
MEMORY OPTIMIZATIONS OF EMBEDDED APPLICATIONS

FOR ENERGY EFFICIENCY

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Jongsoo Park

May 2011

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/qw764dr9610

© 2011 by Jong Soo Park. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/qw764dr9610

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

William Dally, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Monica Lam, Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christoforos Kozyrakis

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

The current embedded processors often do not satisfy increasingly demanding computa-

tion requirements of embedded applications within acceptable energy efficiency, whereas

application-specific integrated circuits require excessive design costs. In the Stanford Elm

project, it was identified that instruction and data delivery, not computation, dominate

the energy consumption of embedded processors. Consequently, the energy efficiency of

delivering instructions and data must be sufficiently improved to close the efficiency gap

between application-specific integrated circuits and programmable embedded processors.

This dissertation demonstrates that the compiler and run-time system can play a crucial

role in improving the energy efficiency of delivering instructions and data. Regarding in-

struction delivery, I present a compiler algorithm that manages L0 instruction scratch-pad

memories that reside between processor cores and L1 caches. Despite the lack of tags, the

scratch-pad memories with our algorithm can achieve lower miss rates than caches with the

same capacities, saving significant instruction delivery energy.

Regarding data delivery, I present methods that minimize memory-space requirements

for parallelizing stream applications, applications that are commonly found in the embedded

domain. When stream applications are parallelized in pipelining, large enough buffers are

required between pipeline stages to sustain the throughput (e.g., double buffering). For

static stream applications where production and consumption rates of stages are close to

compile-time constants, a compiler analysis is presented, which computes the minimum

buffer capacity that maximizes the throughput. Based on this analysis, a new static stream-

scheduling algorithm is developed, which yields considerable speed-up and data delivery

energy saving compared to a previous algorithm. For dynamic stream applications, I present

a dynamically-sized array-based queue design that achieves speed-up and data delivery

energy saving compared to a linked-list based queue design.

iv

Acknowledgement

First and foremost, I would like to thank my advisor, Professor William Dally. Bill

is an amazing person at many moments — at ski slopes or when presenting a deep

insight in front of a large audience. Among his many amazing respects, what I

appreciate most is his consistent optimism and belief in students’ ability to solve

important problems. When we do research, things do not work as we expected most

of the time. I realized that an important virtue to overcome such challenging times is

not being disappointed too easily and believing in solving the problem eventually. He

is also a very dedicated teacher and research advisor. He had held weekly one-to-one

meetings even during his leave of absence for the chief scientist position at NVIDIA.

During six years (from the very first my school week at Stanford when I first met with

Bill to the final meetings for comments on this dissertation), he has been amazingly

consistent at carefully listening students’ concern. His deep, broad insights and hard

working has raised the bar for assessing my own work, which I believe one of the most

valuable lessons I have learned during my PhD.

I would also like to thank my committee members, Professor Monica Lam and

Professor Christos Kozyrakis. I was fortunate enough to had an opportunity to be

a TA of one of Professor Lam’s classes, where I have learned valuable lessons from

interacting with her, particularly from her passion on teaching and research. I am also

very glad to had a chance to take Professor Kozyrakis’s architecture classes, which

provided solid background on my research.

The CVA group is a unique environment, where students are working on vertically-

diverse fields (i.e., from circuits to software). Not only have my peer students taught

v

me valuable technical insights, but also they have been considerate while I was learn-

ing how to communicate well with colleagues in Western cultures. I found that the

CVA group is one of the best research groups in Stanford EE in terms of friendly

interactions including ski trips. It was also a precious experience to work in a project

with many people. I would like to thank James Balfour and David Black-Schaffer,

who are the founding members of the Elm project and have helped me in many re-

spects throughout the project. Christine Avanessians, Clinton Buie, Jooseong Kim,

and Youngsik Kim helped me on the programming system of the Elk project. I would

also like to thank James Chen, who has shared the office with me for several years.

Although he had many struggles with companies for taping out his chips, he has

maintained an incredibly optimistic attitude, which has helped me to stay positive as

well. There were occasional lunches at Ike’s place with James Chen, Curtis Harting,

and Ted Jiang. Although Ike’s place is notorious for long lines, I really enjoyed joyful

lunches with delicious sandwiches. I would like to thank former CVA members —

Jung-Ho Ahn, Patrick Chiang, Abhishek Das, Mattan Erez, Paul Hartke, John Kim,

Tim Knight, Jiyoung Park, and Manman Ren — who had kindly guided me through

my earlier years. I also would like to thank other current CVA members — Daniel

Becker, George Michelogiannakis, Milad Mohammadi, and Vishal Parikh — who have

made my life as a CVA member enjoyable and made myself proud of being a CVA-er.

When people think of the Bay Area, the first thing coming up in their mind is

usually nice weather and beautiful scenary. I was fortunate enough to enjoy not only

the nice environment but also valuable interaction with many good friends. I cannot

appreciate enough that I can talk face-to-face anytime with my friends whom I have

known for more than 10 years even in a place far from my home country. Particularly,

I thank Yeul and Eunsun for their help on settling down when I first came to Stanford,

and Taehoon and Wanki for making a great year while we were roommates.

I also deeply appreciate the friendship with Marianne. We started knowing each

other through the English-in-Action program but became friends, and she gave me

many precious advices. Doing a PhD is a long-haul journey like marathon, and

a person told me that everybody develops at least one hobby during the course.

Occasional excursions to beautiful hiking trails in the Sierra Nevada has helped me

vi

to be periodically refreshed and maintain a healthy life as a graduate student. I thank

Marianne for introducing those places so that I can enjoy the beauty of nature. I also

thank Seokchang for teaching me photography and going to campings with me so that

I can experience the nature closely. I have enjoyed running the Campus Drive with

Kahye, and I hope that we can successfully finish a hiking to the Mountain Whitney

and a half marathon scheduled on this July. Woongki Baek was my first roommate

with whom I took many classes and studied for Quals together. With Jiwon Seo, I

continued our friendship from our college robotics club and discussed many research

ideas.

I would like to thank financial support from the Samsung Scholarship, the Semi-

conductor Research Corporation under Grant 2007-HJ-1591, and the National Science

Foundation under Grant CNS-0719844. Evelin Sullivan and Claude Reichard have

provided me valuable feedback on my writings including this dissertation. Profes-

sor Jaejin Lee at Seoul National University gave me an opportunity to experience

compiler research before I came to Stanford.

Last but not least, I would like to thank my family. Without them, I would not be

able to come to Stanford. I cannot give enough thanks to my wife, Hyejun. My time

at Stanford is full of happy memories, and many of them are from Hyejun. While

writing this acknowledgement, I realized multiple times that how lucky I have been

at Stanford to meet such great people, and I hope this can express at least a part of

my gratitude to them.

vii

Contents

Abstract iv

Acknowledgement v

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 5

1.3 Collaboration . 8

1.4 Organization . 8

2 The Elm Project and Its Programming System 10

2.1 Elm Architecture Overview . 11

2.1.1 System-level Architecture . 11

2.1.2 Micro-architecture . 15

2.2 Elm Programming System . 18

2.2.1 Low-level Compiler Back-end 19

2.2.2 High-level Parallelizing Stream Programming System 19

2.3 Chapter Summary . 30

3 Instruction Scratch-pad Memory 32

3.1 Overview . 32

3.2 Related Work . 34

3.2.1 Dynamic Instruction Placement of SPMs 34

3.2.2 Loop Caches . 39

viii

3.2.3 Tagless Hit Caches . 40

3.3 Analytic Comparison of Miss Rates of SPMs and Caches 40

3.4 Algorithm . 44

3.4.1 Pre-processing . 44

3.4.2 Instruction Placement . 47

3.4.3 Copy and Jump Insertion . 48

3.4.4 Optimality for Single-level Loops 50

3.5 Evaluation . 51

3.5.1 Experimental Setup . 51

3.5.2 L1 Cache Access . 54

3.5.3 Energy Consumption . 57

3.5.4 Execution Time and Code Size 58

3.6 Discussion . 60

3.6.1 Sensitivity on L1 vs L0 Read Energy Ratio 60

3.6.2 Effectiveness of Bypassing . 61

3.6.3 Interaction with Other Architectural Features 62

3.7 Chapter Summary . 63

4 Buffers in Static Stream Applications 66

4.1 Overview . 67

4.2 Queue Capacity Computation Algorithm 73

4.3 Team Scheduling . 81

4.3.1 Team Formation . 81

4.3.2 Amortization . 85

4.3.3 Time Complexity . 86

4.4 Evaluation . 87

4.4.1 Experimental Setup . 88

4.4.2 Buffer Space Limited Experiment 89

4.4.3 Amortization Factor Limited Experiment 94

4.4.4 Discussion: Sensitivity to Architectural Parameters 96

4.5 Related Work . 97

ix

4.5.1 SDF Scheduling for Single-core Architectures 97

4.5.2 SDF Scheduling for Multi-core Architectures 99

4.5.3 Loop Transformations . 101

4.6 Chapter Summary . 104

5 Buffers in Dynamic Stream Applications 106

5.1 Overview . 107

5.2 QED (Queue Enhanced with Dynamic sizing) 109

5.2.1 Capacity Adjustment . 109

5.2.2 Reserve-commit Interface . 112

5.2.3 Non-blocking Implementation 113

5.3 Alternative Methods . 118

5.3.1 Static Optimum Approximation 118

5.3.2 Dynamic, Local Optimum Approximation 122

5.3.3 Analytical Estimation . 125

5.4 Experimental Setup . 128

5.5 Evaluation . 132

5.5.1 Execution Time . 132

5.5.2 Energy Consumption . 134

5.5.3 Discussion . 135

5.6 Related Work . 141

5.7 Chapter Summary . 143

6 Conclusion 144

6.1 Summary and Contributions . 144

6.2 Future Directions . 147

Bibliography 151

x

List of Tables

3.1 Comparison of dynamic instruction placement algorithms 37

3.2 Applications for spm evaluation . 52

3.3 spm experimental setup . 53

3.4 Energy per spm or fc operation . 54

4.1 Applications for team scheduling evaluation 87

4.2 Energy per operation for team scheduling evaluation 91

5.1 Results of methods alternative to qed 121

5.2 Execution time results . 133

5.3 Energy per operation for qed evaluation 135

5.4 A Guideline to select a queue design 140

xi

List of Figures

2.1 The system-level Elm architecture . 12

2.2 The core-level Elm architecture . 14

2.3 The architecture of Elm programming system 18

2.4 Des with and without multiple input and output streams per actor . 21

3.1 L0 instruction stores . 33

3.2 An example fine-grain and coarse-grain instruction placement 35

3.3 Instruction delivery energy with an ideal coarse-grain placement . . . 36

3.4 Misses of spms and fcs for straight-line loops 41

3.5 Compiler’s conservativeness with respect to spm placement 42

3.6 Pseudo code of our fine-grain instruction placement algorithm 44

3.7 An example of applying our fine-grain placement algorithm 46

3.8 Adding launching-pads . 49

3.9 L1 access and energy consumption results 56

3.10 Execution time and code size results 59

3.11 Sensitivity of energy saving on the L0 to L1 access energy ratio . . . 60

3.12 Bypassing support results . 61

4.1 An example of sgms . 67

4.2 An example of deadlock in a feedback path by sgms 69

4.3 An example team scheduling and its generated code 71

4.4 Example deadlock and serialization from insufficient queue capacity . 74

4.5 A steady state of a producer-consumer pair 75

4.6 Illustration of queue capacity computation algorithm 79

xii

4.7 Pseudo code of team scheduling . 82

4.8 Buffer space limited experiment results 89

4.9 Energy consumption results . 90

4.10 Energy consumption breakdown . 92

4.11 Amortization factor limited experiment results 95

4.12 A stream graph and its equivalent implementation in C 102

5.1 Direct3D pipeline speed-up vs. queue capacities 107

5.2 Examples of capacity adjustment . 110

5.3 Capacity adjustment procedure . 110

5.4 Reserve-commit interface . 111

5.4 qed implementation. 115

5.5 Illustration of heuristic search procedure 118

5.6 The profit of d3d10 vs. queue capacities 119

5.7 Construction of dynamic optimal capacity adjustment 123

5.8 An example dynamic optimal capacity adjustment 124

5.9 Statistics of applications . 127

5.9 Pipeline configuration of evaluated applications 130

5.10 Energy Consumption Results . 136

5.11 Capacity adjustment in dedup . 137

5.12 Throughput and tlb misses of a synthetic benchmark 138

xiii

Chapter 1

Introduction

1.1 Motivation

Energy Efficiency Challenge in Embedded Computing

Improving energy efficiency is the one of the most critical challenges we face in contem-

porary computer architectures. In many domains, energy consumption is the primary

constraint that prevents us from solving increasingly advanced problems that require

ever higher computation power. The high performance computing community recog-

nizes energy efficiency as the biggest challenge to achieve exa-scale computing that

facilitates important scientific understandings such as global climate change, safe nu-

clear reactor design, and drug discovery [89]. Data centers consumed 1.5% of the total

US energy use in 2006 [150]. Their electric bills for three years are comparable to

hardware costs [106], and the proportion of electric bills in the total cost of ownership

is expected to grow [17].

Energy efficiency plays a similarly, if not more, crucial role in embedded comput-

ing [34]. The energy efficiency of embedded devices directly affects their usability since

many of them are operated by batteries. The capacity of batteries is not significantly

improving [11], and they are limited by embedded devices’ tight constraints with re-

spect to form factor and manufacturing cost. This energy constraint conflicts with

1

CHAPTER 1. INTRODUCTION 2

increasing computation demands of embedded devices as they adopt more sophisti-

cated algorithms [137,152] and target wider application areas, sometimes substituting

for personal computers.

In order to satisfy the demanding computation requirement within acceptable

energy efficiency, application-specific integrated circuits (asics) are often required [59,

73]. Unfortunately, as semiconductor processes advance, non-recurring engineering

costs of designing, implementing, and testing a new asic become extremely high [109].

This is particularly problematic in domains such as medical equipment, which cannot

afford the excessive cost of asic due to their limited market size [12].

The Elm project, in which the work described in this dissertation was conducted,

aims to design a programmable system that avoids excessive non-recurring engineering

cost while achieving energy efficiency comparable to that of asics. Although this is

an ambitious goal which has yet to be met, this dissertation presents a few important

steps toward the goal with respect to software mechanisms that efficiently manage

the memory subsystem.

The Role of Software in Improving Energy Efficiency of Instruction and

Data Delivery

In order to close the efficiency gap between asics and programmable processors, the

inefficiencies in conventional programmable processors should be identified first. Bal-

four et al. [13] show that 42% and 28% of the energy is consumed for instruction and

data delivery, respectively, in an embedded processor based on 32-bit sparc archi-

tecture [58]. Balfour’s thesis [12] also shows that the energy consumed for executing

an add instruction is at least 10.2× the energy expended in a 32-bit adder. In other

words, it is instruction and data delivery, not computation, that contributes to most

of the energy consumption in embedded processors. Consequently, the energy effi-

ciency of the memory subsystem through which instructions and data are delivered

must be improved to close the efficiency gap.

A central theme of this dissertation is that the compiler and run-time system

can significantly improve the energy efficiency of delivering instructions and data

by efficiently managing resources whose controls are deliberately exposed to software.

CHAPTER 1. INTRODUCTION 3

This energy efficiency improvement relies on the compiler or run-time system’s ability

to reason about the locality of instruction and data access, which allows optimiza-

tions that save energy. Examples include avoiding tag checks by proving that the

target instruction is already cached and using statically-allocated arrays by prov-

ing a tight bound on buffer capacities to avoid dynamic allocations. Of course, this

software-based approach is not a silver bullet and should be complemented by other

mechanisms such as dynamic voltage scaling [162], gating [129, 143], and hardware

customization [48, 59]. It is also important to know what kind of facts the compiler

and run-time system can prove for energy efficiency and which of them yields the

largest gain. This dissertation focuses on two optimization opportunities found in

the Elm project that lead to large energy savings, are not satisfactorily handled by

existing approaches, and are algorithmically interesting. Brief descriptions on other

optimizations investigated in the Elm project are provided in Section 2.1.

Improving Energy-efficiency of Instruction Delivery by Compiler-managed

Instruction Scratch-pad Memory

Instruction delivery accounts for the largest fraction of the energy consumed by em-

bedded processors according to Balfour et al. [12,13]. Similarly, the instruction cache

contributes to 27% and 29% of the total energy consumed in StrongARM [115] and

TM3270 TriMedia vliw processors [151], respectively. A typical instruction cache has

high energy consumption because it occupies a significant fraction of the processor

die area and is accessed every cycle.

Researchers have observed that the current cache hierarchy is primarily optimized

for performance, and that extending the hierarchy by adding small caches (typically

1KB or smaller) between the L1 instruction cache and the processor saves energy [84].

Energy efficiency can be further improved by replacing the small caches with scratch-

pad memories (spms), which we call L0 instruction spms. Spms are compiler-managed

stores in which no tags are used to associate locations in spms and therefore consume

less energy per access than caches with the same capacity. Small caches between the

L1 instruction cache and the processor are natural targets to be replaced with spms

since the typical locality captured by such small stores comes from loops, which are

CHAPTER 1. INTRODUCTION 4

analyzable by the compiler. Chapter 3 describes a compiler algorithm that manages

L0 instruction spms and evaluates their energy savings compared to cache-based

designs and previous spm management algorithms.

Improving Energy-efficiency of Data Delivery in Stream Applications

Data delivery energy accounts for the second largest fraction of the energy consumed

by embedded processors [12,13]. Since data accesses typically have higher miss rates

than instructions, data locality optimizations have a larger impact on the perfor-

mance. In addition, data locality optimizations have intimate relation to efficient

parallelization. Therefore, data locality optimizations have been extensively stud-

ied [44, 45, 94, 104, 105, 135, 164], even though they pose challenges not found in an-

alyzing locality of instructions: in contrast to instructions of a read-only nature,

dependencies must be preserved with respect to data writes, which often involves

inter-procedural pointer aliasing analyses. This dissertation focuses on a relatively

understudied yet an important data locality optimization problem in the embedded

domain — minimizing buffer space while sustaining the throughput of parallelized

stream applications. Stream applications are commonly found in the embedded do-

main, whose typical examples are digital signal processing algorithms.

In embedded stream applications, pipeline parallelism plays a critical role in

achieving satisfactory parallelization speed-ups. Embedded applications tend to pro-

cess data sets smaller than those processed by high-performance computing counter-

parts. Consequently, solely exploiting data-level parallelism is not enough to fill in-

creasing number of cores [51]. In addition, components such as the arithmetic encoder

in H.264 or the Huffman encoder in jpeg or mp3 are not data parallel, and pipelining

is typically the only type of parallelism that can be exploited. Even a small number

of non data-parallel components can significantly limit the scalability of approaches

that solely exploit data-level parallelism [51]. When pipeline stages contain large

local states (e.g., texture data of pixel shaders in graphics pipelines), accessing the

states from a few dedicated cores using pipeline parallelism can yield better locality

than swapping in and out the states using only data-level parallelism [90]. Moreover,

pipelining is also an effective form of parallelization for heterogeneous architectures.

CHAPTER 1. INTRODUCTION 5

We can map a stage to the component where it can be efficiently executed. When

there is a pipeline stage that is a prominent bottleneck, hardware that is highly op-

timized for that particular stage can be incorporated (e.g., a rasterizer in a graphics

pipeline).

Efficient pipeline parallelization however poses several challenges. Whereas chal-

lenges such as load imbalance can be resolved by existing load balancing scheduling

algorithms such as work stealing [29], appropriately sizing queues between stages has

been relatively understudied. Arbitrary “large enough” numbers are often chosen for

inter-stage queue capacities. The queue capacity computation has particularly impor-

tant consequence on energy efficiency, since queues too large will incur considerable

amount of costly accesses to remote or off-chip memories. On the other hand, queues

should have large enough capacities (e.g., double buffering) so that producers and con-

sumers can work in parallel or the run-time variation of pipeline stages can be hidden.

This is an example of traditional trade-off between storage and parallelism [8]: just

as using more registers allows for more instruction-level parallelism, using more mem-

ory in inter-stage queues allows for more pipeline parallelism. Chapter 4 describes

a compiler analysis that computes the minimum queue capacity that maximizes the

throughput of static stream applications, applications in which production and con-

sumption rates of stages are close to compile-time constants. Chapter 5 describes a

dynamically-sized array-based concurrent queue design for dynamic stream applica-

tions.

1.2 Contributions

This dissertation makes six contributions: The first is a mechanism to reduce instruc-

tion delivery energy; the subsequent three are mechanisms to reduce data delivery

energy in stream applications. The last two are with respect to infrastructure built

for the Elm project.

CHAPTER 1. INTRODUCTION 6

Instruction Scratch-pad Memory Management (Chapter 3)

This dissertation presents a compiler algorithm that manages instruction scratch-pad

memories (spms), whose instruction delivery energy saving is estimated to be 87%.

In contrast to the previous spm management algorithms, instruction spms with our

algorithm achieve not only a lower access energy but also lower miss rates compared to

caches with the same capacity. This ensures consistently higher energy efficiency than

a competing design called filter caches over diverse memory hierarchy configurations

found in embedded processors. In addition, I discuss reasons for the failure of previous

algorithms to consistently achieve energy savings over filter caches, namely, because

they neglect the conservative nature of compilers, unjustifiably rely on integer linear

programming formulations, or do not take rigorous care in evaluation designs.

Queue Capacity Computation for Static Stream Applications (Chapter 4)

This dissertation presents a static analysis that computes minimum inter-actor queue

capacities that sustain the maximum throughput of static stream applications. This

analysis allows to reduce data delivery energy by minimizing costly remote or off-chip

memory accesses while avoiding throughput degradation and deadlocks.

Buffer-space Efficient Static Stream Scheduling (Chapter 4)

This dissertation presents a static stream-scheduling algorithm called team scheduling

that minimizes communication and synchronization overhead while avoiding costly

remote or off-chip memory accesses, which in turn saves considerable data delivery

energy in static stream applications. It is estimated that the team scheduling can

achieve 27% higher throughput while requiring 33% less energy for data delivery than

a previous stream-scheduling algorithm called sgms [90] in a 16-core Elm processor.

The team scheduling is based on the queue capacity computation analysis mentioned

above, which allows to flexibly apply transformations that minimize communication

and synchronization without incurring too large queues, throughput degradation, or

deadlocks.

CHAPTER 1. INTRODUCTION 7

Dynamically-sized Queues with Minimal Memory Footprint (Chapter 5)

This dissertation presents a concurrent queue data structure called qed (Queue En-

hanced with Dynamic sizing) that adjusts its capacity at run-time to maximize the

throughput while minimizing the memory footprint of inter-actor queues, which in

turn reduces the data delivery energy in dynamic stream applications. Whereas

the queue capacity computation analysis mentioned above minimizes the memory

footprint in parallel execution of static stream applications, qed does the same for

dynamic stream applications. It is estimated that qed can achieve an average of 18%

speed-ups and 15% savings in data delivery energy compared to a linked-list based

queue design.

