus z(t) = z(0) + (¢t mod ¢) < z(0) + ¢ — ged(p, ¢). Since
we need p space to fire src(s) immediately to avoid stalls,
I > z(0)+p+c—ged(p, ¢). When dst(s) finishes, t mod ¢ = 0,
thus z(t) = z(0) — (t mod p) > x(0) —p+ ged(p, ¢). Since we
need ¢ remaining tokens to fire dst(s) immediately to avoid
stalls, (0) — p + ged(p,c) > c¢. Therefore, the minimum [
that avoids stalls is 2(p+ ¢ — ged(p, ¢)), which is achieved by
z(0) = p+ ¢ — gcd(p, ¢). Figure 7 shows an example where
p=2and c=3.

D. Minimum Splitter Firings to Fire
a Corresponding Joiner

We initialize z;(J) = 1. We traverse Ggs in a reverse
topological order (recall that we traverse an acyclic team

graph). For each team T we visit, we compute z;(T) as
follows.

xXJg (T)

= max
successor U of

(number of T firings to fire U z;(U) times)
zy(U) - cons(s)
prod(s)

E. Team Scheduling Pseudo Code

1

= max (I
successor U of T'

01  construct an initial schedule;
02 initial queue sizing; // Feedback queues are sized here.
03
04 // merge teams
05 ¢ = a priority queue with pairs of teams
that do not introduce a cycle;
06 while (lg.isEmpty()) {
07 {a,b) = g.remove();
08 if (merging a and b does not exceed buffer limit
and does not deadlock) {

09 m = merge(a, b);

10 remove all team pairs containing a or b from g;

11 for each (neighbor c of a or b) {

12 if (merging m and ¢ does not introduce a cycle)
13 add (m, c) to ¢;

14 }

15}

16}

17

18 // amortize teams

19 g = construct a priority queue with teams;

20 while (!g.isEmpty()) {

21  a = g.remove();

22 if (amortizing a does not exceed buffer limit
and does not deadlock) {

23 amortize a;
24 add a to g;
25 }
26}

The time complexity of team scheduling is dominated by
the longest path algorithm for buffer requirement computa-
tion. Let |V| be the number of actors and |E| be the number
of streams. We compute buffer requirement O(|V|log(b))
times (lines 8 and 22), when b is the buffer space limit per
core and we amortize each team at least by a factor of 2. We
use the Bellman-Ford algorithm [2] to compute the longest
distance, whose time complexity is O(|V] - |E|). Bellman-
Ford is invoked O(]V|) times per each buffer requirement
computation; thus the time complexity of team scheduling
is O(|V[°| E|log(b)).

The time complexity for cyclicity check is O(|V|®): cyclic-
ity check is done O(|V?|) times (line 12) and each check
takes O(|V|) by using reachability matrix [4]. The time
complexity of finding split-join patterns is O((|E|log(|E|) +
[V[%)|V|log(b)): we apply the concept of dominance frontier
used for constructing static single assignment form in the
compiler [6], which takes O(|E|log(|E|) + |V|?) [6, 26].

If the time complexity is unacceptable (e.g., in just-in-
time compilation), we can stop during algorithm execution
since we maintain a valid schedule throughout the algorithm
execution.
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