The Elk Stream Programming Language (Chapter 2)

This dissertation presents a stream programming language called Elk that is extended

from StreamIt [145]. Compared to StreamIt, Elk supports multiple input and output

streams per actor, which allows representations with less clutter in applications such

as Data Encryption Standard. In addition, Elk uses array notations to access input

and output stream tokens instead of push, pop, and peek primitives in StreamIt. Our

experience tells us that the array notation leads to more concise programs and easier

compiler implementation.

Programming System for the Elm Architecture (Chapter 2)

This dissertation presents a programming system infrastructure for the Elm architec-

ture. The programming systems facilitates architecture evaluations [12] and demon-

strates that a primary goal of the Elk project — efficient but programmable architec-

ture — can be met with reasonable effort (i.e., primarily one Ph.D. student plus one

to two M.S. students).

CHAPTER 1. INTRODUCTION 8

1.3 Collaboration

This dissertation describes work that was performed as part of the Elm project. James

Balfour was the main architect of the Elm architecture, and I collaborated with him

on the Elm cycle-accurate simulator that he designed. The Elk stream language is

based on the initial design by him, whose features include array notations for accessing

input/output streams.

David Black-Schaffer proposed a stream programming model called “Block Par-

allel Programming” [26, 28] that is an alternative to existing stream programming

models such as StreamIt [145] and StreamC/KernelC [110]. His work inspired parts

of the Elk programming system, such as supports for multiple input/output streams

per actor, real-time constraints propagation, and physical core mappings with simu-

lated annealing.

James Balfour, Curt Harting, and James Chen provided the numbers for the

energy expended in circuit components, on which most of the estimated energy con-

sumption presented in this dissertation is based. David Black-Schaffer did an initial

investigation on instruction spms [27], and Clinton Buie participated in initial discus-

sions on our instruction spm algorithm. Youngsik Kim helped build a converter from

llvm [95] intermediate representation to our intermediate representation. Jooseong

Kim implemented the front-end of the Elk compiler and helped on debugging our

Elm C++ compiler back-end. Keiji Matsumoto, a visitor from Renesas Technol-

ogy, examined the partitioning step of sgms [90] that is formulated as integer linear

programming. The Qed presented in Chapter 5 was discussed with Jiwon Seo.

1.4 Organization

The remainder of this dissertation is organized as follows:

Chapter 2 describes the Elm project, in which the work presented in this disser-

tation was performed. The programming system for the Elm architecture consists

of two layers. The lower layer is a C++ compiler that effectively targets the micro-

architectural features of Elm. The upper layer is a stream programming system that

CHAPTER 1. INTRODUCTION 9

efficiently utilizes system-level features of Elm such as software-managed memories

with dma operations. The upper layer compiles a language called Elk that extends

StreamIt [145]. Although the algorithms presented in the subsequent chapters are not

Elm-specific, this chapter provides useful context to facilitate understanding them.

Chapter 3 presents a compiler algorithm that manages instruction scratch-pad

memories (spms). Energy efficiency, miss-rates, execution times, and code size are

compared with spms managed by previous algorithms, filter caches, and loop caches.

We use MiBench [55] applications and the Elm cycle-accurate simulator for the com-

parison.

Chapter 4 presents a compiler analysis that computes the minimum inter-actor

queue capacities that sustain the maximum throughput of static stream applications.

Chapter 4 also presents a static stream-scheduling algorithm, called team scheduling,

based on the analysis. Energy efficiency and execution times are compared with those

of a previous scheduling algorithm called sgms. We use StreamIt [145] benchmark

applications and a simulated 16-core Elm processor for the comparison.

Chapter 5 presents a dynamically-sized array-based concurrent queue design called

qed (Queue Enhanced with Dynamic sizing) that minimizes the memory footprint

of inter-actor queues in dynamic stream applications, which is complementary to

the mechanism described in Chapter 4. Energy efficiency and execution times are

compared with those of a popular linked-list based design called Michael and Scott’s

queue [112] and array-based statically-sized queues with “arbitrary large” capacities.

We use applications selected from gramps [141], MiBench [55], and spec benchmarks

for the comparison.

Chapter 6 summarizes the dissertation, focusing on insights obtained with re-

spect to software and hardware coordination for energy efficiency. This dissertation

concludes with discussion on future directions that can improve the work presented.

Chapter 2

The Elm Project and Its

Programming System

The work described in this dissertation has been done in the context of the Elm (Em-

bedded Low-power Microprocessor) project, whose main goal is closing the energy-

efficiency gap between programmable embedded processors and application-specific

integrated circuits (asics). As presented in the previous chapter, the Elm project

identified the main energy consumption source to be instruction and data delivery,

not computation itself. This motivates using the memory subsystem in a more en-

ergy efficient manner by software, which is the main objective of this dissertation.

However, software-only approaches are often insufficient to target the energy effi-

ciency of asics, and synergistic efforts between hardware software are often desired.

For example, the energy reduction that is achieved by the instruction scratch-pad

memory management algorithm presented in Chapter 3 partially stems from features

provided by instruction scratch-pad memories in the Elm architecture. Similarly, the

static scheduling algorithm that minimizes buffer space overhead presented in Chap-

ter 4 relies on efficient direct memory access (dma) operations provided by the Elm

architecture.

This chapter first briefly overviews the Elm architecture (Section 2.1), focusing

on its impact on, and interaction with, the programming system. For comprehensive

introduction to the Elm architecture, the readers are referred to Balfour’s thesis [12].

10

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 11

Section 2.2 describes the programming system for the Elm architecture, which consists

of two layers. The lower layer is a C++ compiler called elmcc, which leverages the

llvm compiler infrastructure [95]. The instruction scratch-pad memory management

algorithm presented in Chapter 3 is implemented as a part of elmcc. The upper layer

is a stream programming system called Elk that is extended from StreamIt [145]. The

static stream-scheduling algorithm presented in Chapter 4 is implemented in the Elk

compiler.

2.1 Elm Architecture Overview

The Elm architecture is designed for exploiting parallelism and locality abundant in

embedded applications to achieve high energy efficiency. The fine-grain control of

architectural resources is exposed to software so that the complexity of embedded

systems design can be amortized in the compilers and programming tools, avoiding

the design and verification cost of special-purpose hardware incurred for each new

system. It was estimated that an Elm system implemented in a 45nm cmos processor

would deliver 500 gops at less than 5W in about 10mm × 10mm of die area (this

estimation is based on the register-transfer level (rtl) model presented in Appendix

A.2 of Balfour’s thesis [12]). In comparison, it was estimated that an embedded

processor based on 32-bit sparc architecture [58] delivers about 380 mops at 36mW

in 0.5mm × 0.3mm of die area, which means that an Elm processor achieves about 7×
the energy efficiency per performance and 2× the area efficiency per performance [12]

compared to the sparc-based embedded processor.

2.1.1 System-level Architecture

Figure 2.1 illustrates the system level architecture of Elm. An Elm system consists

of tiled cores (i.e., processors) that are grouped into ensembles and connected with a

mesh on-chip interconnection network. In addition to core tiles, an Elm system also

has distributed memory tiles.

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 12

Ensemble Tile Distributed Memory Tile
compute [logic]

storage [SRAM

Elm Processor 1

Bank 1

Elm Processor 2

Bank 2

Elm Processor 3

Bank 3

Local Communication Fabric

Interconnection Network

Ensemble Memory Interface

Elm Processor 0

Ensemble
Memory
Bank 0

Figure 2.1: The system-level Elm architecture [12].

Distributed Software-managed Memory and Cache Memory

The processors communicate over an on-chip interconnection network with a mesh

topology. Elm allows software to control the placement and transfer data directly

(i.e., via dma) between ensemble memories. Multiple outstanding dma transfers

can be issued so that a sufficient amount of communication time can be overlapped

with computation. Scatter-gather dma transfers are also provided to minimize the

overhead of communication. Software-managed placement and non-blocking scatter-

gather dmas are particularly useful for stream applications whose communication

patterns are analyzable by the compiler. These features are exploited by several

stages of the Elk stream compiler, including the team scheduling phase presented in

Chapter 4.

These software-managed ensemble memories are backed by a collection of dis-

tributed memory tiles, which can be configured as caches. These cache memories are

useful for capturing the type of locality that is not easily statically analyzable.

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 13

Ensemble Structure

As illustrated in Figure 2.1, four processors are grouped into ensembles, the pri-

mary building block of the Elm architecture. The motivation behind this grouping

is to share expensive resources such as a local memory and an interface to the inter-

connection network. In addition, low-overhead communication and synchronization

mechanisms are provided between the processors within an ensemble so that the com-

piler or the run-time system can exploit the locality between tightly coupled tasks

mapped to the same ensemble.

Processors in the same ensemble share an ensemble memory, which corresponds

to the L1 cache in conventional embedded processors. The ensemble memory pro-

vides a low latency access due to its proximity, while allowing concurrent access to

the local processors and the network interface by through its bank structure. Pro-

cessors within an ensemble are also connected through a local communication fabric

with high-bandwidth point-to-point links, which can be used to capture predictable

communications which demand low latency and high bandwidth.

These low-overhead communication mechanisms allow the programming system

to exploit the parallelism of tightly coupled tasks even if their communication-to-

computation ratio is so high that the benefits of parallelization are typically more than

offset by the overhead of conventional cache coherent memories. For example, pipeline

stages that communicate a considerable amount of data (e.g., back-end pipeline stages

of the graphics rendering pipeline) can be mapped to the same ensemble so that the

low-overhead local communication fabric can be used. When a task has enough

instruction-level parallelism (ilp), four processors in an ensemble can be used as an

ilp core with four coupled instruction streams, as the raw processors are used as

ilp machines [101]. An ensemble can also be used as a simd processor using the

concept of processor corps. Processors operating as a processor corps execute the

same instruction, amortizing the cost of instruction fetch.

Unfortunately, the ensemble structure is not fully exploited by the current Elm

programming system, and, therefore, we used hand-optimized code to evaluate fea-

tures associated with the ensemble structure. This is mostly because of limited time

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 14

ALU XMU

ORF ORF
IRF... ...

XRF
(Indexed Register File)

GRF

XPF

Ensemble Memory – Bank 0

Instruction Data

Elm
Processor 1

Bank 1

Elm
Processor 2

Bank 2

Elm
Processor 3

Bank 3

Group Instruction Distribution

Local Communication Fabric

Interconnection Network

Ensemble Memory Interface

Figure 2.2: The core-level Elm architecture [12].

and resources, which we decided to use for targeting architectural features that re-

sult in a higher impact. Although ensemble level optimizations can result in a large

energy-efficiency gain, their scalability is limited to four processors, and most of the

optimizations are only a matter of implementing existing algorithms: e.g., we can use

an ensemble as an ilp core using the algorithm described by Lee et al. [101], and the

simd mode can be used by employing affine partitioning algorithms for data-parallel

loops as described by Feautrier, Lim, and Lam [44, 45, 105]. Instead, we focus on

architectural features that are not satisfactorily handled by existing algorithms (as in

Chapter 3) or that support scalable parallelism (as in Chapter 4).

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 15

2.1.2 Micro-architecture

Figure 2.2 illustrates the core-level architecture of an Elm system. The Elm cores

are statically scheduled dual-issue 32-bit processors. Each of them has two functional

units, alu and xmu. While the alu executes generic computation instructions, the

xmu is specialized for memory, control, communication, synchronization, and a few

simple arithmetic (e.g., add and sub) instructions.

Efficient Instruction Delivery: Instruction Scratch-pad Memory

One of the most distinguished feature of the Elm processor is that instructions are

issued from compiler-managed scratch-pad memories (spms). In Elm, we call the

scratch-pad memories instruction register files (irfs) to emphasize their specializa-

tion for instruction fetches and small capacity (typically 64-256 instructions). The

compiler is responsible for making sure that instructions are transferred to the in-

struction scratch-pad memory before they need to be issued, thereby eliminating the

need for tags. Eliminating tag checks significantly reduces the energy per access,

particularly for small caches where long tags are needed. For example, Section 3.5.1

shows that eliminating tag checks of a 256-instruction direct-mapped cache saves 53%

of the read access energy.

Instructions are transferred from the ensemble memory in blocks whose length,

source location, and target location are specified by the compiler. The processor

continues to execute during instruction transfers, decoupling issuing and transferring

instructions. This allows the compiler to pre-transfer instructions to hide the latency

of instruction transfers. Instruction scratch-pad memories filter out a significant

fraction of instruction fetches, enabling a single read and write port design of the

ensemble memory, which is another major energy efficiency improvement.

Chapter 3 presents a compiler algorithm that places instructions at appropriate

spm locations to minimize conflict misses and inserts instructions that dynamically

transfer instructions from backing memories (the ensemble memory in Elm) to spms.

Even though there have been numerous compiler algorithms for managing instruction

spms, Chapter 3 shows that spms managed by these previous algorithms cannot

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 16

achieve clearly higher energy efficiency than caches with the same capacity. Chapter 3

elaborates on the reasons behind the unsatisfactory results of previous spm placement

algorithms and shows how our algorithm realizes noticeable energy savings compared

to caches.

Instruction spms in Elm provide useful features that further improve the effective-

ness of the spm placement algorithm presented in Chapter 3. As mentioned above,

decoupling issuing and transferring instructions allows the algorithm to hide the la-

tency of instruction transfers, thereby improving the execution time. In addition, the

instruction spms in Elm provide wrap-around access: when the target spm location

plus the transfer block length exceeds the capacity of the spm, the target location

wraps around to the beginning of the spm. This considerably reduces the fragmen-

tation of instruction placement in spms.

On the other hand, we find that not all features provided by the instruction spms

in Elm are clearly beneficial with respect to energy efficiency. The instruction spms in

Elm do not allow bypassing. In other words, all instructions must be issued from the

spms, and there is no bypass that can be used for issuing instructions directly from

the backing memory. In Section 3.6, we show that adding bypass support reduces

the number of accesses to the backing memory by 40%, and the energy consumed for

accessing the spm and the backing memory cells by 31%. It is true that removing

bypass support has several advantages such as simpler connectivity and a shorter

program counter. However, it is unclear that these advantages will more than offset

the aforementioned 31% energy saving of bypass.

Efficient Data Delivery

Operand Register File As shown in Figure 2.2, Elm processors have distributed

and hierarchical register organization. Each function unit has a small local register file

called an operand register file (orf), which is backed by the general-purpose register

file (grf). Orfs capture short-term data locality so that a considerable number of

operand accesses can be provided by inexpensive registers that are small and close to

the functional units. Orfs also filter out a significant fraction of bandwidth demand

for larger and more expensive grfs. This allows to keep the number of read and

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 17

write ports of the grf small (note that this is similar to the idea behind reducing the

number of read and write ports of the ensemble memory by filtering out instruction

accesses by the instruction spms). The orf concept is extended to explicitly forward

temporary values through result registers to avoid writing dead values back to orfs

or grfs.

We allocate registers and schedule instructions using conventional algorithms. We

first schedule instructions assuming an infinite number of registers using the list

scheduling algorithm. The purpose of this initial schedule is to balance the load

of two functional units and to estimate the pressure of orfs. Then, we allocate

registers using the conventional graph coloring register allocation algorithm [33] for

each register file, starting from smaller ones. The initial schedule imposes constraints

on register allocation with respect to limited connectivity between register files and

functional units. For example, the xmu cannot read the alu’s orf, and, therefore,

variables that are read by instructions that execute on different functional units must

be assigned to the grf or duplicated to multiple orfs. To effectively utilize the orfs,

we use the spill cost function that prefers variables with a high access frequency and

short life time. Since register allocation and instruction scheduling for distributed

and hierarchical register organization in Elm is a straightforward combination of ex-

isting approaches, this dissertation does not go into the further details. Those who

are interested in the details are referred to Balfour et al. [12, 14].

In our initial design of the Elm architecture presented in Balfour et al. [13] and

Dally et al. [38], we took a radical approach to the distributed and hierarchical register

organization, where the connectivity is more limited. For example, functional units

are not allowed to directly access the grf and every operand must go through orfs.

This limited connectivity combined with explicit pipelining of instructions [13, 38]

makes the instruction scheduling and register allocation considerably more tightly

coupled than conventional architectures. In order to avoid a severe phase ordering

problem between register allocation and instruction scheduling, a unified allocation

and scheduling approach was desired. Therefore, we developed path finding schedul-

ing (an algorithm presented in a separate technical report [125]), which simultane-

ously solves the allocation and scheduling problem by finding paths through a graph

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 18

per
core

Machine-
independent
optimizations

ELM-specific
optimizations

Elk elmhc1) C++ Code
w/ intrinsics

C++ code

LLVM LLVM IR elmcc2) ELM
Assembly

1) elmhc: elm high-level compiler
2) elmcc: elm low-level compiler that accepts C++ code

Figure 2.3: The architecture of Elm programming system.

that describes the connectivity of resources. However, in the aim to avoid potential

scheduling deadlocks resulting from simultaneous allocation and scheduling, the algo-

rithm was made to be too complicated and slow (even through it is a polynomial-time

algorithm). This motivated the current simpler distributed and hierarchical register

organization in Elm.

Indexed Register File In additional to its distributed and hierarchical nature,

register organization in Elm provides indirect access [14, 126]. The indexed register

file (xrf) is indirectly accessed through the index pointer registers (xps). The xrf

allows to block data into registers, as we block data into caches [94]. Although it is

possible to block data into registers without indirect access support, doing so involves

loop unrolling, which degrades the instruction locality. The xrf also supports bulk

transfers to/from the ensemble memory, which can be viewed as dmas between the

ensemble memory and the xrf.

2.2 Elm Programming System

Figure 2.3 illustrates the architecture of Elm’s programming system. There are pri-

marily two ways of using the programming system. When the target application

follows the stream programming model, one can use a stream programming language

called Elk. The high-level Elk compiler called elmhc compiles Elk code and gener-

ates C++ code per core. Architecture-dependent features such as dma operations

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 19

are exposed as intrinsic function calls, which are generated by elmhc during its code

generation phase. When direct control of the architecture-dependent features is de-

sired, or when the target application does not follow the stream programming model,

the programmer can write C++ code per core. In this case, the programmer must

manually use intrinsic functions to access architecture-dependent features.

Section 2.2.1 describes the low-level C++ compiler called elmcc, and Section 2.2.2

describes the high-level Elk compiler called elmhc.

2.2.1 Low-level Compiler Back-end

The Elm C++ compiler (elmcc) is implemented as a back-end of the llvm compiler

framework [95]. The llvm compiler parses C++ code, applies machine-independent

optimizations, and emits optimized llvm intermediate representation (ir). Several

Elm-specific optimizations are implemented in elmcc, and its total line count is about

110K. Elm-specific optimizations include xrf bulk transfer generation, allocation of

distributed and hierarchical register files, explicit forwarding generation, and instruc-

tion scratch-pad memory management. Chapter 3 describes the instruction scratch-

pad memory management in detail; other Elm-specific optimizations are described

briefly in Section 2.1.2. The quality of code generated by elmcc is high enough that

the efficiency of Elm architecture is mostly evaluated using compiled code in Balfour’s

thesis [12]. MiBench [55] and StreamIt [145] benchmarks whose line counts are up to

tens of thousands are successfully compiled to produce correct results.

2.2.2 High-level Parallelizing Stream Programming System

Elk Stream Programming Language

Among different kinds of parallelism that can be exploited by stream programming, a

class of stream programming languages focus on data-level parallelism, which can be

found from computations whose successive iterations are independent of each other.

In domains where data-parallel computations are common and the data set is large

enough, solely exploiting data-level parallelism often results in a near perfect uti-

lization of all cores. Scientific computation is an example of such a domain and

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 20

Sequoia [43] is an example of a stream programming language that focuses on data-

level parallelism.

Each computation chunk of common embedded applications operates on data

sets that are smaller than those of scientific applications, and, therefore, data-level

parallelism is sometimes not enough to achieve a degree of parallelism required to

fully utilize the computing power of emerging multi-core processors. In addition to

data-level parallelism, task-level and pipeline parallelism also should be exploited [51].

To the best of our knowledge, StreamIt [145] is the current state-of-the-art language

that exposes data-level, task-level, and pipeline parallelism of streaming applications

together to the compiler.

Comparison with StreamIt The Elk stream programming language extends StreamIt

to address the issues discussed below. For the further details on constructs of StreamIt,

refer to Thies et al. [145]. Black-Schaffer’s thesis [26] provides an excellent literature

review on stream programming systems other than StreamIt.

Single Input and Output Stream per Actor: StreamIt allows at most one

input and output stream per actor. This constraint introduces unnecessary clutter in

many applications. For example, Figure 2.4(a) shows a stage of des (Data Encryption

Standard) implemented in StreamIt, which includes several splitters, joiners, and

identity actors that would have been unnecessary if actors with multiple input and

output streams were supported as shown in Figure 2.4(b). Note that, in Figure 2.4(a),

a spurious splitter (the producer of KeySchedule) is used to work around the lack of

no-input-stream actors. Also, note that joiners are used before Xor actors to interleave

two streams. While implemented the Xor actor, the programmer must keep in mind

that even input tokens are from the first input stream to the joiner and odd input

tokens are from the second one.

The rationale for restricting the number of stream inputs and outputs per actor in

StreamIt was to restrict the methods of actor composition to pipeline, splitjoin,

and feedback. In Thies et al. [145], the authors make an analogy to structured

programs (i.e., programs without gotos), and argue that the restricted composition

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 21

Duplicator

Splitter
(32, 32)

Splitter
(32, 32)

Splitter
(32, 0)

Identity

E
Key

Schedule

Joiner

Xor

Sbox

P

Joiner
(1, 1)

Identity Sink

Joiner
(32, 0)

Joiner
(1, 1)

Xor

(a)

Duplicator

E
Key

Schedule

Xor

Sbox

P

Xor

(b)

Figure 2.4: A des stage with (a) single input and output actors as in StreamIt and
(b) multiple input and output actors as in Elk.

methods facilitate well-structured programs and simplify compiler analyses. However,

experience from programming more than 20 representative applications has shown me

that allowing arbitrary actor connections does not lead to undisciplined structuring of

stream programs and that the limited expressiveness of StreamIt on actor connectivity

does more harm than good. A single generic composition construct, such as bundle

in Elk, which will be described shortly, is enough for writing well-structured stream

programs. My experience from the Elk compiler implementation has also shown

me that the restricted compositions do not necessarily simplify compilation. For

most compiler analyses and transformations, the composition hierarchy should be

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 22

flattened anyway to data structures such as stream graphs [90] that represent the

connectivity of actors in the entire application. Compiler analyses occasionally need

to find topological structures such as splitjoins or feedbacks, but such structures

can be easily identified from flattened graphs by simple graph algorithms that have

been commonly used by traditional compiler analyses without relying on explicit

specification in source code.

Push, Pop, and Peek Primitives: In StreamIt, an actor produces and con-

sumes stream tokens through push and pop primitives. StreamIt also provides a peek

operation that allows an actor to read more input tokens than it consumes, which

implies buffering on input stream tokens. For example, the permutation block of des

can be implemented as follows:

work pop 32 push 32 {

for (int i = 31; i >= 0; i--) {

push(peek(32 - P[i])); // P is the permutation array

}

for (int i = 0; i < 32; i++) {

pop();

}

}

First, the primitive names may confuse programmers since push and pop are com-

monly used for stacks, whereas each stream in stream programs has queue semantic.

In addition, push and pop impose a specific ordering on reading input tokens and

writing output tokens. This is why the first loop uses the reverse iteration order and

why we need the second loop for book keeping.

In Elk, we use array notations to represent the current window of input and output

tokens as follows:

(int[32] in) -> (int[32] out) {

for (int i = 0; i < 32; i++) {

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 23

out[31 - i] = in[32 - P[i]];

}

}

This description is more concise and closer to code that will be generated by

an optimizing stream compiler; due to efficiency reasons or in order to preserve the

atomic nature of each actor firing, the stream compiler will transfer tokens in bulk. In

fact, an intermediate representation of a StreamIt compiler uses a form that is more

similar to the Elk code shown above than to the StreamIt code. In short, StreamIt

provides unnecessarily low-level primitives that help neither the programmer nor the

compiler.

Basic Constructs of Elk:

Actor Actor is the building block of Elk. When an actor is fired, it invokes its

map function, whose syntax is as follows:

actor Fir<int N> {

const int[N] coeffs; // member variable

Fir(const T[N] coeffs) { // constructor

this.coeffs= coeffs;

}

(int[N] in strides=1) -> (int[1] out) { // map function

int sum = 0;

for (int i = 0; i < N; i++) {

sum += coeffs[i]*in[i];

}

out[0] = sum;

}

}

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 24

The syntax of actor definition is similar to that of class definition in C++. An

actor can have template parameters, member variables, constructors, and methods.

One difference is that each actor actively executes its own code instead of being

passively executed by threads as in C++ classes. In addition, each actor has one

map function with special semantics: i.e., is invoked whenever an actor instance is

fired.

The definition of map function starts with input and output streams that are

denoted as arrays. The array notation associated with a stream represents the window

of stream tokens that is accessed by the current actor firing. An input stream can have

a stride attribute. Strides denote the amount of the window shift between consecutive

actor firings. Within the map function, the syntax is identical to that of C++ except

that an array for input stream cannot be written and an array for output stream

cannot be read.

The number of tokens that are consumed or produced by an actor can be a variable.

The code below shows an rle (run length encoder) actor as an example.

actor Rle {

int count = 1;

(int[2] in stride=1) -> (int[] out) {

if (in[0] == in[1]) {

count++;

}

else {

out[0] = in[0];

out[1] = count; // Streams advance per actor invocation.

count = 1;

}

}

}

There are a few pre-defined actors such as RoundRobinSplitter, RoundRobinJoiner,

and Duplicator, which are similar to the filters with the same names in StreamIt.

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 25

Several standard actors are also implemented as a library, which includes FileReader,

FileWriter, Transpose, Buffer, Decimator, Adder, Summer, Subtractor, and Multiplier.

Bundle Elk provides a general composition construct, bundle, which allows ar-

bitrary connections within. The syntax of bundle definition is identical to that of

actor except that its map function describes actor or bundle connections instead of

computation. The code below shows how we can build a band-pass filter using bun-

dles:

bundle BandPassFilter<int N> {

int[N] hpfCoeffs, lpfCoeffs;

BandPassFilter(int lowFreq, int highFreq) {

computeHpfCoeffs(hpfCoeffs, lowFreq);

computeLpfCoeffs(lpfCoeffs, highFreq);

}

static void computeHpfCoeffs(int[N] coeffs, int cutoff) {

...

}

static void computeLpfCoeffs(int[N] coeffs, int cutoff) {

...

}

(int[] in) -> (int[] out) { // map function

in >> Fir<N>(hpfCoeffs) >> Fir<N>(lpfCoeffs) >> out;

}

}

bundle Main {

() -> () {

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 26

FileReader("in.dat") >>

BandPassFilter<32>(1000, 3000) >> FileWriter("out.dat");

}

}

In map functions of bundles, we connect actors or bundles through >> operator,

which is adopted from the C++ I/O stream operator. Using >> operator, we can

describe an arbitrary actor/bundle connectivity. For map functions in bundles, we can

omit the size of arrays associated with input/output streams, which will be inferred

by the compiler. The Main is a pre-defined bundle which is the entry point of the

program.

We can instantiate multiple identical actors as follows:

// from dct.elk

in >> RoundRobinSplitter(8) >> IDCT8x8_1D_row_fast()*8 >>

RoundRobinJoiner(8) >> ...

We can also use if and for statements provided their conditional statements use

compile-time constants as follows:

// from bitonic_sort.elk

for (int i = 0; i < numSeqP; i++) {

// numSeqP should be constant at the bundle invocation time.

if (l > 2) { // l should be constant

tempIn[i] >> PartitionBitonicSequence(l, sortDir) >> tempOut[i];

// sortDir should be constant

}

else {

tempIn[i] >> CompareAndExchange(sortDir) >> tempOut[i];

}

}

tempOut >> RoundRobinJoiner(1) >> out;

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 27

Stream A stream represents data communication between actors. We can an-

notate a stream with a rate as shown below. The compiler exploits parallelism just

enough to satisfy the real-time constraint associated with the rate instead of perform-

ing a best-effort parallelization, if a rate is specified as follows:

bundle Main {

() -> () {

stream<int> in rate=1MHz;

FileReader("in.dat") >> in >>

BandPassFilter<32>(1000, 3000) >> FileWriter("out.dat");

}

}

We can define an array of streams, which is useful in conjunction with for state-

ments in a bundle:

// from bitonic_sort.elk

stream<int>[numSeqP] tempIn, tempOut;

for (int i = 0; i < numSeqP; i++) {

for (l > 2) {

tempIn[i] >> PartitionBitonicSequence(l, sortDir) >> tempOut[i];

}

else {

tempIn[i] >> CompareAndExchange(sortDir) >> tempOut[i];

}

}

tempOut >> RoundRobinJoiner(1) >> out;

Elk High-level Compiler

Output C++ Code The Elk compiler (elmhc) is a source-to-source compiler. It

generates C++ code that is designed to be architecture-independent. For each core, a

separate C++ code is generated, and each of these separated codes has its own main

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 28

function. In the generated C++ code, architecture dependencies mainly come from

how to express streaming (i.e., dma) operations. We abstract these architecture-

dependent parts into two levels: concurrent queue library and intrinsic functions.

Most of architecture-dependent parts can be expressed by our concurrent queue li-

brary interface, which is the higher level of the two abstractions.

Compiler Structure and Important Phases

Front-end We use the antlr parser generator [1] to parse .elk files and gen-

erate an abstract syntax tree (ast) of the whole program. Then, we generate a

three address code (tac) and a control flow graph for each actor as an intermediate

representation.

Important Phases

• Bundle Flattening: We flatten the actor hierarchy that is expressed by the

bundle construct in Elk. The bundle construct facilitates code reuse and mod-

ularization, but, during compilation, it is often more convenient to flatten the

hierarchy.

• Constant Propagation: During the bundle flattening, we propagate constants

through the hierarchy and within actor computation codes. In many occasions,

we use Janino (an embedded Java compiler) [3] to fold a complex expression

into a constant.

• Rate Analysis: We propagate real-time constraints associated with streams or

actors by the rate construct. For example, if there is a low-pass filter actor

followed by a high-pass filter actor, and the real-time constraint of the low-pass

filter’s input stream is 1KHz, we propagate the constraint to the high-pass filter

and also set the real-time constraint of the high-pass filter to 1KHz (here, we

assume that both low-pass and high-pass filter consume and produce 1 stream

token per firing).

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 29

• Actor Computation Rate Estimation: We estimate the number of instructions

per actor firing using a static analysis. We aggressively apply compiler optimiza-

tions such as conditional constant propagation [159], dead code elimination, and

partial redundancy elimination [86] to our intermediate representation in order

to consider optimizations that will be performed by the C++ compiler. When

we encounter an if-else branch, we select the longest path. When we en-

counter a loop whose iteration count cannot be determined at compile-time,

we mark the actor as a “dynamic” actor (to override this, the programmer can

manually specify the computation rates of an actor). By the combination of re-

sults from the previous rate analysis phase and this phase, we can associate each

actor with the computation requirement that is used in a later phase to satisfy

the real-time constraints. For example, if the propagated rate for a dct actor is

1KHz, and if the estimated actor computation rate is 400Hz, the computation

requirement for the dct actor is 2.5 cores.

• Actor Fission/Fusion: We fuse and fission actors so that we use the minimum

number of cores to satisfy the real-time constraints while maintaining a good

load balance. As a pre-processing step, we selectively fuse adjacent stateless

actors to coarsen the granularity as described in Gordon et al. [51]. If real-time

constraints are specified by the programmer, we fission stateless (i.e., data-

parallel) actors so that computation requirements are satisfied. For example,

if a dct actor requires 2.5 cores, we replicate the dct actor three times. If

real-time constraints are not satisfied, we fission stateless actors just enough to

fill the cores as in the judicious fission described in Gordon et al. [51]. Although

elmhc presently fissions only stateless actors, more data-level parallelism can

be exploited by applying the technique for actors with sliding windows that is

presented by Gordon [50] or more general affine partitioning [44,45,105]. After

actor fission, we input the modified stream graph with fissioned actors to a graph

partitioning software called metis [82] to fuse actors with small computation

requirements to the same core in order to achieve a good load balance. Greedy

heuristics are used for actor fission/fusion in a StreamIt compiler for the raw

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 30

architecture [51,52] and in the block parallel programming presented by Black-

Schaffer [26,28]. In a StreamIt compiler for the Cell architecture, integer linear

programming is used for actor fission/fusion [90]. However, we did not find a

compelling reason for using the greedy heuristics or integer linear programming

formulations instead of leveraging the widely-used metis framework.

• Team Scheduling (Actor Aggregation and Amortization): We aggregate certain

actors that are mapped to the same core as a single actor so that synchroniza-

tion overhead between them can be eliminated. We also multiply the number of

executions of actor per synchronization (queue empty or full checks) in appro-

priate cases to amortize the overhead associated with synchronization and dma

initiation. This optimization significantly improves the throughput while sat-

isfying the buffer-space constraints from limited local memory space. The key

novelty of this phase is a generic buffer-space computation method that finds

the minimum buffer capacities that avoid serialization or deadlock. This allows

to flexibly apply actor aggregation and amortization in an arbitrary order. The

details of this phase are presented in Chapter 4.

• Physical Core Assignment: In the actors-to-cores mapping resulting from the

actor fission/fusion phase, the core numbers are virtual core numbers. In this

phase, we find a virtual-cores to physical-cores mapping that minimizes the ag-

gregated communication distances. We use a simulated annealing method [85].

For more details, refer to Appendix A of Black-Schaffer’s thesis [26].

2.3 Chapter Summary

This chapter overviews the Elm architecture and its programming system to pro-

vide the context for the subsequent chapters. The Elm architecture is designed to

efficiently exploit the abundant locality and parallelism present in embedded appli-

cations. Its distinct features at the system level include software-managed memory

with efficient dma support and ensemble structure; in the core level, distinct features

include instruction spm, operand register files, and indexed register files.

CHAPTER 2. THE ELM PROJECT AND ITS PROGRAMMING SYSTEM 31

In the subsequent chapters, we present compiler algorithms for efficiently utiliz-

ing some of these features. Chapter 3 presents a compiler algorithm that manages

instruction spm and saves instruction delivery energy. Chapter 4 presents a static

scheduling algorithm that utilizes software-managed memories and dma operations

to efficiently transfer data between tasks in stream applications.

The programming system of Elm consists of two parts: the low-level C++ com-

piler (elmcc) and the high-level Elk stream compiler (elmhc). The low-level elmcc

implements the instruction spm management algorithm presented in Chapter 3, The

Elk stream programming language targeted by elmhc is based on StreamIt [145], and

the differences between Elk and StreamIt are described in Section 2.2.2. The high-

level elmhc implements the static stream-scheduling algorithm presented in Chap-

ter 4. Chapter 5 presents a data structure useful for dynamic stream applications

that is complementary to the static scheduling algorithm (but, this has not yet been

incorporated in elmhc).

Even though it is useful to understand the subsequent chapters in the context of

Elm project particularly with respect to their motivations and relations to architec-

tures, the methods described in these chapters are not Elm-specific. Architectural

features targeted by each method are mostly modular, and, therefore, each can be

incorporated separately. For example, instruction spms have been extensively stud-

ied for embedded processors, as will be shown in Section 3.2. Our spm management

algorithm can be applied to instruction spm designs other than the one in Elm.

Software-managed memories with efficient dma support are not unique in Elm: e.g.,

Cell Broadband Engine [72] provides a similar feature. The static stream-scheduling

algorithm can be applied to other architectures that provide software-managed mem-

ories with dma support. Although features provided by Elm such as scatter-gather

dmas improve the efficiency, utilizing them is an optimization, not a necessity for us-

ing our static scheduling algorithm. In fact, the stream-scheduling algorithm can be

used even for architectures without software managed memories with dma operations,

along a line similar to that used by Gummaraju and Rosenblum [54].

Chapter 3

Instruction Scratch-pad Memory

This chapter presents a compiler algorithm that manages small L0 instruction scratch-

pad memories (spms) that achieves significant savings in instruction delivery energy.

Our algorithm is fine-grain: the length of transfer blocks can be adjusted in increments

of one instruction. Our algorithm captures a large fraction of instruction reuse missed

by coarse-grain placement algorithm whose unit of transfer is restricted to loops

or functions within the capacity of spms. Evaluation of L0 spms with our fine-

grain algorithm in 17 applications show that the energy consumed by instruction

storage hierarchy is reduced by 87% compared to that of the configuration where all

instructions are fetched from the L1 instruction cache.

3.1 Overview

In order to reduce instruction delivery energy, researchers have proposed extending

the hierarchy by adding small instruction stores (typically 1KB or smaller) between

the L1 instruction cache and the processor [27,53,67–70,79,84,99,100]; in this chapter,

we call these L0 instruction stores.

Scratch-pad memories [15, 121] (spms), shown in Figure 3.1(a), are compiler-

managed stores in which no tags are used to associate locations in spms with memory

addresses. Therefore, spms consume less energy per access than caches with the same

A shorter version of this chapter is presented in [123].

32

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 33

L1 Cache
(instruction or

unified)

SPM

Processor

(a) L0 Scratch-Pad Memory (spm)

L1 Cache
(instruction or

unified)

Filter
Cache

Processor

tag

(b) Filter cache (fc)

Figure 3.1: L0 instruction stores.

capacity, lending themselves to being a natural choice for L0 instruction stores. There

are primarily two types of instruction placement algorithms that target spms: static

and dynamic instruction placement. In static instruction placement algorithms [9,10,

15, 53, 79, 118, 140, 154, 155, 160], the most frequently executed instructions are iden-

tified by profiling and preloaded prior to starting an application. Throughout the

application execution, the set of instructions that reside in the spm does not change.

Due to their static nature, static placement algorithms cannot efficiently utilize the

spm when an application has multiple hotspots that do not fit in the spm altogether.

In dynamic instruction placement algorithms [27,41,42,78,120,133,139,147,153,156],

instructions are dynamically transferred into the spm as needed, thereby utilizing

spm space more efficiently. For example, Udayakumaran et al. [147] show that their

dynamic placement technique achieves an average of 31% energy reduction over static

placement.

Alternatively, a tag-based design for L0 called filter cache [84] (fc), shown in

Figure 3.1(b), can be used. fcs do not require any compiler modification and preserve

instruction set compatibility. Given this relative simplicity of fcs, spms must have

a sufficiently large energy efficiency advantage over fcs to be the preferred choice.

Although energy efficiency has been the main motivation for using spms [15,139,140],

they have yet to show a notably higher energy efficiency over fcs’. Section 3.2 details

reasons behind this, one of which is the coarse-grain placement of instructions in spms

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 34

— the smallest unit of transfer is a loop or function.

This chapter presents a fine-grain dynamic instruction placement algorithm for

spms that achieves an average of 38% instruction delivery energy savings over fcs. We

evaluate 17 representative and non-trivial embedded applications from MiBench [55]

and rigorously compare spms to fc configurations with the best energy efficiency.

We also show that our fine-grain algorithm achieves 31% instruction delivery energy

savings over even an ideal coarse-grain dynamic placement algorithm which achieves

zero miss rate for instructions in loops or functions that fit the spm. The fine gran-

ularity of our algorithm does not cause proliferation of copy instructions, therefore

maintaining execution time and static code size similar to those of the coarse-grain

algorithm.

The remainder of this chapter is organized as follows. Section 3.2 reviews related

work. Section 3.3 discusses the advantages and disadvantages of spms and fcs with

respect to miss rates. Section 3.4 describes our fine-grain placement algorithm. Sec-

tion 3.5 presents the results of our evaluation. Section 3.6 discusses the interaction

of instruction spms with other architectural features, and Section 3.7 concludes.

3.2 Related Work

3.2.1 Dynamic Instruction Placement of SPMs

Udayakumaran et al. [147], Egger et al. [41], and Pabalkar et al. [120] restrict the

smallest unit of instruction transfer to a loop or function, which results in a large

fraction of instruction reuse being missed. For example, Figure 3.2 shows that, while

a fine-grain algorithm can place blocks 1, 2, 5, 6, and 71 in the spm, a coarse-

grain algorithm can only place block 6 in the spm since the other blocks belong to

loops that exceed the spm size. Figure 3.3 shows that even an ideal spm placement

algorithm cannot achieve more than 10% energy reduction over fcs, with coarse-grain

instruction transfers. In Figure 3.3, we assume that the spm placement algorithm

achieves zero miss rate (including compulsory misses) for instructions in loops or

functions that fit the spm.

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 35

5

6

71aa

4 call

3

1

2

copy {5, 6, 71}

size 2

size 2

size 2
72aa

size 60

copy {1, 2}

copy {1, 2}

copy {1, 2}

size 3

size 2

size 2

(a) fine

5

6

7

4 call

3

1

2

size 3

size 3

size 61

copy 6

copy 6

size 2

size 2

(b) coarse

Figure 3.2: An example of (a) a fine-grain dynamic instruction placement and (b) its
coarse-grain counterpart when the capacity of the spm is 64. Blocks placed in the
spm are shaded. Section 3.4 describes the placement process in detail using the same
example.

Steinke et al. [139], Verma et al. [156], and Egger et al. [41] use integer linear pro-

gramming (ilp) to select the best set of instructions to be placed in spms, which does

not scale well for large applications. During the survey of related work for this dis-

sertation, I have encountered several occasions where ilp is used without compelling

justification. ilp typically requires exponential running time in the worst case and

commercial ilp solvers are quite expensive. Therefore, ilp should be used only when

the user wants “super” optimization and should not be used as the default algorithm.

We do not consider a compiler optimization problem to be solved by formulating it

as ilp, since such formulation is a mechanical procedure for most combinatorial op-

timization problems. In addition, such a mechanical procedure seldom provides any

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 36

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

32 64 128 256 512

n

o i t c

u

r t s
n

I

d

e z i l a
m

r o

N

y
g

r e

n

E y r e v i l e
D

Capacity [instructions]

FC COARSE_IDEAL

Figure 3.3: Instruction delivery energy of filter caches (fc) and spms with an ideal
coarse-grain instruction placement (coarse ideal). The instruction delivery energy
is normalized to the case when every instruction is fetched from the L1 instruction
cache. Details on the evaluation setup are presented in Section 3.5.

insight on the problem. We believe that ilp is useful for compiler optimization only

if 1) there is the need for super optimization, 2) one wants to compare the perfor-

mance of heuristics with the optimal, 3) it can be shown that ilp solver finishes in a

polynomial time for the most of cases due to a certain structure of the problem, or

4) the ilp formulation gives additional insight on the problem (e.g., through linear

programming (lp) relaxation or its lp dual form).

Ravindran et al. [133] and Janapsatya et al. [78] use neither coarse-grain placement

nor an exponential time algorithm. Ravindran et al. use traces and Janapsatya et al.

use basic blocks as their unit of instruction transfer, both of which are less flexible than

our algorithm where the length of transfer blocks can be adjusted in increments of one

instruction. Ravindran et al. use temporal relation [47] to measure the cost of placing

multiple traces in the same spm location, and Janapsatya et al. use a similar metric

called concomitance. Although using temporal relation or concomitance can minimize

conflict misses of caches, we show in Section 3.3 that applying these metrics to SPMs

overlooks the tagless and compiler-managed properties of spms. Using these metrics

not only unnecessarily complicates profiling and compilation but can also misguide

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 37

Table 3.1: Comparison of dynamic instruction placement algorithms. In the second
column, “Instruction” denotes that the length of transfer blocks can be adjusted in
increments of one instruction, not instruction by instruction transfers. The algorithm
without check symbols in the fourth column incorrectly rely on metrics that are
meaningful only in the presence of tags (e.g., temporal relation).

Unit of transfer
Polynomial Tagless property

time? considered?
Ours Instruction

√ √

Udayakumaran et al. [147] Loop and function
√ √

Egger et al. [41] Loop and function
√

Pabalkar et al. [120] Loop and function
√

Verma et al. [153,156] Trace
√

Ravindran et al. [133] Trace
√

Janapsatya et al. [78] Basic block
√

Steinke et al. [139] Basic block
√

placement algorithms to make decisions that are beneficial only in the presence of

tags.

We also point out that the literature has not rigorously compared spms against

the best filter cache configurations. Several papers use 4-way [41, 120, 139, 154] or

2-way associative filter caches [133]. In Section 3.3 and 3.5.2, we show that higher

associativity does not necessarily result in lower miss rates when the cache is small,

which limits its instruction reuse mainly to loops. Egger et al. [42] confirm this by

showing that direct-mapped filter caches outperform 4-way associative filter caches

with respect to execution time and energy.

Several papers evaluate only a few applications with small diversity [78,139,156],

which can lead to an inaccurate conclusion. For example, if we only evaluate applica-

tions whose performance is dominated by regular loops such as sha and crc, spms’

performance relative to that of fcs can be exaggerated. In some papers [78, 133],

the majority of evaluated applications are encoder/decoder pairs, which are redun-

dant since typical encoder/decoder pairs in embedded domain (especially symmetric

encryption algorithms) have similar behavior.

Verma et al. [153] compare energy consumption of spms and filter caches averaged

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 38

over multiple capacities (128 to 1024 bytes). They conclude that spms with their

algorithm are more energy efficient than filter caches since their energy consumption

averaged over capacities is smaller although their minimum energy consumption is

larger than that of filter caches. A more meaningful comparison however would be

between minimums rather than average energy reductions. There is no reason for

using spms or filter caches with suboptimal capacities, and the average over multiple

capacities has no meaning other than its weak relationship to the sensitivity of energy

consumption to the capacity.

Janapsatya et al. [78] measure performance by accumulating access times of spms

and caches (e.g., the execution time is 1µs if a cache with access time 1ns is accessed

1000 times). However, since the access times of all spms and caches they evaluated

are faster than 1.7ns in a 0.18µm process, spms’ faster access time will not convert

into fewer cycle counts in most contemporary embedded processors.

Udayakumaran et al. [147] compare the execution time of spms and caches occu-

pying the same area. However, in our evaluation, the energy optimal capacity of L0

spms and caches are 1kb, which does not make area of L0 spms or caches critical

unless the processor design is extremely area constrained.

A large body of spm-related work [41,42,78,133,139,147,153,156] focuses on sub-

stituting L1 instruction caches. We instead focus on extending the memory hierarchy

by adding another level (L0) with spms and comparing this to fcs. This is because

in L0 the majority of instruction reuse comes from loops, for which the compiler has

a proven ability to optimize [8, 36,93,132].

As spm size increases, it is harder for compiler to achieve a hit rate similar to

that of comparably-sized caches due to the lack of tags in spms. Nevertheless, we

can use L0 spms on top of L1 spms, and the approach presented by Egger et al. [42]

looks particularly promising as an L1 spm management scheme. Since their µtlb

effectively acts as a storage for tags with a coarse granularity, we believe that their

design can achieve a similar hit rate to that of caches even if we increase the capacity

more than a few kbs. However, their design is not suitable for L0 spms because

L0 spms’ small capacity will enforce small page size (e.g., 16 instructions per page),

resulting in a significant internal fragmentation.

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 39

3.2.2 Loop Caches

As an alternative to software-managed spms, loop caches [99,100] can be used as L0

instruction stores. Loop caches dynamically identify loops by observing backward

jumps and store the identified loops to filter out costly access to larger stores. Loop

caches serve well for applications in which straight-line loops dominate the perfor-

mance. However, loop caches cannot store loops with if-else branches, and Gordon-

Ross et al. [53] demonstrate that this is too inflexible in dealing with diverse embedded

applications. Gordon-Ross et al. [53] address this inflexibility by pre-loading perfor-

mance critical loops with arbitrary shapes. However, the pre-loaded loop caches [53]

cannot overlay loops in different program phases, and thus cannot efficiently use the

loop cache capacity as Ravindran et al. [133] show.

The loop stream detector in Intel’s Core and Nehalem micro-architecture resem-

bles loop caches: it dynamically detects loops that fit a small buffer (18 instruc-

tions in Core and 28 instructions in Nehalem) and fetches instructions in the loops

from the small buffer instead of from the L1 instruction cache. In contrast to loop

caches [99,100], the loop stream detector is able to capture the locality from loops with

branches. However, the loop stream detector cannot capture the locality from a part

of a loop that does not fit the buffer capacity. In addition to avoiding costly accesses

to the L1 instruction cache, the loop stream detector allows bypassing the front-end

of processor pipelines including branch prediction and decoding from x86 instructions

to micro operations (the latter is supported only in the Nehalem micro-architecture).

Similar optimizations on the front-end of cisc pipelines with branch prediction can

be applied in the conjunction with instruction spms. Bypassing branch predictions

can be conducted by a structure separated from the spm that detects loops. The

instruction spm can store micro operations decoded from cisc instructions so that

expensive decodings can be performed when instructions are copied into the spm

instead of when they are fetched from the spm.

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 40

3.2.3 Tagless Hit Caches

Hines et al. [70] propose an L0 instruction store design called tagless hit instruction

cache (th-ic). th-ics determine if an instruction fetch will be a hit by looking up its

metadata, which consumes less energy than checking tags. The metadata include Next

Target bit (nt), one of which is associated with each instruction present in the th-ic.

When a branch is taken and when the associated nt bit is set, it is guaranteed that

the branch target resides in the th-ic. The metadata also include Next Sequential bit

(ns), one of which is associated with each cache line. When the control falls through

from the last instruction of a cache line and when the associated ns bit is set, it is

guaranteed that the subsequent instructions reside in the next cache line. However,

the authors do not report how much energy is spent on maintaining the metadata and

the control logic. Even if we completely ignore this energy and use the best policy

reported in [70] (tl policy), our evaluation shows that their best energy reduction

is 83%, which is smaller than that of spms with our fine-grain dynamic instruction

placement algorithm.

3.3 Analytic Comparison of Miss Rates of SPMs

and Caches

This section discusses advantages and disadvantages of spms compared to fcs with

respect to miss rates.

We can evaluate L0 instruction stores using the following three metrics: (A) the

L0 access energy, (B) the L0 miss rate, and (C) the L0 performance penalty typically

due to stall cycles that occur when there is a miss in the L0 store. Ideally, we want

an L0 store that simultaneously optimizes all three metrics. spms achieve low access

energy (metric A) because they do not require tags, and low performance overhead

(metric C) because the compiler can proactively load instructions from the L1 cache.

However, previous spm placement algorithms and loop caches have failed to achieve

miss rates (metric B) that are competitive with filter caches.

fcs have a clear advantage to achieve lower miss rates by having tags since the

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 41

0

50

100

150

200

250

300

50 100 150 200 250

#
 o

f
m

is
s
e
s
 p

e
r

it
e
r
a
ti

o
n

L (Loop Size)

FA

DM

SPM

Figure 3.4: The number of misses per iteration for straight-line loops where C (the
capacity of stores) is 64.

tags allow avoiding unnecessary L1 misses for instructions that are already cached.

On the other hand, spms are more flexible in mapping from memory addresses to

spm locations since the mapping is completed controlled by the compiler, thereby

reducing conflict misses. Although fcs’ mappings can also be indirectly controlled

by several code layout techniques [47, 60, 74, 111, 127], spms have more flexibility by

decoupling of memory addresses and spm locations. In addition, spms can avoid

pollution from less-frequent instructions by bypassing them. This bypassing can be

achieved by assigning a portion of address space to the spm and fetching instructions

from it if the program counter points to an address assigned to the spm. Although the

same bypassing can be also achieved with fcs, it hampers the advantages of fcs with

respect to instruction set compatibility and non-compulsory compiler modification.

For a straight-line loop of length L, the following equations compute the number

of misses (except compulsory misses) per iteration for a fully associative fc with

least recently used replacement policy (yFA), a direct-mapped fc (yDM), and an spm

(ySPM), all with capacity C. We assume that C instructions of the loop are placed

in the spm and the other L - C instructions are directly fetched from L1.

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 42

21

(a)

21
copy 1

or

21

copy 1

(b)

Figure 3.5: (a) A simple loop and (b) the result of placing blocks 1 and 2 of the loop
in the same spm location.

yfa =

0 if L ≤ C,

L if L > C
(3.1)

ydm =


0 if L ≤ C,

2(L− C) if C < L ≤ 2C,

L if L > 2C

(3.2)

yspm =

0 if L ≤ C,

L− C if L > C
(3.3)

Figure 3.4 plots these equations when C is 64 and shows that spms incur fewer conflict

misses in straight-line loops. The fewer conflict misses are achieved by placing only

C instructions in the spm, while the other L - C instructions bypass it through the

path from L1 to the processor shown in Figure 3.1(a).

While we can easily minimize miss rates of spms for straight-line loops, the same

optimization is not trivial for codes whose control flow is less regular. In fact, it is

quite a challenge for spms to achieve fewer misses than fcs for less regular code.

Consider a loop shown in Figure 3.5(a) that typically executes 1 during its first

half of iterations and 2 for the second half. For fc, placing 1 and 2 in memory

addresses mapped to the same fc location incurs few conflict misses. In other words,

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 43

instructions 1 and 2 have a weak temporal relation [47]. Gloy et al. [47] minimize

instruction cache conflict misses by finding a layout in which instructions mapped to

the same cache location have weak temporal relations.

We cannot, however, apply the same optimization scheme to spms due to their

lack of tags. In fact, we show that it is always disadvantageous to place multiple

instructions in a single-level loop (a loop without inner loops) at the same spm loca-

tion. In this light, an optimal set of instructions to be placed in spms with capacity

C is the C most frequently executed instructions for single-level loops (proof shown

in Section 3.4.4), which motivates our algorithm (described in Section 3.4).

In contrast to Ravindran et al. [133] and Janapsatya et al. [78], we show why

temporal relation is not a relevant metric for spms as follows: Suppose that we place

1 and 2 in Figure 3.5(a) in the same spm location. The compiler targeting the spm

must conservatively assume that 2 may be executed between consecutive executions

of 1. Consequently, the compiler must copy 1 from L1 to the spm either immediately

before every execution of 1 or immediately after every execution of 2, as shown in

Figure 3.5(b). Although many of these copies will unnecessarily transfer instructions

that already reside in the spm, this will not be noticed by the spm due to the absence

of tags.

In summary, while spms can achieve lower miss rates for a part of code with

regular control flow (straight-line loops are an extreme case), miss rate optimization

for spms is limited by the lack of tags for other part of code. When we use spms

as L0 instruction stores for embedded applications, two facts act favorably: 1) the

execution time of embedded applications is often dominated by loops and their loops

have more regular control flow than those of desktop applications [64], and 2) the

majority of instruction reuse that can be captured by small L0 instruction stores

come from the loops. Later in this chapter, we show that, due to these two facts,

L0 spms can achieve lower miss rates than those of fcs for embedded applications

but this requires fine-grain instruction placement and careful consideration of the

differences between spms and fcs (e.g., spms lack tags, therefore using metrics such

as temporal relation is not useful).

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 44

for each cfg of call graph in a post-order {
T = construct a loop tree of cfg
re-layout(cfg, T)
for each loop L of T in a post-order {
BL = find the longest BL subject to the constraints shown in Section 3.4.2
insert copies and jumps for BL

remove redundant copies and jumps in inner loops
}
}

Figure 3.6: Pseudo code of our fine-grain instruction placement algorithm

3.4 Algorithm

This section describes how our algorithm finds a set of instructions to be placed in

spms in fine granularity to minimize the number of L1 accesses. We first give an

overview of our algorithm, then describe the details of each step.

Our algorithm is executed as a postpass which reads an spm-unaware assembly

code and emits an spm-aware assembly code. We process each control flow graph by

traversing the call graph in a post order. The call graph handles function pointers by

adding edges from a function pointer call site to all callees that may be referenced by

the pointer. For each control flow graph, we construct a loop tree and re-layout the

code. Then, we traverse the loop tree in a post order. For each loop visited, we select

instructions to be placed in the spm, and then insert copy and jump instructions.

Figure 3.6 shows pseudo-code of our fine-grain instruction placement algorithm.

3.4.1 Pre-processing

Construct a Loop Tree

We construct a loop tree as shown in Figure 3.7(a) using Havlak’s algorithm [61]

which can be used for both reducible and irreducible control flow graphs [62]. In

the loop tree, the root represents the entire control flow graph, other non-leaf nodes

correspond to loops, and leaf nodes are basic blocks. In Figure 3.7(a), there is an

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 45

edge from {1, 2, 3, 4, 5, 6, 7} to {5, 6, 7} because the latter is an inner loop of the

former. There is an edge from {5, 6, 7} to {5} because the loop {5, 6, 7} includes

basic block 5. By traversing the loop tree in a post-order in subsequent steps, we

process loops in an inner-most loop first order.

Estimate Execution Frequencies

We estimate the execution frequency of each loop tree node as follows: For each loop

L, we estimate the average iteration count of L, nL. We build a sub-region graph

from the subgraph of the control flow graph induced by L by removing back-edges of

L and contracting inner loops to single nodes, as shown in Figure 3.7(b).

For each child x of L, we compute pL(x), the probability of executing x per

execution of the sub-region graph of L. We estimate pL(x)s either by profiling or static

analysis. In our static analysis, we propagate pL(x)s starting from the loop header,

assuming that each branch direction is independently taken with 50% probability.

The execution probabilities annotated in Figure 3.7(b) are estimated by this static

analysis. In our static analysis, we set nL =∞. Section 3.5.3 shows that the energy

consumption difference between profiling and the static analysis is less than 5%.

Relayout

After estimating pL(x)s, we re-layout the code so that the C most frequently executed

instructions of a loop tree node are contiguous in memory and can be copied to the

spm as a single group, where C is the spm capacity. In Figure 3.7, blocks are numbered

according to the ordering after re-layout. For example, in Figure 3.7(c), blocks 1 and

2 are assigned smaller numbers than block 3 since blocks 1 and 2 are more frequently

executed, assuming the execution probability shown in Figure 3.7(b).

To keep the overhead of inserting jump instructions from the re-layout to a min-

imum, instead of sorting every child, we partition the children into a primary and

a secondary partition so that the primary partition contains the C most frequently

executed instructions. This partitioning is similar to Pettis and Hansen’s function

splitting [127] used for instruction cache miss optimization. Among the children with

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 46

cfg

1, 2, 3, 4, 5, 6, 7Entry

5, 6, 71

Exit

2 3 4

5 6 7

6

(a)

5, 6, 7
4

3

1

2

0.5

0.5

0.25
0.25

0.25

0.25

(b)

5

6

7

4 call

3

1

Entry

2

Exit

copy 6
size 3

size 3

size 61

size 2

size 2

(c)

5

6

71aa

4 call

3

1

Entry

2

Exit

copy {5, 6, 71}

size 2

size 2

size 2
72aa

size 60

size 3

size 2

size 2

(d)

5

6

71aa

4 call

3

1

Entry

2

Exit

copy {5, 6, 71}

size 2

size 2

size 2
72aa

size 60

copy {1, 2}

copy {1, 2}

copy {1, 2}

size 3

size 2

size 2

(e)

Figure 3.7: Example of placing instructions of loops in a 64-entry spm. In (c)-(e), in-
structions placed in the spm are shaded. Basic blocks are numbered in the ordering after
re-layout; we generate the code following this order in our algorithm’s assembly output.
Block 4 has a function call whose callee uses the entire spm.
(a) The loop tree of the control flow graph shown in (c)-(e).
(b) The sub-region graph of the outer-most loop, in which edges are annotated with the
execution probability per iteration.
(c) A schedule after processing loop {6}. Since this loop fits within the spm, the entire loop
is placed in the spm.
(d) A schedule after processing loop {5, 6, 7}. Blocks 5 and 6 are placed in the spm, and
the redundant copy of 6 at its incoming edge is eliminated. The first 59 instructions of
block 7 are placed in the spm as well and extracted as a separate block 71.
(e) A schedule after processing the outer-most loop. This loop has an inner loop bigger
than the spm and a function call whose callee uses the entire spm. According to (b), the
probability of executing the inner loop or the function call per iteration is 0.5. Since 1 and
2 are the only ones with execution probability higher than 0.5, we place 1 and 2 in the spm.

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 47

the same execution probability, we prioritize for inner loops.

3.4.2 Instruction Placement

For each loop L, we select a block of instructions to be placed in the spm, denoted

as BL. We find the longest BL subject to the following three constraints:

1. |BL| ≤ C, where C is the spm capacity.

2. BL is a contiguous block of instructions starting from the first instruction in L.

3. Let SLx be the set of inner loops and function calls of L that can overwrite

the spm location mapped to instruction x. ∀ instructions x ∈ BL, c1 · pL(x) >

c2 · (1
nL

+pL(SLx)), where c1 is the access energy difference between the spm and

L1 cache, c2 is the energy for copying an instruction from the L1 cache to spm,

and nL is the average iteration count of L; pL(S) is the probability of executing

any instruction of S and pL(∅) = 0.

The first constraint is trivial1. The second constraint and our re-layout method

ensure that instructions copied into the spm at incoming edges of L are the |BL| most

frequently executed ones. Note that this constraint is based on the claim proven in

Section 3.4.4 — placing the C most frequently executed instructions of L in the spm

minimizes the number of L1 accesses for single-level loops. We assume that the spm

supports wrapping around the control from its last entry to the first entry, which is

important for reducing fragmentation. The third constraint ensures that energy saved

by fetching x from the spm during iterations of L outweighs the cost of copying x at

incoming edges to L and at outgoing edges from SLx (inner loops or function calls that

conflict with x). Figure 3.7(e) shows an example of applying the third constraint: 3 is

1 However, we need to consider the code size increase from inserting copy and jump instructions
when we compute |BL|. Since we traverse the call graph and loop trees in post orders, |BL| can
decrease as we eliminate redundant copies and jumps when we visit an outer loop or callee as
described in Section 3.4.3. In other words, we conservatively compute |BL| larger than its eventual
value. To reduce the gap between the conservative |BL| and its eventual value, we apply simple rules
such as the following: when the outer loop fits in the spm, we do not count copy or jump insertions
between the current loop and the outer loop since they will be eliminated when we visit the outer
loop.

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 48

not placed in the spm because its execution probability does not exceed the probability

of executing function call in 4 or executing inner loop {5, 6, 7}, both of which use the

entire spm (i.e., c1 ·p{1,2,3,4,5,6,7}(3) = c1 ·0.5 < c2 ·p{1,2,3,4,5,6,7}({4, {5, 6, 7}}) = c2 ·0.5,

because c1 < c2). Since we visit the call graph and loop trees in a post order,

we can determine SLxs, except for recursive functions. For recursive functions, we

conservatively assume that the callee uses the entire spm.

Note that we keep our algorithm simple by imposing the following two restrictions:

First, the location from which an instruction is fetched is constant regardless of which

call graph path or which control flow path was taken. In other words, the placement

of an instruction is neither context-sensitive nor flow-sensitive [8]. We can therefore

denote instructions placed in spms as SPM instructions and the others as non-SPM

instructions. Second, at incoming edges of loop L, we copy only one block of instruc-

tions, BL, into the spm. The only other places where instructions are copied are at

outgoing edges from those inner loops or function calls that can overwrite a portion of

BL. As a result, the fine granularity of our algorithm does not cause proliferation of

copy instructions and therefore maintains execution time and static code size similar

to those of a coarse-grain algorithm, as will be shown in Section 3.5.

3.4.3 Copy and Jump Insertion

After selecting SPM instructions (instructions to be placed in the spm), we adjust the

control flow by inserting copy and jump instructions and then eliminate redundant

copies and jumps of inner loops.

We first insert copy instructions at incoming edges to the current loop and outgo-

ing edges from conflicting inner loops and function calls. For example, in Figure 3.7(c),

we insert “copy 6” at the incoming edge of {6}. Since jumping to the first instruction

right after copying a block of instructions is a common case, in addition to copy

instructions, we support jcopy instructions that transfer instructions from the L1

cache to the spm and jump to the first transferred instruction. To avoid an unneces-

sary copy at a basic block with outgoing edges with different copy targets, we modify

jumps as shown in Figure 3.8. In Figure 3.8, symbolic addresses that start with @ are

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 49

@bb_i: ...

...

jump.lt @taken

@nontaken: ...

(a)

@bb_i: ...

...

jump.lt @bb_i_t

jcopy 17 @nontaken 15

@bb_i_t: jcopy 32 @taken 7

@nontaken: ...

(b)

Figure 3.8: Modifying a jump (i.e., creating a launching-pad) to avoid an unnecessary
copy when outgoing edges of bb i have different copy targets. (a) Before and (b) after
the modification.

mapped to main memory, while the first arguments of jcopy instructions denote abso-

lute addresses mapped to the spm. The third arguments of jcopy instructions denote

the number of instructions that are transferred by the jcopy instructions. When we

return from a function to an spm location, we use an indirect copy instruction whose

source memory address and target spm location are stored in registers.

If either the source or target of a fall-through control flow edge becomes an spm

instruction, we insert jump instructions at the edge. For example, in Figure 3.7(c),

we insert an instruction at the end of 5 that jumps to 6. We also insert an instruction

that jumps from 6 to 7.

A copy for an inner loop can be redundant after copies for the current loop are

inserted. For example, in Figure 3.7(d), “copy 6” at the incoming edge of loop {6}
becomes redundant after “copy {5, 6, 71}” is inserted at the incoming edge of loop

{5, 6, 7}.
Placing instructions of an outer loop in the spm can render certain jump instruc-

tions in its inner loops unnecessary. For example, the jumps from 5 to 6 and from 6

to 7 that are added in Figure 3.7(c) become unnecessary in Figure 3.7(d) because the

edges from 5 to 6 and from 6 to 7 are no longer the ones between an spm instruction

and a non-spm instruction. Therefore, we eliminate the jump instructions as shown

in Figure 3.7(d).

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 50

3.4.4 Optimality for Single-level Loops

Let G be the subgraph of the control flow graph induced by a single-level loop (a

loop without any inner loops), L. We follow Havlak’s definition of loop header and

back-edges [61]. The header of L is the first visited node of L when we depth-first

search the control flow graph to construct a loop tree. The back-edges of L are the

edges whose source is in L and whose target is the header of L. When L is a natural

loop [62], the header is uniquely defined regardless of the particular depth-first search

order used, and it has exactly one back-edge. Let L’s header be G’s entry. When L

is a natural loop, let the source of L’s unique back-edge be G’s exit. When L is not a

natural loop, we add an exit node in G and connect sources of L’s back-edges to the

exit node.

A set S dominates a node x, denoted by S dom x, if every path in G from the

entry to x must go through at least one element in S. S post-dominates a set T ,

denoted by S pdom T , if every path in G from an element in T to the exit must go

through at least one element in S. A set S vacuously post-dominates a set T if T is

empty. Let Ax be the set of program locations in L where a “copy x” resides. Let

Xi be the set of instructions in L that are placed at the ith spm location.

Lemma 3.4.1 For a correct copy schedule, ∀x ∈ Xi,

(Ax dom x) ∨
((Ax pdom Xi − {x}) ∧

(x resides in the ith spm location at incoming edges of L whose target is L’s

header)).

Proof of Lemma 3.4.1. We prove the contrapositive of Lemma 3.4.1. Assume

(Ax ¬dom x) ∧ (Ax ¬pdom Xi − {x}). By the definition of dom and pdom, this

assumption implies that the control can follow a path from an element of Xi−{x} to

x through the loop header without executing any “copy x”. In this case, the ith spm

location does not hold x when the processor tries to fetch it from the spm to execute.

Assume (Ax ¬dom x) ∧ (x does not reside in the ith spm location at incoming edges

of L whose target is L’s header). This implies that the control can flow from the

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 51

outside of L to x through the loop header without executing any “copy x”. �

Let p(x) be the execution frequency of x and p(S) =
∑

x∈S p(x). Let the baseline

be a schedule such that ∀x ∈ L, p(Ax) = p(x); e.g., copy x right before executing

it. If x satisfies the first clause of Lemma 3.4.1 (i.e. Ax dom x), then p(Ax) ≥ p(x).

Therefore, the only way of reducing p(Ax) from the baseline is through the second

clause; but at most one instruction in Xi can satisfy the second clause since only

one can reside in the ith spm location at L’s incoming edges. Hence, the implication

of Lemma 3.4.1 is that, among the instructions placed in the same spm location, at

most one can have fewer L1 accesses than the baseline. Based on this, we can easily

prove the following claim.

Claim 3.4.1 Let C be the capacity of the spm and L be a single-level loop. Placing

the C most frequently executed instructions of L in the spm achieves the minimum

number of L1 accesses2.

3.5 Evaluation

This section describes the experimental setup for our algorithm evaluation and ana-

lyzes the results.

3.5.1 Experimental Setup

For our evaluation, we use Elm [12]. Although Elm is a multi-core architecture with

an in-order dual-issue pipeline and software-managed memories, we modify the archi-

tecture model to a single-core one with a single-issue pipeline and an L1 instruction

cache in order to make our evaluation less sensitive from Elm-specific features. We

change the compiler and the simulator accordingly. Our algorithm is implemented

2 It is minimum under the assumption that loop fission and code duplication are not allowed.
However, loop fission can be implemented as a separate compilation phase, while code duplication
incurs an exponential code size increase in the worst case.

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 52

Table 3.2: Evaluated applications.

Category Benchmark Description

Automotive
bitcnts Counting the number of bits in an array of integers
qsort Quick sort a large array of strings
susan Recognize corners and edges in Magnetic Resonance Images

Consumer
cjpeg jpeg encoding
mad mpeg audio encoder

Network
dijkstra Dijkstra shortest path algorithm
patricia Trie data structure used in routing tables

Office
ispell Spelling checker
stringsearch Searches for given words in phrases

Security

blowfish A symmetric block cipher with a variable length key
pgp Pretty Good Privacy: a public key encryption system
rijndael Advanced Encryption Standard (aes)
sha A Secure Hash Algorithm
rawcaudio Adaptive Differential Pulse Code Modulation (adpcm) encoder

Tele- crc A 32-bit Cyclic Redundancy Check
communication fft Fast Fourier Transform

gsm encode Global Standard for Mobile communication encoder

in elmcc, a compiler back-end for Elm that reads fully-optimized llvm intermediate

representation [95].

Table 3.2 lists the applications we evaluate. We use all integer and fixed-point

applications of MiBench [55]. We also use fft in MiBench after converting its float-

ing point operations to fixed-point ones. Since Elm does not support floating point

operations, we exclude the other applications.

Table 3.3 summarizes the configurations used in the evaluation. We compare spms

with 32 - 512 instructions to fully associative filter caches (fa), direct-mapped filter

caches (dm), and loop caches (lc) [99, 100]. For fa and dm, we use 8-instruction

(32-byte) cache lines, which achieve the best energy-delay product [49] (under the

assumption that the instruction cache consumes 27% of the total energy as in the

StrongARM processor [115]). To control for improvements due to code re-layout,

we apply the same re-layout method to dms when it is beneficial. In the coarse

configuration, we evaluate the maximum energy savings that can be achieved by a

coarse-grain instruction placement: we assume that spms achieve zero miss rates for

instructions in loops or functions that fit the spm. We have two configurations for our

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 53

Table 3.3: Experimental Setup

Baseline
No L0 instruction store,

4-way 16kb L1 I-cache with 8-instruction cache lines
lc Loop cache with flexible loop size scheme [100]

fa
Fully associative fc with lru replacement

policy and 8-instruction (32-byte) cache lines
dm Direct-mapped fc with 8-instruction cache lines
coarse spm with an ideal coarse-grain placement
fine p spm with fine-grain placement
fine fine p without profiling
opt Fully associative fc with optimal replacement policy [19]

fine-grain dynamic instruction placement algorithm: the fine p configuration uses

profiling information, whereas fine uses a static method for computing execution

frequency as described in Section 3.4.1. To provide a lower bound for the number of

L1 cache accesses, we include fully associative caches with an optimal replacement

policy [19] (opt). Note that this optimal replacement policy requires an oracle that

predicts the future, thus cannot be implemented. In our evaluation, we are able

to evaluate the performance of opt as a theoretical bound by off-line trace-based

simulations. We use a 16kb L1 instruction cache with 8-instruction cache lines and

4-way set associativity. The L1 instruction cache with no L0 instruction store is the

baseline of our comparison.

We measure the performance of spms using our cycle-accurate execution-driven

simulator, which is used in Balfour et al. [12]. We measure the performance of fa

and dm using the Dinero IV trace-driven cache simulator [40]. We have implemented

trace-driven simulators for lc and opt.

Table 3.4 lists the energy of each operation estimated from detailed circuit models

of caches and memories realized in a commercial 45 nm low-leakage cmos process.

The models are validated against hspice simulations, with device and interconnect

capacitances extracted after layout. Leakage current contributes a negligibly small

component of the energy consumption due to the use of low-leakage devices. dms use

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 54

Table 3.4: Energy per operation in pJ. “Refill” is the per cache line size energy for
caches and the per word energy for SPMs.

Hit [pJ] Miss [pJ] Refill [pJ]
32-instruction fa 0.28 0.09 3.76
64-instruction fa 0.50 0.17 6.04
128-instruction fa 0.92 0.33 10.60
256-instruction fa 1.74 0.62 19.70
512-instruction fa 3.37 1.18 37.93
32-instruction dm 0.23 0.23 3.73
64-instruction dm 0.39 0.39 5.99
128-instruction dm 0.72 0.72 10.50
256-instruction dm 1.35 1.35 19.55
512-instruction dm 2.64 2.64 37.64
32-instruction spm 0.11 — 0.33
64-instruction spm 0.18 — 0.61
128-instruction spm 0.33 — 1.16
256-instruction spm 0.63 — 2.26
512-instruction spm 1.22 — 4.47
16kb L1 20.35 2.68 37.01

srams to store tags and instructions; the tag array and data array are accessed in par-

allel, and the tag check is performed after both arrays are accessed. fas use cams to

store the tags and srams to store the instructions. fas and the L1 cache are designed

so that the srams is only read when there is a hit in the tag cam; consequently,

a miss consumes less energy, as only the tag array is accessed. When transferring

instructions from the L1 cache, the L1 tag is checked once and the instructions are

transferred over multiple cycles.

3.5.2 L1 Cache Access

Figure 3.9(a) compares the number of L1 cache accesses for each configuration. The

number of L1 cache accesses is normalized to that of the baseline (no L0 store)

and accounts for the additional copy instructions in spm configurations. At smaller

capacities, spms result in fewer L1 accesses than filter caches since there are many

loops whose size is slightly larger than the capacities of spms, for which the advantage

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 55

0.0

0.1

0.2

0.3

0.4

0.5

0.6

32 64 128 256 512

N
o

r
m

a
li

z
e
d

 L
1

 A
c
c
e
s
s
 C

o
u

n
t

Capacity [instructions]

LC

FA

DM

COARSE

FINE

FINE_P

OPT

(a) The number of L1 accesses normalized to the baseline.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
o

r
m

a
li
z
e
d

 L
1

 A
c
c
e
s
s
 C

o
u

n
t

DM COARSE FINE FINE_P OPT

(b) The number of L1 accesses for 256-instruction configurations normalized to the
baseline where no L1 access is filtered.

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 56

0.0

0.1

0.2

0.3

0.4

0.5

0.6

32 64 128 256 512

N
o

r
m

a
li

z
e
d

 I
n

s
tr

u
c
ti

o
n

D

e
li

v
e
r
y
 E

n
e
r
g

y

Capacity [instructions]

LC FA DM COARSE FINE FINE_P

(c) Instruction delivery energy normalized to the baseline.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
o

r
m

a
li
z
e
d

 I
n

s
tr

u
c
ti

o
n

D
e
li
v
e
r
y
 E

n
e
r
g

y

DM COARSE FINE FINE_P

(d) Normalized instruction delivery energy for 256-instruction configurations.

Figure 3.9: L1 access and energy consumption results. The averages are obtained
by computing arithmetic means over per-instruction-value of each benchmark, then
normalizing each mean to the baseline processor configuration.

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 57

of spms is maximized as illustrated in Figure 3.4. When the capacity is as large as

512, fas and dms have fewer L1 accesses because the proportion of instruction reuse

not analyzable at compile-time increases as the working set size increases. Despite

of its higher associativity, fas result in more L1 accesses than dms because the lru

replacement policy works poorly for (almost) straight-line loops that are slightly larger

than the cache capacity as described in Section 3.3. lc’s L1 access decreases by only

9% as we increase its capacity from 32 to 512 since there are not many straight-line

loops larger than 32, which is consistent with Gordon-Ross et al. [53]. If we use

fully-associative filter caches instead of direct-mapped filter caches, the number of L1

accesses increases when the capacity is from 32 to 256 and decreases by only 1% when

the capacity is 512.

Figure 3.9(b) shows the number of L1 cache accesses for each benchmark for

the 256-instruction configurations. Note that we execute whole programs, not just

loops. To avoid clutter, we omit lc and fa, which do not show advantages over dm.

Our fine-grain instruction placement algorithm (fine p and fine) outperforms dms

on most applications. coarse suffers from more L1 accesses than dms on several

applications, especially for susan, mad, patricia, and pgp. These applications have

performance-critical loops bigger than spms, where frequently executed portion of the

loops can only be captured by a fine-grain placement algorithm or by dms (e.g., the

outer-most loop in Figure 3.7). Although omitted here, we observed that lc works

well only if the performance is dominated by straight-line loops (e.g., sha and crc),

but this is too inflexible for other embedded benchmarks. For example, lc exhibits

no L1 access reduction for rawcaudio because its performance is dominated by a loop

with branches.

3.5.3 Energy Consumption

Figure 3.9(c) presents instruction delivery energy for each configuration. Figure 3.9(d)

shows the energy consumed in each benchmark for the 256-instruction configurations,

where the maximum energy reduction is achieved. fine p achieves an 87% reduc-

tion, while fa, dm and coarse achieve 73%, 78% and 80% reduction, respectively.

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 58

Although coarse achieves more energy reduction than dms, their difference, 2%, is

small considering the fact that we assume an ideal spm placement algorithm that

achieves zero miss rate (including compulsory misses) in coarse configuration. Our

algorithm without profiling (fine) does not consume more than 5% additional energy

compared to fine p, which demonstrates that our fine-grain instruction placement

algorithm achieves most of its benefit without profiling. Therefore, our algorithm can

be used without profiling by default, allowing programmers to avoid complications

from profiling and selecting a representative input data set.

To provide context, an 87% reduction in the energy consumed by the instruction

storage hierarchy would result in a 23% reduction in the total dynamic energy con-

sumed in processors such as the StrongARM [115], in which 27% of the total dynamic

energy is consumed by the instruction cache.

While energy consumption is meaningful as the final metric, L1 access count is

the most important variable that the compiler can directly optimize. The relative

energy efficiency of an spm placement algorithm compared to that of fcs varies as

the memory hierarchy or circuit design changes. For example, if an spm placement

algorithm achieves smaller energy consumption than fcs despite more L1 accesses,

the same spm placement algorithm may result in worse energy efficiency when we

have an L1 cache with a larger capacity or higher associativity, where reducing L1

access is more important that reducing the unit L0 access energy. Conversely, if an

spm placement algorithm achieves smaller energy consumption with fewer L1 accesses,

its relative energy efficiency compared to that of fcs is less dependent on a specific

memory hierarchy or circuit design. Therefore, energy reduction of spms must not be

reported without the number of L1 accesses in order to measure the energy efficiency

of an spm placement algorithm in a less architecture and circuit dependent manner.

3.5.4 Execution Time and Code Size

To quantify fc’s and spm’s impact on execution time, we assume a penalty of 1 cycle

for each fc miss as in Hines et al. [70] and Kin et al. [84], and a load-use penalty

of 1 cycle for spms. Gordon-Ross et al. [53] assume a penalty of 4 cycles for each

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 59

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

32 64 128 256 512

N
o

r
m

a
li
z
e
d

 E
x
e
c
u

ti
o
n

 T
im

e

Capacity (instructions)

DM

FINE

FINE_P

(a)

1.00

1.01

1.02

1.03

1.04

1.05

1.06

32 64 128 256 512

N
o

r
m

a
li
z
e
d

 C
o
d

e
 S

iz
e

Capacity (instructions)

COARSE

FINE_P

(b)

Figure 3.10: (a) Execution time and (b) code size normalized to the baseline.

fc miss, but the 1 cycle penalty can be achieved by using the critical word first

technique [64]. For a copy whose target spm location is stored in a register (e.g.,

a copy of function return target), we assume a penalty of 2 cycles. The processor

allows one outstanding copy and stalls when a second one is attempted before the

first completes. To focus on the aspect of instruction delivery, we disregard L1 data

cache miss and branch miss prediction penalty. Within this setup, the 256-instruction

fine p incurs an average of 1.0% execution time overhead, while 256-instruction dm

incurs 1.7% overhead3. We optimize the cache line size of dms for the best energy-

delay product [49]. By increasing the cache line size, we capture more spatial locality

and miss fewer instructions, resulting in a lower execution time overhead. However,

at the same time, this leads to the transfer of more unnecessary instructions from the

L1 cache. We find that 8-instruction cache lines balance this trade-off and achieve

the best energy-delay product (under the assumption that the L1 instruction cache

consumes 27% of the total energy as in the StrongARM processor [115]). For example,

by increasing the cache line size from 2 to 8, the execution time overhead of the 256-

instruction dm filter cache decreases from 5.8% to 1.7%, while the reduction of energy

consumed by the instruction hierarchy changes minimally (from 78.4% to 78.3%).

3 This is an upper bound of fine p’s execution time overhead since its baseline is an ideal case
without L1 cache and branch miss prediction penalty; e.g., if we assume an L1 cache miss penalty
of 32 cycles, a 128-instruction bimodal branch predictor, and a branch miss penalty of 2 cycles, the
256-instruction fine p’s execution time overhead is reduced to 0.7%.

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 60

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.05 0.10 0.15 0.20 0.25

n

o i t c
u

r t s

n

I
d

e z i l a

m

r
o

N

y
g

r e

n

E

Normalized L0 Hit Energy

LC FA DM FINE_P

CACTI 5.3 with
default option

CACTI 5.3 with
dynamic energy optimization option,

Ravindran et. al Ours

D
el

iv
er

y

Figure 3.11: Sensitivity of energy saving on the L0 to L1 access energy ratio. Nor-
malized L0 hit energy denotes the hit energy of the 256-instruction dm normalized
to that of L1.

Copy instructions increase the code size by, on average, 2.9% with 256-instruction

fine p and 2.1% with the same capacity coarse. This demonstrates that the fine

granularity of our algorithm does not cause proliferation of copy instructions. Note

that, although fine p increases the code size, it achieves smaller execution time

overhead than dm. This is because fine p pre-fetches instructions hiding the L1

access latency.

3.6 Discussion

3.6.1 Sensitivity on L1 vs L0 Read Energy Ratio

Figure 3.11 illustrates the sensitivity of energy saving results to the memory energy

models and the memory hierarchy configurations by showing how the energy con-

sumption changes as the ratio of the 256-instruction dm hit energy to that of L1

varies. Cacti [163] uses mastar (Model for Assessment of Cmos Technologies and

Roadmaps) [77] developed by itrs (International Technology Roadmap for Semicon-

ductors) [76] to estimate device characteristics, while we use models provided by a

commercial 45 nm process. Therefore, we cannot directly compare the accuracy of

their energy estimations, but we observe that cacti’s estimation of the normalized

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 61

0.0

0.1

0.2

0.3

0.4

0.5

0.6

32 64 128 256 512N
o

r
m

a
li
z
e
d

 L
1

 A
c
c
e
s
s
 C

o
u

n
t

Capacity [instructions]

DM NBYPS_P FINE_P

(a) The number of L1 accesses
normalized to the baseline.

N
o

r
m

a
li

z
e
d

 I
n

s
tr

u
c
ti

o
n

D
e
li

v
e
r
y
 E

n
e
r
g

y

LC

0.0

0.1

0.2

0.3

0.4

0.5

0.6

32 64 128 256 512

N
o

r
m

a
li

z
e
d

 I
n

s
tr

u
c
ti

o
n

D
e
li

v
e
r
y
 E

n
e
r
g

y

Capacity [instructions]

DM NBYPS_P FINE_P

(b) Instruction delivery energy
normalized to the baseline.

Figure 3.12: Comparison of fine p, nbyps p (fine p applied to spms with no by-
passing support), and dm with respect to L1 access and energy consumption.

L0 hit energy is larger than ours 4. The normalized L0 hit energy can also vary with

the capacity or associativity of L1 cache. Since spms with our placement algorithm

achieve lower L0 access energy and lower miss rates than filter caches, they yield con-

sistently better energy efficiency across a wide range of normalized L0 hit energies. In

contrast, with an spm placement algorithm with higher miss rates than filter caches,

spms can consume more energy than filter caches when the normalized L0 energy is

low, even though spms with the algorithm were estimated to consume less energy

with a high normalized L0 energy (e.g., when cacti is used or the L1 cache is small).

3.6.2 Effectiveness of Bypassing

spms with bypassing support as shown in Figure 3.1(b) have an advantage on reducing

L1 accesses by avoiding pollution from instructions with low locality. In addition,

bypassing support makes instruction placement algorithm simpler since we do not

need to worry about efficiently swap in and out instructions with small temporal

locality. A more complicated fine-grain dynamic instruction placement algorithm for

4 We suspect this is because the cache architecture assumed by cacti mainly targets caches that
are bigger than or equal to typical L1 cache sizes, overestimating energy consumption in small L0
stores.

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 62

spms without bypassing support is described in our technical report [122]. The key

idea behind the algorithm for spms without bypassing support is allocating frequently

executed instructions to exclusive locations so that they do not conflict with less

frequently executed instructions. We call this procedure pinning, which is motivated

by Lemma 3.4.1.

On the other hand, spms without bypassing have several advantages: 1) For

bypassing, the processor has to check if an instruction address belongs to the range

mapped to the L0 store, which may increase the critical path of the pipeline. 2) With

bypassing, the L1 I-cache and the data path between the L1 and L0 should support

both word-granularity access and cache-line granularity access. 3) spms without

bypassing enable a short program counter whose activity factor is very high [12].

Figure 3.12 shows that adding bypassing support reduces normalized number of

L1 accesses from 14% to 10% and normalized instruction delivery energy from 17%

to 13% at the 256-instruction configuration. Whether adding bypassing support is

beneficial depends on how much energy saving we can obtain from the advantages

of spms without bypassing described above. If the saving is greater than 4% of

the L1 cache energy consumption in the baseline configuration, removing bypassing

support would make sense. However, the saving in turn depends on specific processor

configurations, and whether adding bypassing support in general will save energy

remains as future work.

3.6.3 Interaction with Other Architectural Features

Virtual Memory and Context Switching The virtual memory system needs to

bypass the translation of addresses mapped to the spm. We can add a comparator

that precedes the tlb and that identifies addresses mapped to the spm. Alternatively,

if the comparator affects the critical path of the processor design, we can add branch

instructions that are specifically used for spm target locations. With the new branch

instructions, the processor can change a mode for instruction fetch without the com-

parator. After a branch instruction targeting an spm location, the processor changes

its instruction fetching mode to “from the spm”. After other branch instructions, the

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 63

processor changes the mode to “from the L1 cache”.

When the operating system switches the context of threads, the spm-content asso-

ciated with the old thread need to be saved and the content associated with the new

thread need to be restored. Since the typical capacity of L0 instruction spms is as

small as 256 instructions, the cost of context switching is minimal with a reasonable

frequency of context switching. Compared to cache-based designs for L0 instruction

stores such as filter caches, the cost of context switching should be similar: cache-

based designs do not need to explicitly save and restore the content of L0 instruction

stores, but the spm-content associated with a thread will be evicted anyway when the

thread is switched back due to the small capacity of L0 instruction stores. When the

capacity of an spm is as large as that of typical L2 caches, maintaining the context

of multiple threads in the spm can be a challenge, but maintaining the context of

multiple threads is not as important for small L0 spms.

Debugging When instruction spms are used, we need to modify hardware supports

for debugging accordingly. For example, when an instruction with a break point is

copied into the spm, we need to add its location in the spm to the break point list.

When the instruction is overwritten, we need to remove its location in the spm from

the break point list. When the break point condition associated with an spm location

is met, continuing the execution within the main memory address space is easier for

programmers than executing within the spm address space. To this end, we need

to maintain a mapping from spm locations of instructions with break points to their

main memory addresses. This mapping is also required to generate a core dump

which specifies the point of termination with a memory address instead of an spm

location. Evaluating the overhead required for maintaining this mapping remains as

future work.

3.7 Chapter Summary

This chapter presents a dynamic instruction placement algorithm for L0 spms that

shows a notable instruction delivery energy savings (38%) over fcs. This is achieved

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 64

by 1) fine-grain instruction placement where the length of transfer blocks can be

adjusted in increments of one instruction and 2) careful consideration of the tagless

and compiler-managed properties of spms. Since our fine-grain algorithm achieves

31% instruction delivery energy reduction over even an ideal coarse-grain algorithm,

spms now have a better chance to become the preferred choice over fcs by providing

energy saving that justifies the cost of compiler and instruction set modifications.

In addition, processor designers will be able to make well-informed decisions on L0

instruction stores based on our rigorous comparison against the best fc configurations

in 17 representative applications and detailed energy model.

Although our algorithm adjusts its block transfer lengths with single instruction

granularity and achieves noticeable energy savings over other algorithms, our algo-

rithm is quite simple 5. In fact, it is quite surprising that no previous work has tried

our approach, namely focusing on the simple but most important optimization op-

portunity: map the most frequently executed instructions of each loop to the spm.

This is because, we believe, the previous algorithms were unnecessarily complicated

by blindly formulating the problem as an ilp form or relying on irrelevant metrics

such as temporal relation.

As future direction, it would be interesting to see the benefits of hybrid approach,

where the copies of a block of instructions from the L1 cache to the spm are explicitly

inserted by the compiler but a tag associated with the block is checked at run-time to

avoid unnecessary transfers. Since tags are associated with the blocks, if the typical

block size is sufficiently larger than the cache line size, we can keep the tag storage

small so that tag lookup overhead is minimal. It would be also interesting to see the

synergistic effect of this hybrid approach with block-aware instruction sets such as

Zmily and Kozyrakis [165].

In Section 1.1, we have shown that the instruction delivery energy constitutes the

largest fraction of energy consumption in conventional embedded processors, which

can be significantly reduced by the method presented in this chapter. Nevertheless,

5When I presented a shorter version of this chapter at a conference, one of the most common
questions was how such a simple algorithm can achieve more energy savings than more complicated
previous work.

CHAPTER 3. INSTRUCTION SCRATCH-PAD MEMORY 65

the data delivery energy also constitutes a large fraction. Spms can be used for re-

ducing the data delivery energy as well using algorithms such as Udayakumaran et

al. [147], but spm placement algorithms for data tend to be significantly more com-

plicated than their counterparts for instructions and have had a limited success for

achieving a better energy efficiency than comparably sized caches. In the subsequent

two chapters, we focus on how to minimize the additional memory requirement for

parallelizing static (Chapter 4) and dynamic (Chapter 5) streaming applications that

are commonly found in embedded domain so that the data delivery energy consump-

tion can be reduced.

Chapter 4

Buffers in Static Stream

Applications

This chapter presents methods for parallelizing static stream applications with mini-

mal memory space overhead. In static stream applications, the production and con-

sumption rates of actors are close to compile-time constants. We describe an algo-

rithm that computes minimal inter-actor queue capacities that avoid deadlocks and

maximize throughput. We present a scheduling algorithm of static stream applica-

tions for multi-core architectures called team scheduling, which is based on the queue

capacity computation algorithm. Compared to previous multi-core stream-scheduling

algorithms, team scheduling achieves 1) similar synchronization overhead, 2) smaller

buffer spaces for inter-actor queues, and 3) deadlock-free feedback paths. We com-

pare team scheduling to one of the latest stream-scheduling algorithms, sgms, by

evaluating 14 applications on a 16-core Elm processor. Team scheduling successfully

targets applications that cannot be validly scheduled by sgms due to excessive queue

capacity requirement (e.g., w-cdma) or deadlocks in feedback paths (e.g., gsm).

Team scheduling consistently satisfies queue capacity constraints imposed by small

local memory space of each core in embedded processors, while sgms fails to do so.

For applications that can be validly scheduled by sgms, team scheduling shows an

average of 27% higher throughput within the same local memory space constraints.

A shorter version of this chapter is presented in [124].

66

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 67

a

c

b

10

20

30

10

20

30

1000

30

core 0

core 1

(a) A part of
stream graph

a x3

c x2

b

30

20

30

20

60

60

3000

60

core 0

core 1

(b) The minimum
steady state

a x3

a x3

a x3

b

c x2

a x3

b

c x2

barrier

core 0 core 1

DMA

DMA

DMA

DMA

DMA

DMA

stage 2

stage 1

stage 0

stage 3

(c) Software
pipeline

Figure 4.1: An example of Stream Graph Modulo Scheduling (sgms). We assume
that actor a is assigned to core 0 and actors b and c are assigned to core 1 in the
partitioning phase that precedes scheduling. Numbers at each edge denote the number
of stream tokens that are consumed or produced per actor firing. For example, actor
b consumes 30 tokens and produces 20 tokens per firing. dma denotes direct memory
access.

Team scheduling is also estimated to save up to 33% (when 16kb local memories are

used) of the energy consumed in memory and interconnection compared to sgms by

avoiding costly non-local memory accesses.

4.1 Overview

Static parts of stream programs, in which the number of tokens consumed and pro-

duced per actor firing are compile-time constants, follow the model of computation

called synchronous data flow (sdf). sdf provides a theoretical background by which

we can reduce synchronization overhead and buffer capacities. Lee and Messer-

schmitt [98] present an algorithm that constructs single-core static schedules with

bounded buffers and no synchronization overhead. Bhattacharyya et al. [23] present

an algorithm that significantly reduces the buffer requirement of single-core static

schedules. For multi-core architectures, [24,97,98,128] present scheduling algorithms

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 68

based on homogeneous sdf graph (hsdfg), a graph in which every actor consumes

and produces only one token from each of its inputs and outputs [97]. However, con-

structing an hsdfg from an equivalent sdf graph can take an exponential amount of

time [128], and their algorithms do not fully exploit pipeline parallelism [138]. These

issues are resolved by Stream Graph Modulo Scheduling (sgms) implemented in a

StreamIt compiler by Kudlur et al. [90].

sgms applies software pipelining [93,132] to the entire stream graph and synchro-

nizes steady states of the pipeline with barriers. Consider a part of a stream graph

shown in Figure 4.1(a). The partitioning phase that precedes scheduling has assigned

actor a to core 0 and actors b and c to core 1. Numbers at each edge denote the

number of stream tokens that are consumed or produced per actor firing. sgms first

finds the minimum steady state [81] in which the number of produced tokens and con-

sumed tokens are balanced at each edge with the minimum number of actor firings.

For example, a must be fired three times per b’s firing to produce 30 tokens required

by b as shown in Figure 4.1(b). An efficient algorithm to find such a minimum steady

state is described in Lee and Messerschmitt [98]. After finding the steady state, sgms

constructs a software pipeline as shown in Figure 4.1(c). By starting execution of a

producer actor and its consumer actor1 at different stages [132] (a starts at stage 0

while its consumer, b, starts at stage 2), sgms eliminates intra-stage dependencies

so that processor cores do not need to synchronize with each other within a steady

state. An actor periodically writes tokens to its output queue, whose data is dma-

transferred at the next stage. Barriers between each stage guarantee that, whenever

an actor fires, the input tokens required by the actor are already in place.

sgms has the advantage of low synchronization overhead (one barrier per steady

state), but has the following three drawbacks. First, sgms requires information that

may not be available at compile time. For example, the number of tokens to be

produced can vary at run-time for certain streams. We call these variable-rate streams

(e.g., the output of the Huffman encoder in jpeg). Second, sgms has little control

1 More specifically, its consumer actor at a different core since sgms starts producer and consumer
actors at the same stage if they are assigned to the same core.

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 69

a

cb

4

1

1

1

11

1
D

core 0

core 1

(a) A stream graph
with feedback

a

c x4b x4

4

4

4

4

44

4
D

core 0

core 1

(b) Minimum steady state
with a deadlock

Figure 4.2: A deadlock in a feedback path caused by sgms. (a) An example stream
graph. “D” at edge (b, c) denotes a single initial token that makes the stream graph
deadlock-free. (b) The minimum steady state used by sgms in which c never fires.

over queue capacities; the minimum queue capacity for each stream2 is imposed by

the minimum steady state. For example, in the steady state shown in Figure 4.1(b),

we require queue capacity that accommodates at least 3000 tokens at the incoming

stream of actor a. We cannot reduce this queue capacity because the minimum

number of a firings between barriers is set to 3 by the steady state. If each core has

a 2k-word local memory and the unit token size of a’s incoming stream is 1 word, a

remote memory must be accessed to further buffer the tokens. This leads to higher

energy consumption and less predictable execution time, which makes guaranteeing

load balance and real-time constraints at compile-time a challenge. Our evaluation

and Lin et al. [107] show that inter-actor queue capacities can grow exponentially

in the minimum steady state of real-life applications such as w-cdma. Third, sgms

does not handle feedback loops satisfactorily. In Kudlur et al. [90], the authors

mention that a feedback loop is näıvely handled by fusing the entire loop into a single

actor, which results in complete serialization of the loop. If we do not fuse feedback

loops into single actors to avoid serialization, sgms is prone to deadlock. Consider a

feedback path c→ b→ c shown in Figure 4.2(a). This feedback path is deadlock-free

2 More specifically inter-core stream: the queue capacity of intra-core streams depends on how
to schedule actors assigned to a single-core, which is described in [23,81].

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 70

due to an initial token at edge (b, c) denoted as D. The value of the initial token

is specified by the programmer and adds a unit delay at (b, c), thus the use of the

symbol ‘D’ commonly found in signal processing [119]. However, in the steady state

shown in Figure 4.2(b), actor c cannot be fired because it never receives enough input

tokens. The compiler cannot create additional initial tokens because doing so changes

the semantic of the application. Our evaluation (Section 4.4) shows that a similar

deadlock occurs in a real-life application, gsm.

This chapter presents an alternative algorithm called team scheduling that ad-

dresses the drawbacks of sgms, while maintaining a similar synchronization overhead.

Team scheduling starts with a simple initial schedule as shown in Figure 4.3(a). Actor

firings are pair-wise synchronized through queue empty and full checks. This initial

schedule involves high synchronization overhead (i.e., frequent queue empty and full

checks). Nevertheless, this is a correct schedule for a wide range of applications

including the ones that cannot be validly scheduled by sgms. Moreover, the synchro-

nization overhead can be minimized with aggregation and amortization of actors as

follows. We assume that the partitioning phase precedes scheduling similar to sgms,

where actor-to-core mapping is predetermined when reaching the scheduling phase.

First, we selectively aggregate actors that are assigned to the same core, and form

a team in which actors are statically scheduled. By statically scheduling actors in

a team, we eliminate intra-team synchronizations. For example, in Figure 4.3(b),

we form a team by aggregating actors b and c, and eliminate synchronization be-

tween them (bout0.isFull() and cin0.isEmpty() checks are removed). We can also

eliminate inter-team synchronization such as the one between a and b (explained

in Section 4.3.1). In order to construct a static schedule of team {b, c}, we find its

steady state — fire b once and c twice. This is in contrast to sgms, which must use a

steady state of the entire stream graph; in team scheduling, the unit of steady state

construction is a team whose formation is under the compiler’s control. We continue

team formation as long as it does not violate constraints such as maximum buffer

space per core.

Second, we selectively amortize communication overhead of teams by increasing

the number of actor firings per synchronization. Each amortized actor accumulates

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 71

a

c

b

10

20

30

10

20

30

1000

30

core 0

core 1

while (...) {
if (!bin0.isEmpty() and !bout0.isFull())

doB();
if (!cin0.isEmpty() and !cin1.isEmpty() and !cout0.isFull())

doC();
}

(a) Initial schedule

a

c x2

b

10

20

30

20

20

60

1000

60

while (...) {
if (!cin1.isEmpty() and !cout0.isFull()) {

doB(); doC(); doC();
}
}

(b) Team formation

a

c x4

b x2

10

40

60

40

20

120

1000

120

while (...) {
if (!cin1.isEmpty() and !cout0.isFull()) {

doB(); doB(); doC(); doC(); doC(); doC();
}
}

(c) Amortization

Figure 4.3: An example team scheduling and its generated code for core 1. (a) An
initial schedule (b) Form team {b, c} and construct its static schedule, which elimi-
nates synchronization between b and c. Section 4.3.1 describes why synchronization
between a and b can also be eliminated. (c) Amortize the team {b, c} by a factor of
2.

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 72

its output tokens in its local buffer and transfers the accumulated tokens in bulk to

the consumer’s local memory. For example, in Figure 4.3(c), we amortize team {b, c}
so that its actors fire twice as often as they do in the minimum steady state of the

team. Actor c accumulates 120 tokens in its local buffer and transfers them at once.

Amortizing communication overhead is an important optimization scheme, especially

for actors with a high computation-to-computation ratio: the locality of memory ac-

cess is improved, and the fixed cost associated with each data transfer initiation is

amortized. In Section 4.4, we show up to 2.1× speed-up from amortization. The same

optimization can be done in sgms but with limited flexibility: minimum amortization

factors are predetermined by the minimum steady state; and if we want to amortize

an actor by 2, we must amortize all the other actors by 2 as well. Note that the flexi-

bility in choosing amortization factor is crucial for finding the right trade-off between

synchronization overhead and queue capacities. For example, in Figure 4.3(c), team

scheduling is able to selectively amortize b and c without excessively increasing the

queue capacities. On the other hand, sgms incurs a large queue capacity increase

in order to amortize b and c because it must amortize a as well. As we do in team

formation, we continue amortization as long as it does not violate constraints such as

maximum buffer space per core.

A challenge posed by actor aggregation and amortization is that a deadlock or se-

rialization can be introduced due to insufficient queue capacities. In sgms, computing

queue capacities to avoid serialization is trivial: the difference between the stage of

the producer and consumer actor multiplied by the number of tokens produced per

producer actor firing. This is because the number of tokens produced per producer

actor firing and the number of tokens consumed per consumer actor firing are identical

in a steady state. However, when actors are aggregated and amortized in an arbitrary

order, the number of tokens produced per producer actor firing and the number of

tokens consumed per consumer actor firing are no longer nicely matched. Therefore,

we need an algorithm that computes minimum queue capacities to avoid deadlock or

serialization in arbitrary stream graph configurations. Here, minimum capacities are

desired to reduce memory footprint, particularly in the context of embedded proces-

sors since each core commonly has limited local memory space and remote or off-chip

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 73

memory access incurs a significant energy consumption.

This chapter presents a method for computing minimum queue capacities to avoid

deadlock or serialization in static stream applications. As an application of the queue

capacity computation method, this chapter presents an algorithm for scheduling

stream programs on multi-core architectures called team scheduling that has bet-

ter control over queue capacities and lower latency than sgms. We evaluate team

scheduling with 14 stream applications on Elm [12]. Our evaluation shows that team

scheduling achieves a similar throughput to that of sgms with lower latency and

smaller queue capacities. Our evaluation also shows that team scheduling has better

control over buffer space: when we set maximum buffer space per core as a constraint,

team scheduling consistently satisfies the constraint while sgms does not.

The remainder of this chapter is organized as follows: Section 4.2 describes our

queue capacity computation algorithm, and Section 4.3 describes the details of team

scheduling. Section 4.4 presents simulation results comparing team scheduling with

sgms. Section 4.5 reviews related work and Section 4.6 summarizes this chapter.

4.2 Queue Capacity Computation Algorithm

When queues have insufficient capacities, deadlock or serialization can occur as shown

in Figure 4.4. In Figure 4.4(a), after firing a 6 times, the queue at (a, c) is full and

b does not have enough input tokens to be fired, resulting in a deadlock (assume

that each actor is assigned to different cores). Note that this is a different kind of

deadlock from the ones that occur in the feedback loops shown in Figure 4.2(b). In

Figure 4.2(b), deadlock is inherent in the stream graph: we cannot avoid deadlock

no matter how large a queue we use for each stream. To avoid the deadlock shown

in Figure 4.4(a), we need to increase the capacity of queue at (a, c) to 180. However,

this still is not large enough to support serialization-free execution during the latency

along path a → b → c as shown in Figure 4.4(b). To avoid such serialization, the

queue capacity must be at least 400. This section presents a method that computes

the minimum queue capacity needed to avoid deadlock and serialization.

We need a few definitions from the synchronous data flow (sdf) theory [98]. For a

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 74

a

c

b

10

60

90

10

20

30

1000

30

128

❶

❾

(a) Deadlock

a

b

c

time

(b) Serialization when (a, c) queue capacity is 180

Figure 4.4: An example of deadlock and serialization from insufficient queue capacity.
¾ denotes that actor a must be fired at least 9 times to provide enough input tokens
for c firing. Assume that the queue at (a, c) can buffer 128 tokens. A deadlock occurs
after firing a 6 times. (b) shows a steady state execution when the queue capacity of
(a, c) is 180.

stream s, we denote the producer of s as src(s) and the consumer of s as dst(s). We

denote the number of tokens produced/consumed per s’s producer/consumer firing

as prod(s) and cons(s). The minimum steady state [81] is where prod(s) and cons(s)

are balanced for each s. We can always find the minimum steady state of an sdf

application as long as the application is correct (i.e., can be executed with bounded

buffers) [98]. The minimum repetition vector [98] −→qG of stream subgraph G is a vector

such that −→qG(a) is the number of a firings in the minimum steady state of G (−→qG can be

denoted as −→q when G can be unambiguously identified in the context). For example,

the minimum repetition vector of the stream graph shown in Figure 4.4(a) is (9, 1, 6)

where we index the vector in the order of a, b, and c. We denote the number of tokens

produced/consumed at a stream s per minimum steady state as −→qG(s).

We first determine the queue capacities of streams along feedback loops. We can

bound the queue capacity of a stream along feedback loops s as (see [24])

min
cycle C containing s

(−→qC(s) ·
∑

edge e∈C

delay(e)
−→qC(e)

).

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 75

src src src

dst dst

x 4 6 3 5 4

src

dst

2

3

time

Figure 4.5: A steady state execution of a load balanced producer and consumer pair
when p = 2, c = 3, and x(0) = 4.

The intuition behind this equation (Lemma 2 in [24]) is that the number of tokens

in any cycle is always conserved up to the amplification factor of each actor (the

amplification factor of actor b in Figure 4.4(a) is 2
3

since 60 tokens are produced

per 90 consumed tokens). After bounding queue capacities of feedback streams, we

remove an edge from each cycle in the stream graph to construct an acyclic stream

graph, which is used during the queue capacity computation of other streams .

Second, we compute the queue capacity of each stream by just looking at its

producer and consumer pair. The simplest case is a stream s where prod(s) = cons(s).

In this case, we need 2·prod(s) queue capacity (a.k.a. double buffering). In general 3 ,

the queue capacity of each stream s needs to be at least

2(prod(s) + cons(s)− gcd(prod(s), cons(s))),

when the producer and consumer pair is perfectly load balanced (e.g., each producer

firing takes prod(s) time steps and each consumer firing takes cons(s) time steps).

The following lemma shows that this capacity prevents serialization between a load

balanced producer and consumer pair.

3 One may wonder whether we generalize too much since either prod(s) or cons(s) divides the
other in most cases, which reduces the formula to 2 ·max(prod(s), cons(s)). As will be exemplified
by the team scheduling presented in the next section, compiler may want to transform stream graphs
and change prod(s) and cons(s), which can result in the case where neither of prod(s) and cons(s)
divides the other.

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 76

Lemma 4.2.1 For a load balanced producer and consumer pair that have constant

input/output rates and are connected through stream s, 2(p + c − gcd(p, c)) is the

minimum capacity of queue at s to avoid serialization, where p is the number of tokens

produced by the producer and c is the number of tokens consumed by the consumer.

Proof of Lemma 4.2.1. Suppose that s has x(0) tokens at time step 0, when a

steady state with respect to the producer-consumer pair begins.

At time step t, the number of tokens at s is

x(t) = x(0) +

⌊
t

p

⌋
· p−

⌊
t

c

⌋
· c

There exists t such that t mod p = 0 (the producer finishes at t) and x(t) =

x(0)+t−
⌊
t

c

⌋
·c = x(0)+c−gcd(p, c) because of the following (where t = m ·gcd(p, c)

and c = n · gcd(p, c)):

t−
⌊
t

c

⌋
· c = m · gcd(p, c)−

⌊
m ·�����gcd(p, c)

n ·�����gcd(p, c)

⌋
(n · gcd(p, c))

= (m−
⌊m
n

⌋
· n)gcd(p, c) = (m mod n) · gcd(p, c)

≤ (n− 1)gcd(p, c) = c− gcd(p, c) (4.1)

Note that, there always exists an integer m that holds m mod n = n− 1.

Let l be the queue capacity. Since we need p space to fire the consumer immedi-

ately to avoid stalls, l ≥ x(t) + p = x(0) + c− gcd(p, c) + p.

Similarly, there exists t such that t mod c = 0 (the consumer finishes at t) and

x(t) = x(0) − p + gcd(p, c). Since we need c remaining tokens to fire the consumer

immediately to avoid stalls, x(0)− p+ gcd(p, c) ≥ c. Therefore, the minimum l that

avoids stalls is 2(p + c − gcd(p, c)), which is achieved by x(0) = p + c − gcd(p, c).

Figure 4.5 shows an example where p = 2 and c = 3. �

For a producer and consumer pair that is not load balanced, 2(p + c − gcd(p, c))

gives at most twice approximation factor: at the beginning of a steady state, the

producer/consumer needs at least p/c space to write/read no matter how widely load

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 77

imbalanced they are, and, therefore, 2(p+ c− gcd(p, c)) < 2(p+ c) ≤ 2 · (lower bound

on the buffer space between p and c). The following lemma shows a tighter bound

for a producer and consumer pair that is not load balanced.

Theorem 4.2.1 For a producer and consumer pair where each producer firing takes

0 < p′ ≤ p time steps and each consumer firing takes c time steps, the queue capacity

2p + 2c − (k + 2) · gcd(p, c) avoids serialization, where k =

⌊
p− p′

gcd(p, c)

⌋
. Similarly,

when each producer firing takes p time steps and each consumer firing takes 0 < c′ < c

time steps, the queue capacity 2p+ 2c− (k + 2) · gcd(p, c) avoids serialization, where

k =

⌊
c− c′

gcd(p, c)

⌋
.

Proof of Theorem 4.2.1. Let us prove the first case since the second one is symmet-

ric. Assume that the producer fires every p time steps, then, similar to Lemma 4.2.1,

l ≥ x(0) + p+ c− gcd(p, c) avoids serialization with respect to the producer.

When the consumer finishes, t mod c = 0, and, similar to Equation 4.1 (let

t = m · gcd(p, c) and p = n · gcd(p, c)),

t mod p = t−
⌊
t

p

⌋
· p = (m mod n) · gcd(p, c) = p− (n− (m mod n)) · gcd(p, c).

For n−(mmod n) ≤ k, t mod p = p−(n−(mmod n))·gcd(p, c) ≥ p−k·gcd(p, c) ≥

p′. In other words, the producer is idle and has produced

⌊
t

p

⌋
· p + p tokens from

t = 0, not

⌊
t

p

⌋
· p tokens. Therefore,

x(t) = x(0) +

⌊
t

p

⌋
· p+ p−

⌊
t

c

⌋
· c

= x(0) +

⌊
t

p

⌋
· p+ p− t (∵ t mod c = 0)

= x(0) + p− (t mod p) ≥ c

⇒ x(0) ≥ c− p+ (t mod p).

For n − (m mod n) ≥ k + 1, t mod p = p − (n − (m mod n)) · gcd(p, c) ≤

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 78

p− (k + 1) · gcd(p, c) < p′ (i.e., the producer is not idle). Therefore,

x(t) = x(0) +

⌊
t

p

⌋
· p− t

≥ x(0)− p+ (k + 1) · gcd(p, c) ≥ c

⇒ x(0) ≥ p+ c− (k + 1) · gcd(p, c).

Since k + 1 =

⌊
p− p′

gcd(p, c)

⌋
+ 1 =

⌊
n · gcd(p, c)− p′

gcd(p, c)

⌋
+ 1 ≤ n (∵ p′ > 0), p −

(k + 1) · gcd(p, c) ≥ 0 > −p + (t mod p). Therefore, among all m, m such that

n− (m mod n) = k + 1 gives the tightest lower bound on x(0).

Hence, the minimum l that avoids stalls is 2p + 2c − (k + 2) · gcd(p, c), which is

achieved by x(0) = p+ c− (k + 1) · gcd(p, c). �

Notice that when p′ = p, Theorem 4.2.1 gives 2(p+c−gcd(p, c)), which is identical

to the case with a load balanced pair. When p = c, k = 0 and we get p+ c, which is

identical to the double buffering case.

After sizing queues locally only based on the information associated with their

producers and consumers, we consider global information. The intuition behind the

following sequence of procedures is introducing buffers so that delays of any two

distinct paths between two actors are balanced [135]. For example, along the path

a→ b→ c in Figure 4.6(a), twice of the minimum steady state (firing a 9 times and

firing b once) is required to fire c. In other words, the latency along a→ b→ c is twice

of the minimum steady state period. We balance the latency along the other path

a → c by adding 360 buffer space at (a, c). The following describes a step-by-step

procedure:

First, we find split-join patterns. An actor is a splitter if it has multiple successors,

while an actor is a joiner if it has multiple predecessors. We define the split-join

pattern of s and j, Gsj, as the actors that are reachable from s and reachable to j.

For example, in Figure 4.6(a), Gac = {a, b, c}.
Second, we compute xj(a) for each a ∈ Gsj, the minimum number of a firings

to fire j at least once. In Figure 4.6(a), xc(a) = 9. This can be computed by the

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 79

a

c

b

10

60

90

10

20

30

1000

30
latency 2

360

latency 2

(a)

a

b

c

time

latency
= 2

(b)

Figure 4.6: An illustration of queue capacity computation algorithm applied to the
stream graph shown in Figure 4.4(a).
(a) Intuitively, we balance latencies of paths between a and c. Latencies are normal-
ized to the period of minimum steady state (in this example, the minimum steady
state is equivalent to one b firing); the path a→ b→ c has latency 2 because we need
to fire a 9 times (1 minimum steady state) and b once (1 minimum steady state) to
fire c.
(b) A serialization-free steady state execution. We denote actor firings that involve
the longest latency between a and c as shaded rectangles. During the longest latency,
we need buffer space large enough to sustain serialization-free execution depicted as
rectangles with dark boundaries. Our algorithm finds that 360 buffer space is needed
at (a, c) to balance the latency between path a→ c and a→ b→ c as shown in (a).
On top of 360 buffer space, we need additional 40 for two firings of a depicted as
rectangles filled with diagonal lines.

following algorithm: We initialize xj(j) = 1. We traverse Gsj in a reverse topological

order (recall that we traverse an acyclic stream graph where feedback streams are

removed). For each actor a we visit, we compute xj(a) as follows.

xj(a)

= max
successor b of a

(number of a firings to fire b xj(b) times)

= max
successor b of a

(

⌈
xj(b) · cons(s)

prod(s)

⌉
)

Third, we find the longest latency path from s to j with the latency defined as

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 80

follows: Let lj(a) =
xj(a)
−→q (a)

be the latency of actor a normalized to the period of

repeating the minimum steady state of the application. In Figure 4.6(a), lc(a) = 9
9

and lc(b) = 1
1
. Therefore, the longest latency path is a → b → c with normalized

latency 2. The actor firings involved in this longest latency path are depicted as

shaded rectangles in Figure 4.6: a must be fired 9 times (xc(a) = 9) and b must be

fired once (xc(b) = 1), and they together result in the longest latency, twice of the

minimum steady state. Buffers along each path from a to c must balance the longest

latency to support serialization-free execution. Rectangles with dark boundaries in

Figure 4.6 illustrate a serialization-free execution during the longest latency. Denote

the number of s firings during the longest latency as ysj = d−→q (s)· (the longest latency

from s to j) e. In Figure 4.6(a), yac = 9 ·2 = 18. We use Bellman-Ford algorithm [20]

to compute the longest latency, whose time complexity is O(|V | · |E|), where |V |
denotes the number of actors and |E| denotes the number of streams.

Fourth, we simulate firing actors in the split-join pattern until s is fired ysj times

while streaming as many as tokens as possible to downstream actors. In the simula-

tion, we do not fire j and we set queue capacities of j’s incoming streams to infinity.

Other queue capacities are set to the ones found by Theorem 4.2.1 or other split-join

patterns that are already processed. Let zsj(i) be the number of residual tokens in

j’s incoming stream i after the simulation, which corresponds to the buffer capacity

required at i to balance the latency between s and j so that serialization-free execu-

tion during the longest latency from s and j can be supported. During the steady

state, the buffer at i requires the following additional space (Theorem 4.2.1), where p

denotes the number of tokens produced per i’s producer (i.e., prod(i)) and c denotes

the number of tokens produced per i’s consumer (i.e., cons(i)):
p+ c− (k + 1) · gcd(p, c), where i’s producer takes p time steps and i’s consumer

takes c′ < c time steps per firing, and k =

⌊
c− c′

gcd(p, c)

⌋
p+ c− gcd(p, c), otherwise

Therefore, we increase the queue capacity of i to zsj(i) + p + c − gcd(p, c) or

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 81

zsj(i) + p+ c− (k+ 1) · gcd(p, c) (the latter is used when the pair is not load balanced

and the producer is the bottleneck). In Figure 4.6(a), a is fired 18 times during the

simulation and leaves 360 tokens at (a, c) (zac((a, c)) = 360). In Figure 4.6, rectangles

filled with diagonal lines depict two a firings that require additional 40 (= 20 + 30 -

10) buffer space. Therefore, we set the queue capacity of (a, c) to 360 + 20 + 30 - 10

= 400.

In sgms, prod(i) = cons(i) = 1 for every stream i since it uses the minimum steady

state of the entire application as scheduling units. Therefore, xj(a), the minimum

number of a firings to fire j at least once, is 1 for every joiner j and every actor a

inside a split-join pattern Gsj. A longest latency path from s to j reduces to a longest

path from s to j where each stream in the stream graph has unit length. As a result,

our algorithm sets the queue capacity at each stream to (the difference between stage

numbers of its producer and consumer) + 1, which is identical to the buffer sizing

scheme described in Kudlur et al. [90].

4.3 Team Scheduling

This section describes the team scheduling algorithm, which is an application of the

queue capacity computation algorithm described in the previous section. Figure 4.7

shows pseudo-code of team scheduling.

4.3.1 Team Formation

We start from an initial schedule in which each actor forms a separate team. For

example, in Figure 4.3(a), actors a, b, and c each form teams on their own. In a

pair-wise manner, we merge teams in the same core starting with the pair that leads

to the highest gain. We compute the gain as synchronization reduction divided by

additional buffer requirement resulting from team merge. This is a greedy heuristic

chosen to maximize synchronization overhead reduction (i.e., the reduction of queue

empty or full checks) per additional buffer space requirement. We maintain a team

graph that represents the connectivity of teams. The team graph is initially identical

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 82

01 construct an initial schedule;
02 initial queue sizing; // Feedback queues are sized here.
03
04 // merge teams
05 q = a priority queue with pairs of teams that do not introduce a cycle;
06 while (!q.isEmpty()) {
07 〈a, b〉 = q.remove();
08 if (merging a and b does not exceed buffer limit and does not deadlock) {
09 m = merge(a, b);
10 remove all team pairs containing a or b from q;
11 for each (neighbor c of a or b) {
12 if (merging m and c does not introduce a cycle)
13 add 〈m, c〉 to q;
14 }
15 }
16 }
17
18 // amortize teams
19 q = construct a priority queue with teams;
20 while (!q.isEmpty()) {
21 a = q.remove();
22 if (amortizing a does not exceed buffer limit and does not deadlock) {
23 amortize a;
24 add a to q;
25 }
26 }

Figure 4.7: Pseudo code of team scheduling

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 83

to the stream graph, and then we contract the corresponding nodes for each team

merge.

We adhere to the following four constraints when merging. First, we do not merge

across variable-rate streams. Second, we do not merge teams if doing so exceeds the

buffer limit per core. Suppose that actors a, b, and c are all assigned to the same

core in Figure 4.3. If each core has a 2k-word local memory and the unit token

size of a’s incoming stream is 1 word, we avoid merging a with any other actor.

The buffer capacities are computed by the method described in the previous section

(Section 4.2). Third, we must not introduce a cycle to the team graph since it may

result in deadlocks. Suppose again that actors a, b, and c are all assigned to the same

core in Figure 4.3. We avoid merging a with c because it forms a cycle b→ {a, c} → b.

Fourth, a merge must not introduce any deadlock in an existing cycle (i.e., in a

feedback loop). We can check for such deadlocks by inspecting precedence expansion

graphs (peg) [98] of each cycle containing the merged team in the team graph. If every

peg is acyclic, it is guaranteed that the team merge does not introduce any deadlock.

This is because a peg has a cycle if and only if the corresponding stream graph has

a deadlock [128]. Suppose that we are about to merge a and c in Figure 4.2(a). If we

construct a peg of the cycle b → c → b after the merge, we see a cycle in the peg

since merging a and c introduces a deadlock. For the details of peg construction,

refer to Appendix I of [136]. A peg can grow exponentially when the number of actor

firings in the minimum steady state of a team or the number of cycles in the stream

graph is exponential. In this case, we use a heuristic described in Pino et al. [128]

that conservatively but quickly checks for deadlocks.

After merging a team, we construct a static schedule of the actors within the

team. There are several ways of constructing such a single-core schedule [23, 81],

but we find that loose interdependence scheduling framework (lisf) [22] works well

in our evaluation (Section 4.4). For most applications, lisf finds a single appearance

schedule in which each actor lexically appears only once, resulting in a minimal code

size [22] (refer to Section 4.5 for the further details). For example, b 2c (fire b once,

then fire c twice) is a single appearance schedule of team {b, c} shown in Figure 4.3(b).

Other single-core scheduling methods such as push schedule or phased schedule save

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 84

significant buffer space at the expense of marginal increase in code size when applied

to the entire stream graph [81]. However, when we target multi-cores, applications

are partitioned into small pieces, and applying either scheduling method to each piece

shows little buffer space saving (on average 8% for 16 cores).

By constructing a static schedule of a team, we eliminate intra-team synchroniza-

tions such as the one at edge (b, c) in Figure 4.3(b). We can also eliminate certain

inter-team synchronizations such as the one at edge (a, b). This is possible because

the production-to-consumption ratios of streams between a given team pair (with no

variable-rate streams) are constant as proven by the following claim.

Claim 4.3.1 The production-to-consumption ratios of streams with static rates be-

tween a team pair are constant.

Proof of Claim 4.3.1. For teams T and U in stream graph G, according to Bhat-

tacharyya et al. [23]:

∃ an integer m such that ∀a ∈ T, −→qG(a) = m · −→qT (a) (4.2)

∃ an integer n such that ∀a ∈ U, −→qG(a) = n · −→qU(a) (4.3)

Since the number of tokens produced and consumed at a stream are equal in the

minimum steady state of G, −→qG(src(s)) · prod(s) = −→qG(dst(s)) · cons(s), which is

called the balanced equation [23]. Substituting Equation (4.2) and (4.3) into the bal-

anced equation shows that, for each stream s from T to U , m · −→qT (src(s)) · prod(s) =

n · −→qU(src(s)) · cons(s). This means that the ratio of the number of tokens produced

at s by each T firing (−→qT (src(s)) · prod(s)) to the number of tokens consumed from s

by each U firing (−→qU(dst(s)) · cons(s)) is a constant,
n

m
. �

For example, at (a, {b, c}) in Figure 4.3(b), production-to-consumption ratios are
10
30

= 20
60

. To generalize, consider the streams from team T to team U denoted as STU

(in Figure 4.3(b), STU = {(a, b), (a, c)} when T = {a} and U = {b, c}).
Let s1 be the stream in STU that is enqueued last in T ’s static schedule (in

Figure 4.3(b), s1 is (a, c) if T enqueues tokens to (a, b) before (a, c)). Consider the

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 85

situation when we check conditions to fire U . Assume that we have checked that

s1 is not empty. This implies that all the other streams in STU are also not empty,

which makes checking if any of those streams is empty unnecessary. This can be

shown through contradiction as follows. Suppose that the queue at s3 ∈ STU − {s1}
is empty. Then due to the constant production-to-consumption ratios of STU , the

queue at s1 must be empty which contradicts our assumption. Therefore, among the

conditions with respect to STU that we need to check before firing U , we can eliminate

everything except the check for whether s1 is not empty (in Figure 4.3(b), checking

whether the queue at (a, b) is not empty is redundant when s1 is (a, c)).

Let s2 be the stream in STU that is dequeued last in U ’s static schedule (in Fig-

ure 4.3(b), s2 is (a, c)). Suppose that the queue lengths of STU are proportional to

their respective number of tokens produced by each T firing. Consider the situation

when we check conditions to fire T . Similar to the argument in the previous para-

graph, we can show that, if s2 is not full, all the other streams in STU must not be

full as well. Therefore, among the conditions with respect to STU that we need to

check before firing T , we can eliminate everything except the check for whether s2 is

not full.

4.3.2 Amortization

After team formation, we amortize communication cost of teams starting from the one

that leads to the highest synchronization reduction per additional buffer requirement.

As in the team formation procedure, we do not amortize a team if doing so exceeds

buffer space limit or introduces deadlock in a feedback path.

We define amortization as follows: For each stream subgraph G that is statically

scheduled (the entire stream graph in sgms or a team in team scheduling), we define

the repetition vector −→rG such that −→rG(a) is the number of a firings in the current static

schedule of G. We call −→rG(a) the repetition of actor a. For example, the repetition

vector of team {b, c} in Figure 4.3(b) is the same as its minimum repetition vector,

(1, 2), because the team has not been amortized. In Figure 4.3(c), the repetition

vector of team {b, c} is (2, 4). In this chapter, amortization of stream subgraph G

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 86

by a factor of k means multiplying G’s repetition vector by k. For example, in

Figure 4.3(c), amortization of team {b, c} by a factor of 2 has updated its repetition

vector from (1, 2) to (2, 4).

Note that in sgms the repetition vector is identical to the minimum repetition

vector of the stream graph before any amortization. If we amortize a schedule by a

factor of 2, we multiply the repetition of every actor by 2. In team scheduling, each

team has its own repetition vector, and each team is amortized separately.

We use the following method of selecting amortization factors: Suppose that we

are about to amortize team T in stream graph G. If ∃ an integer k > 1 such that

∀a ∈ T, −→qG(a) = k · −→rT (a), we amortize T by the smallest integer greater than 1 that

divides k. For example, for team {a} in Figure 4.3(b), −→qG(a) = 3 and −−→r{a}(a) = 1, thus

k = 3. Otherwise, we amortize T by a factor of 2. We use this method in order to first

amortize T up to the minimum steady state of the entire graph and to additionally

amortize T by a factor of 2 thereafter. This is in turn motivated by our conjecture

that schedules resemble the minimum steady state are preferable when other factors

such as queue capacities are the same.

4.3.3 Time Complexity

The time complexity of team scheduling shown in Figure 4.7 is dominated by the

longest path algorithm for buffer requirement computation. Let |V | be the num-

ber of actors and |E| be the number of streams. We compute buffer requirement

O(|V |log(b)) times (lines 8 and 22), when b is the buffer space limit per core and we

amortize each team at least by a factor of 2. As described in Section 4.2, we use

Bellman-Ford algorithm [20] to compute the longest distance, whose time complexity

is O(|V | · |E|). Bellman-Ford is invoked O(|V |) times per each buffer requirement

computation; thus the time complexity of team scheduling is O(|V |3|E|log(b)).

The time complexity for cyclicity checks is O(|V |3): cyclicity check is done O(|V 2|)
times (line 12) and each check takes O(|V |) by using reachability matrix [23]. The

time complexity of finding split-join patterns is O((|E|log(|E|) + |V |2)|V |log(b)): we

apply the concept of dominance frontier used for constructing static single assignment

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 87

Table 4.1: Evaluated Applications.

Benchmark Description Input

bitonic sort A parallel bitonic sorting sort 8 integers 2,560 times
channel vocoder A channel voice coder 16 filters. 6K floats
dct A 16×16 ieee reference dct 80 16×16 integer blocks

des
A pipelined version of

4K integers
the des encryption algorithm

fft A 256-element fft 12 blocks

filterbank
A filter bank for multi-rate 8 filters.

signal processing 2.5K floats
fmradio An fm radio with an equalizer 6-band equalizer. 18K integers

gsm
A Global Standard for Mobile 48 blocks,

communication encoder 160 integers each

mpeg2
The block and motion vector

A 352×240 frame
decoding parts of an mpeg-2 decoder

radar A radar array front-end 12 channels, 256 samples each

serpent
A serpent encryption

8K integers
algorithm implementation

tde

A time delay equalization for 6 channels,
a radar processing application called 36 samples each.

Ground Moving Target Indicator (gmti) 16K complex numbers
vocoder A bit-rate reduction vocoder 15 filters, 4K floats

w-cdma
The searcher part of Wideband

15K complex numbers
Code Devision Multiple Access protocol

form in the compiler [37], which takes O(|E|log(|E|) + |V |2) [37, 102].

If the time complexity is unacceptable (e.g., in just-in-time compilation), we can

stop during algorithm execution since we maintain a valid schedule throughout the

algorithm execution.

4.4 Evaluation

This section describes the experimental setup for evaluating team scheduling and the

analysis of results.

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 88

4.4.1 Experimental Setup

We use the same set of StreamIt benchmark applications that were used for sgms

evaluation [90] plus gsm encoder and w-cdma searcher [157] (shown in Table 4.1.

We have ported the StreamIt applications into the Elk stream programming language

that extends StreamIt (the details of Elk is described in Section 2.2.2). The ported

source code is available at our Elk website [2]. During the porting, we occasionally

made structural modifications when the original implementation in StreamIt was in-

efficient. For example, actors in the des implementation in the StreamIt benchmark

communicate data bit by bit, which is too inefficient unless the target machine sup-

ports bit-level communication or the compiler is able to aggregate the the bit-level

communication in words. We modified the des implementation so that data are

transfered in word-level. w-cdma searcher is ported from a proprietary benchmark

from QualcommTM. gsm encoder is ported from MiBench [55] and contains a feed-

back path. We use the input size that is large enough to execute at least one iteration

of the minimum steady state of an sgms and a team schedule.

We use Elm [12] that supports dma-like stream memory instructions that transfer

a block of data to other cores’ local memory in the background, and these stream

memory instructions are used to implement queue operations. Elm has an ensemble

organization in which four cores share their local memory. We made each core have

its own separate local memory, changed the local memory size to 256kb, and used 16

cores to make the evaluation setup similar to that of the sgms paper [90] which uses

Cell processors.

The Elk compiler generates C++ code from Elk code, and an llvm-based [95]

C++ compiler called elmcc [122] generates Elm assembly code. The assembly code

is executed in a cycle-accurate Elm simulator. We model interconnection as a mesh

network with word-wide channels and canonical 4-stage pipeline routers [39]. There-

fore, the latency of a message is 4(d + 1) cycles if the Manhattan distance to the

destination is d. For sgms, we idealistically assume that every core can access a

dedicated memory in 1 Manhattan distance latency (8 cycles), and we implement a

sense-reversing barrier [66] using fetch-and-add instructions on the dedicated mem-

ory. This results in 75 cycles per barrier while each barrier takes 1600 cycles in the

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 89

0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
o

r
m

a
li
z
e
d

 S
te

a
d

y

S
ta

te

E
x
e
c
u

ti
o

n
 T

im
e team16KB team32KB team64KB team128KB sgms16KB sgms32KB sgms64KB sgms128KB

xx x x xxx

Figure 4.8: Steady state execution time when team scheduling and sgms amortize
actors within different buffer space constraints. Execution times are normalized to
those of the original sgms algorithm without any amortization.

sgms paper [90].

As in previous work [51, 52, 90], partitioning is done before scheduling. We first

fission stateless actors with high computation requirement so that every stateless

actor has at most 1/16 of the total computation requirement. Then we assign actors

to cores using metis, a graph partitioning package [82].

In the first experiment, we compare the throughput of team scheduling with that

of sgms as we change the buffer space limit per core from 16kb to 128kb. This

experiment measures the efficiency of using limited local memory space, which is

critical for multi-core embedded processors. In the second experiment, we intention-

ally avoid exploiting the amortization flexibility of team scheduling by limiting the

maximum repetitions to the ones in the minimum steady state of the entire stream

graph, and compare throughput, latency, and buffer usage of the two algorithms. This

experiment compares performance of the two scheduling algorithms independent of

amortization effects.

4.4.2 Buffer Space Limited Experiment

Figure 4.8 compares throughput of both algorithms as we change the buffer space limit

per core from 16kb to 128kb. Steady state execution time is measured as the time

between the generation of the first and the last output of the furthest downstream

actor, and is inversely proportional to throughput. Steady state execution times are

normalized to those of sgms without any amortization. The average speed-up from

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 90

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o
r
m

a
li
z
e
d

(
M

e
m

o
r
y
 +

 I
n

te
r
c
o
n

n
e
c
ti

o
n

)
 E

n
e
r
g

y
team16KB team32KB team64KB team128KB sgms16KB sgms32KB sgms64KB sgms128KB

Figure 4.9: Estimated energy consumptions in memory and interconnection normal-
ized to those of the original sgms algorithm without any amortization and with 64kb
local memories.

single-core executions is 11×. The results for wcdma are not shown here because

sgms requires an excessive buffer space even without amortization, which will be

shown in Section 4.4.3. We fuse feedback loops in gsm to single actors for sgms since

sgms results in a deadlock similar to that shown in Figure 4.2(b) without fusion.

For the particular case of gsm, sgms does not show its disadvantage with respect to

complete serialization of feedback loops since the feedback loops in gsm do not have

parallelism that can only be exploited by team scheduling.

Sgms does not satisfy the buffer space constraint for fft, gsm, mpeg2, and vocoder

when the space constraint is as small as 16kb. In contrast, team scheduling satisfies

buffer space constraints across all configurations. The averages are computed only

on the applications that satisfy the buffer space constraint with both scheduling

algorithms (e.g., the averages for team16KB and sgms16KB are computed excluding

fft, gsm, mpeg2, and vocoder). When the buffer space limit is as large as 128kb,

team scheduling achieves an average of 37% higher throughput than that of sgms,

which is especially apparent in des, fft, gsm, radar, and serpent. We can see the

importance of amortization from its up to 2.1× speed-up (serpent at team128KB).

As mentioned in Section 4.3.1, there are several ways to schedule actors that

belong to a team (in team scheduling) or that are assigned to the same core and the

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 91

Table 4.2: Energy of operations in pJ that is estimated in a 45nm low-leakage process.
Spm and sram access energy is per word (32-bit) except for 8mb sram whose access
energy is per line (16-word). Dram access energy is per line and is estimated using
the results from Udipi et al. [148]. The interconnection energy is per hop per word.

Energy per operation [pJ] read write
256-entry spm 0.63 2.26
16kb sram 3.02 2.76
32kb sram 3.92 3.22
64kb sram 6.31 5.43
128kb sram 8.43 6.83
8mb sram (16 tiles) 96.95 83.81
4gb off-chip dram 25,067.00 25,067.00
1 hop in interconnection 14.29 (2.23 channel + 12.06 router)

same software pipeline stage (in sgms). However, push schedule — the most buffer

space efficient single-core schedule [81] — saves only an average of 8% of buffer space

compared to single appearance schedule. In addition, push schedule does not make

sgms meet buffer space constraints of any application which does not already satisfy

the constraint in single appearance schedule. If we apply push schedule to the entire

stream graph, we achieve a significant reduction in buffer space requirement compared

to single appearance schedule as shown in Karczmarek et al. [81]. However, when we

target 16 cores, the application is already partitioned into 16 pieces, and there is little

difference between using either scheduling method on each small piece.

Figure 4.9 shows estimated energy consumption in the memory and interconnec-

tion subsystem. Figure 4.10 shows estimated energy consumption breakdown when

the local memory capacity is 16kb (Figure 4.10(a)) and 128kb (Figure 4.10(b)). No-

tice that this is a rough estimation to illustrate an energy saving trend achieved by

team scheduling. The energy consumption is estimated by the following equations:

data memory energy =∑
x∈{local, L2, dram}×{read, write}

(# of data accesses in x)× (access energy of x)

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 92

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

r
m

a
li
z
e
d

 E
n

e
r
g

y

interconnection instruction data

(a)

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

te
a
m

s
g
m
s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

r
m

a
li
z
e
d

 E
n

e
r
g

y

interconnection instruction data

(b)

Figure 4.10: Energy consumption breakdown when the capacity of local memory is
(a) 16kb and (2) 128kb. Energy consumptions are normalized to those of sgms.

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 93

instruction memory energy =∑
x∈{spm, local, L2, dram}×{read, write}

(# of instruction accesses in x)× (access energy of x)

interconnection energy =

(sum of # of hops of word-sized phits4)× (energy per hop per word)

Table 4.2 lists the energy of each operation per word. Sram access energies are

estimated by cacti [163] 5.3 with 4 banks, dynamic read power optimization, and

45nm low-leakage process options selected. We assume that the L2 memory is an

8mb on-chip sram that is distributed to each core as 16 tiles. The off-chip dram

access energy incorporates only the energy consumed in bit-lines, which dominates

the total dram access energy [148]. We assume a 4gb dram, with two 2 gb ranks,

each consisting of 256 mb, 4-bank devices as in [148]. The row-buffer hit rates of

dram is assumed as 35% following the results for 16-core cases presented in [148]. As

a rough estimation, dram write energy is assumed to be the same as the read energy.

The estimated interconnection energy is the sum of energy consumed in channels

and energy consumed in routers. The channel energy is estimated based on 1.1V

Vdd, 50% activity factor, and 0.23fF/µm wire cap in a 45nm low-leakage process,

and the router energy is estimated based on the rtl model presented by Becker and

Dally [18]. We assume that the channel length is 1mm and width is one word (32-

bit). We assume that each L2 memory access incurs a 4-hop traversal through the

interconnection network (4-hop is the average hop count in a 4×4 mesh network with

a uniform-random traffic).

Team scheduling saves the energy consumed in memory and interconnection from

23% (64kb) to 33% (16kb), compared to the baseline 5. The energy consumption

difference between team scheduling and sgms is particularly significant in fft, gsm,

4 The physical unit of information that is transferred a channel in one cycle.
5 To provide context, these memory and interconnection energy savings would result in from

13% (64kb) to 20% (16kb) reduction in the total dynamic energy consumed in Elm processors if
we assume that the ratio of energy consumed in the instruction spm to that in datapath, clock, and
control is 32 to 49 as presented in Balfour et al. [13]. The average power consumption in memory
and interconnection is from 53 mW to 74 mW depending on configuration when the clock frequency
is 500 mHz.

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 94

mpeg2, vocoder and wcdma searcher since sgms incurs costly accesses to the L2

memory and its associated interconnection network traversals when it fails to allo-

cate all buffers in local memories. Figure 4.10(a) shows that, in des and serpent,

team scheduling achieves 48% and 52% reduction in energy consumption of the in-

terconnection subsystem compared to sgms. In addition, Figure 4.10(b) shows that

team scheduling reduces the interconnection energy by 54% and 42% in des and

serpent when the capacity of local memories increases from 16kb to 128kb, whereas

sgms achieves <10% interconnection energy reduction. This demonstrates that team

scheduling more effectively uses limited local memory space for amortizing commu-

nication overhead (e.g., overhead from dma packet headers and ack messages).

In this experiment, we show that team scheduling has better control over buffer

space than sgms has: given limited local memory space, team scheduling has a bet-

ter chance of fitting buffers in local memories and achieves a higher throughput by

efficiently utilizing the limited buffer space for amortization (i.e., team scheduling

achieves balanced trade-off between synchronization overhead and buffer space re-

quirement).

4.4.3 Amortization Factor Limited Experiment

Figure 4.11 shows throughput, latency, and buffer requirement of both algorithms

while we limit repetition factors to those in the minimum steady state of the entire

stream graph. In this experiment, we set the buffer space limit per core to 64kb for

team scheduling, which achieves a similar (0.4% higher) throughput to that of sgms

as shown in Figure 4.11(a) — a larger buffer space limit improves throughput at the

expense of longer latency. In Figure 4.11(b), latency is measured as the time until the

first output of the furthest downstream actor is generated. Team scheduling shows

65% lower latency and 46% smaller buffer requirement when its throughput is similar

to that of sgms. Sgms has high latency because of poor load balancing in its software

pipeline prologue, resulting in idle cycles while the processor waits for barriers. Team

scheduling does not suffer from this problem since actors are pair-wise synchronized

and can be fired whenever input tokens are ready.

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 95

0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
o

r
m

a
li

z
e
d

 S
te

a
d

y

S
ta

te
 E

x
e
c
u

ti
o

n
 T

im
e team sgms

(a) Steady state execution time normalized to sgms

0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
o

r
m

a
li
z
e
d

 L
a
te

n
c
y team sgms

(b) Latency normalized to sgms

0

20

40

60

80

100

M
a
x
 B

u
ff

e
r
 S

iz
e
 (

K
B

) team sgms
2061

(c) Buffer requirement

Figure 4.11: Results of amortization factor limited experiment with team scheduling
and sgms for 16 cores.

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 96

Since we set the buffer space limit to 64kb for team scheduling, team scheduling

uses less than 64kb for every application as shown in Figure 4.11(c). Sgms requires

2mb buffer space for wcdma, which is well over the local memory size of each core,

256kb. Hence, we omit wcdma in Figure 4.11(a) and (b). In wcdma, there is a series of

reduction actors that produce fewer tokens than it consumes, thus actors upstream

must be executed hundreds of times, consuming hundreds of kb of data in steady

state. Team scheduling avoids excessive buffer requirement from the upstream actors

by decoupling the scheduling of upstream and downstream actors.

4.4.4 Discussion: Sensitivity to Architectural Parameters

This section qualitatively discusses the sensitivity of the performance of team schedul-

ing to architectural parameters.

The Number of Cores: It is expected that the energy-efficiency and perfor-

mance gap between team scheduling and sgms will grow as the number of cores

increases. This is because team scheduling uses localized point-to-point synchroniza-

tions, while sgms uses barriers that require global communication. Although the

barrier synchronization primitive is typically optimized by techniques such as tree

reduction, it is still less scalable than localized point-to-point communications gener-

ated by team scheduling.

The Capacity of Local Memories: Team scheduling shows the most clear

advantage over sgms when each core has local memories with limited capacity, the

common case for embedded processors. When the capacity of each local memory is

large enough to perform actor amortizations beyond the point of diminishing return

even with sgms, a benefit of team scheduling — more efficient minimization of syn-

chronization and communication overhead given the same local memory space — will

not play an important role any more.

The Support for DMA: As long as there is energy efficiency or performance

benefits of fitting data in smaller memories, team scheduling should also be useful

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 97

for architectures with no software-managed data transfers such as dma. However, as

will be discussed in Section 5.5.3, there is no benefit of fitting data with producer-

consumer communication pattern in smaller memories (e.g., L1 caches instead of L3

caches) in the current x86 architectures. I expect that future processors will provide

architecture supports for efficient producer-consumer communications, where team

scheduling will show benefits similar to those shown in architectures with software-

managed memories such as Elm.

4.5 Related Work

4.5.1 SDF Scheduling for Single-core Architectures

Lee and Messerschmitt [98] lay the foundation of synchronous data flow (sdf) in-

cluding a necessary and sufficient condition to the existence of a valid static schedule

which does not deadlock and requires bounded buffer space. They define the topology

matrix associated with a stream graph, where the (i, j)th entry in the matrix is the

amount of data produced by actor j on edge (i.e., stream) i each time the actor is

fired. If actor j consumes data from stream i, the number of is negative. By observing

the rank of the topology matrix, we can easily check whether the input program has

a valid schedule. Let |V | be the number of actors and Γ denote the topology matrix.

Then, rank(Γ) = |V |−1 is a necessary condition for the existence of a periodic single-

core schedule that does not deadlock and requires bounded buffer space (Theorem

1 in [98]). Intuitively, the null space of the topology matrix must not be empty to

admit periodicity (i.e., there must be a q such that Γ · q = 0), and the connectivity

of the stream graph imposes rank(Γ) ≥ |V | − 1. Here, the periodicity is required to

bound the schedule size finite. We say a stream graph that violates the condition

above has a sample rate inconsistency. They also present a scheduling algorithm that

finds a valid periodic single-core schedule whenever such a schedule exists (Theorem

3 in [98]).

While the scheduling algorithm described in Lee and Messerschmitt [98] guaran-

tees to produce a valid schedule with a bounded buffer space for applications without

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 98

sample rate inconsistencies, there can be many valid schedules with significantly differ-

ent memory requirements. Bhattacharyya et al. [22,23] develop a series of algorithms

that improve two major contributers to the memory pressure: code size and data

buffer size.

As a code size optimization, Bhattacharyya et al. [22] refine Lee and Messer-

schmitt’s scheduling algorithm [98] so that it finds a single appearance schedule

whenever such a schedule exists. As defined in Section 4.3.1, a single appearance

schedule is a static schedule in which each actor lexically appears exactly once. For

example, 2b 4c (fire b twice, then fire c four times) is a single appearance schedule.

All single appearance schedules result in the same minimal code size if we ignore code

size overhead from looping (this assumes that actor code is inlined in the schedule so

the actor code dominates the total code size of the schedule). They define a topo-

logical property of a strongly connected subgraph of the input program called loose

independence (Definition 2 in [22]). They prove that an sdf application has a sin-

gle appearance schedule if and only if every nontrivial connected subgraph is loosely

independent (Theorem 1 in [22]). They develop a family of scheduling algorithms

called loose interdependence algorithms that yields a single appearance graph when-

ever every nontrivial connected subgraph of the input program is loosely independent.

They also show that every nontrivial connected subgraph is loosely independent in

the majority of practical applications (Section IV in [22]).

As a data buffer size optimization, Bhattacharyya et al. [23] present an algorithm

that improves an existing single appearance schedules so that the buffer requirements

can be reduced. There can be many possible single appearance schedules for a given

input program, and, depending on how actors are grouped, the buffer requirement

can significantly vary. For example, 2(b 2c) will require smaller buffers than (2b 4c)

although both are single appearance schedules. They use pairwise grouping of adja-

cent nodes (pgan) heuristic to find a grouping that yields a small buffer requirements,

in which some aspects are similar to our team formation procedure (grouping can be

viewed as actor aggregation), but their algorithm assumes an acyclic stream graph

and works in the context of single-core scheduling.

[87, 92, 134] present sdf vectorization that amortizes the cost associated with

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 99

actor interactions. For example, Ko et al. [87] develop a vectorization algorithm

that reduces context switch overhead and increases memory locality within memory

constraints, which is similar to amortization described in this chapter in some aspects

but is done in the context of single-core scheduling. Amortization, or vectorization,

plays a more important role in multi-core scheduling because it not only improves the

locality of memory access but also amortizes fixed costs associated with each dma

initiation.

4.5.2 SDF Scheduling for Multi-core Architectures

Ha and Lee [57] propose a taxonomy of data-flow scheduling for multi-core architec-

tures, which consists of four types of scheduling methods. In fully dynamic schedul-

ing, all the scheduling decisions are made at run-time. Any actor whose input tokens

are available can be assigned to any idle processor. The load balancing work stealing

scheduling [29] is an example of fully dynamic scheduling. In static allocation schedul-

ing, actors are assigned to a processor at compile time, and a local run-time scheduler

determines the order of actor invocations. In self-timed scheduling, the order of actor

invocation inside each processor is also determined by the compiler, but the specific

timing when an actor is fired is determined at run-time (e.g., the processor waits for

data to be available for the next actor, and, then, fires the actor). In fully static

scheduling, the compiler determines the exact firing time of actors as well. According

to this taxonomy, the initial schedule of our team scheduling algorithm falls into the

static allocation category, while aggregated parts (i.e., teams) follow the self-timed

scheduling.

In [24], Bhattacharyya et al. present a post-pass optimization scheme that elimi-

nates redundant synchronization in an existing multi-core self-timed schedule for sdf

applications. Their method eliminates the same set of redundant inter-team syn-

chronizations (e.g., synchronization at (a, b) in Figure 4.3(b)) as team scheduling,

but team scheduling does so without running a sophisticated analysis by exploiting

a property of team scheduling, namely constant production-to-consumption ratios of

streams between a team pair. They also present a method of reducing synchronization

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 100

overhead by introducing a few feedback paths that make full checks of other queues

unnecessary. However, this method requires additional buffer space, and it will be in-

teresting to evaluate whether using the buffer space for eliminating queue full checks

as in [24] is more beneficial than using the same buffer space for amortization as in

team scheduling.

The body of sdf work [23, 24, 97, 98, 128, 138] provides a solid theoretical back-

ground for optimizing static parts of stream programs. However, their multi-core

scheduling algorithms [24,97,98,128] are based on homogeneous sdf graph (hsdfg),

whose construction from an equivalent sdf graph can take an exponential amount

of time [128]. In addition, their algorithms do not overlap the execution of different

hsdfg iterations, resulting in a smaller degree of parallelism.

Lin et al. [107] point out exponential buffer space growth in their w-cdma eval-

uation and present an algorithm that applies software pipelining in a hierarchical

manner. However, in their algorithm, the programmer must define the hierarchy, and

the authors failed to keep the scheduling algorithm free from exponential buffer space

growth when they designed their later work, sgms [90]. They formulate the partition-

ing problem as integer linear programming (ilp) to find an optimal combination of

data, task, and pipeline parallelism. However, as Gordon [50] points out in his thesis,

it is unclear whether the cost of using an ilp solver can be justified for finding an

“optimal” partitioning, considering that computation requirement of each actor is not

completely accurate, which renders the ilp formulation an approximation anyway. In

addition, their ilp formulation does not attempt to minimize the communication,

which contributes a large fraction of energy consumption. Choi et al. [35] presents an

extension to sgms that considers memory constraints during their partitioning phase

formulated as ilp. Essentially, the only optimization opportunity in their approach

is passing buffers between producers and consumers, while the total buffer space is

preserved. Consequently, their approach still does not avoid exponential buffer space

growth.

Gordon et al. [50, 52] point out deadlocks in split-join patterns. However, they

just mention that “Each architecture requires a different deadlock avoidance mech-

anism and we will not go into a detailed explanation of deadlock here. In general,

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 101

deadlock occurs when there is a circular dependence on resources. ... If the architec-

ture does not provide sufficient buffering, the scheduler must serialize all potentially

deadlocking dependencies”. We failed to find any other documentation that describes

their detailed deadlock avoidance scheme, but we can infer from [50, 52] that their

scheme is confined to a specific case where the packet size of a splitter and that of

its corresponding joiner are unmatched (Figure 13 in [52]). Consequently, their dead-

lock avoidance scheme cannot handle the case shown in Figure 4.4(a). In addition,

as opposed to the quoted rather qualitative statement, our queue capacity compu-

tation algorithm tells us that precisely how large buffer is needed at each stream

to avoid deadlock. Although not described in this chapter to focus on scheduling

problems, our pre-processing step to partitioning roughly follows the one described

in Gordon et al. [51]: we first selectively fuse adjacent stateless actors to coarsen the

granularity, and then we fission stateless actors just enough to fill the cores. After

the pre-processing step, the main partitioning step described in [51] uses a greedy

packing algorithm that minimizes load imbalance and communication, but we did

not find a compelling reason for using their algorithm since a popular graph parti-

tioning package, metis [82], also minimizes load imbalance and communication. It

would be interesting to see how their algorithm performs compared to metis, but we

did not perform the comparison since our main interest was memory-space efficient

scheduling algorithms, not partitioning algorithms.

4.5.3 Loop Transformations

Since actors in stream applications work on a sequence of input tokens, we can con-

ceive of implicit loops that enclose the actors. For example, when the stream graph

shown in Figure 4.12(a) is written in C, each actor code will be enclosed by loops as

shown in Figure 4.12(b). The first for loop corresponds to the inverse fast Fourier

transform actor and writes its output to the array B with size N, where N is the

number of tokens transferred between two actors. The next for loop reads the ar-

ray B and writes the array C with size N/10. Once stream graphs are written in a

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 102

IFFT

Decimator

256

10

256

1

(a)

for (int i = 0; i < N/256; i++) {

inverse256PointFFT(&A[256*i], &B[256*i]);

}

for (int i = 0; i < N/10; i++) {

// 10-to-1 decimation

C[i] = B[10*i];

}

(b)

for (int i = 0; i < N/1280; i++) {

for (int j = 0; j < 5; j++) {

inverse256PointFFT(&A[256*(5*i + j)], &B[256*(5*i + j)]);

}

for (int j = 0; j < 128; j++) {

// 10-to-1 decimation

C[128*i + j] = B[10*(128*i + j)];

}

}

(c)

Figure 4.12: (a) A stream graph, (b) its equivalent implementation in C, and (c) after
loop fusion.

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 103

form with loops and arrays as shown in Figure 4.12(b), numerous loop transforma-

tions [44, 45, 94, 104, 105, 135, 164] can be applied. In fact, some of them subsume

stream graph transformations described in Gordon et al. [51,52]. For example, actor

fusion can be viewed as loop fusion, and actor fission can be viewed as loop fission.

Compared to generic loop transformations, stream programming provides more infor-

mation explicitly at the expense of targeting a restricted class of applications. This

can facilitate more optimization opportunities since the compiler may not be able to

infer the explicitly provided information with a reasonable amount of effort.

Figure 4.12(c) shows a C code equivalent to Figure 4.12(b) but after a loop fu-

sion where each outermost loop iteration corresponds to the minimum steady state

of the stream graph [90]. To balance the number of tokens transferred between two

loops, IFFT is repeated 5 (=
lcd(256, 10)

256
) times, and Decimator is repeated 128

(=
lcd(256, 10)

10
) times per the outermost loop iteration. These repetition counts cor-

respond to minimum repetition [98] of each actor described in Section 4.2. Sgms can

be viewed as an application of software pipelining to the loop such as the outermost

loop in Figure 4.12(c).

Sarkar and Gao [135] present array contraction transformation whose purpose

is maximizing the amount of producer-consumer pipeline parallelism with minimum

buffer storage. This is the same objective as the queue capacity computation algo-

rithm described in Section 4.2; a difference is that our algorithm applies to stream

graphs whereas array contraction applies to generic imperative code with loops as

the one shown in Figure 4.12(b). They introduce a notion of loop communication

graph, which captures the communication pattern of a series of loops with producer-

consumer relations. If we construct loop communication graph from Figure 4.12(b),

the resulting graph is effectively same as the stream graph shown in Figure 4.12(a).

After publishing a shorter version of this chapter [124], it was realized that the idea of

balancing latencies of paths between actors used in our queue capacity algorithm is a

rediscovery of Sarkar and Gao’s algorithm on extra buffer allocation. However, they

only consider producer-consumer pairs with consistent communication, where corre-

sponding array writes and reads have the same affine expression except for constant

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 104

terms. Consequently, their algorithm does not contract the array B in Figure 4.12(b).

4.6 Chapter Summary

A compiler algorithm that computes the minimum queue capacities of static stream

applications that avoid deadlocks and serialization is presented. Since the queue

capacity computation algorithm works for arbitrary configuration of static stream

applications, not only does it minimizes the queue capacity requirement for a given

configuration, but also it allows to flexibly transform the stream application to trade-

off synchronization/communication overhead with the queue capacity requirement.

Team scheduling is presented as an example of applying our queue capacity com-

putation algorithm. In team scheduling, we apply actor aggregation or amortiza-

tion in a flexible order to find a sweet spot of the trade-offs between synchroniza-

tion/communication overhead and the queue capacity requirement. Applying actor

aggregation or amortization in an arbitrary order is prone to deadlocks or serialization

without our generic queue capacity computation algorithm.

Team scheduling realizes key performance features such as deadlock-free feedback

loops, low latency, and flexible queue capacity control since it is not constrained by the

minimum steady state of the entire application. Due to its flexibility in queue capacity

control, team scheduling efficiently utilizes limited local memory space of each core.

This is clearly shown by the fact that team scheduling consistently satisfies the queue

capacity constraint whereas sgms fails to do so when the space limit per core is small

(no larger than 16kb). In the case where the space limit is as large as 128kb, team

scheduling achieves on average 37% higher throughput than sgms. It is also estimated

that team scheduling saves the energy consumed in memory and interconnection up

to 46% (when 16kb local memories are used) compared to sgms by avoiding costly

non-local memory accesses. These results demonstrate team scheduling as a critical

optimization scheme in stream compilers for a large class of applications targeting

embedded multi-core processors, which commonly have limited local memory space.

Although many applications such as digital signal processing algorithms follow the

CHAPTER 4. BUFFERS IN STATIC STREAM APPLICATIONS 105

synchronous data flow (sdf) model, it is true that there are many other stream appli-

cations with dynamic behavior. The methods described in this chapter are however

still useful for the dynamic applications as tools for optimizing their static subparts.

For example, in an mp3 decoder, the execution time and output rate of the Huffman

stage vary over time, but the other parts of the decoder follow the sdf model. For

this type of applications, we can find stream subgraphs that follow the sdf model and

apply team scheduling to each of them to minimize the memory footprint while main-

taining the throughput. The next chapter presents a queue design called qed (Queue

Enhanced with Dynamic Sizing) that can be used for the rest part of applications

and variable-rate streams that connect static stream subgraphs.

Chapter 5

Buffers in Dynamic Stream

Applications

This chapter presents a non-blocking queue design called qed (Queue Enhanced with

Dynamic sizing) that minimizes memory footprint of inter-actor queues in dynamic

stream applications (or dynamic pipeline parallel applications in general). This is

complementary to the methods described in the previous chapter that compute the

minimum queue capacities that maximize the throughput in static stream applications

at compile time. Many applications have dynamic behavior, and hence require a run-

time mechanism that adapts the queue capacities for the run-time variation.

In qed, capacities are dynamically adjusted to maximize the throughput while

minimizing memory footprint. Despite its dynamic nature, queues are based on cir-

cular arrays avoiding the overhead associated with dynamic memory allocation of

linked-list based queues. The capacity adjustment is based on the approximated time

variance of the number of tokens present in the queue. A large array is allocated

initially, but only a small portion of it is actively used at any given time.

We compare the performance of qed with four alternative methods, three of which

use statically-sized, array-based queues and the other which uses the Michael and

Scott’s queue. The first alternative method, which approximates optimal statically-

sized queues, achieves the highest throughput among them, and we analyze the per-

formance degradation in other methods. We show that qed achieves a throughput

106

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 107

Vertex
Shader

Rasterizer
Pixel

Shader
Output
Merger

Q1 Q2 Q3

(a)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Sp
e

ed
u

p

Q Capacity

teapot courtyard fairy avg

0

1

2

3

4

5

6

2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
,0
2
4

2
,0
4
8

4
,0
9
6

8
,1
9
2

1
6
,3
8
4

3
2
,7
6
8

6
5
,5
3
6

S
p

e
e
d

-u
p

Q Capacity [tokens]

(b)

Figure 5.1: (a) A Direct3D pipeline and (b) its parallelization speed-up as we change
the inter-actor queue capacities while keeping all three queue capacities the same.
The experimental setup is detailed in Section 5.4.

similar to that of the first alternative method, while eliminating long search times

required for the alternative method.

5.1 Overview

When production and consumption rates of actors are static, the compiler can de-

termine minimum queue capacities that avoid serialization using the queue capacity

computation algorithm presented in Chapter 4. However, many applications have

parts that are not static, and hence requires larger queue capacities to accommodate

the run-time variation. For example, Figure 5.1(b) shows parallelization speed-ups

of a Direct3D pipeline as we change the capacities of inter-actor queues. When the

capacity is too small (e.g., less than 32 tokens), the run-time variation of actors can-

not be hidden. Conversely, when the capacity is too large, the memory system stalls

intermittently due to events such as tlb misses, resulting in up to a 23% throughput

decrease from the maximum at capacity 64. In addition to improving the through-

put, using appropriate capacities instead of “large enough” ones yields better locality,

thereby saving energy by reducing costly access to non-local memories.

To the best of our knowledge, computing appropriate inter-actor queue capacities

in dynamic stream applications however has been understudied. Arbitrary “large

enough” numbers are often chosen for inter-actor queue capacities. To address this,

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 108

we present a non-blocking1 queue design called QED (Queue Enhanced with Dynamic

sizing) that adjusts its capacity at run-time to maximize the throughput with minimal

memory footprint. Even though the capacity is dynamically adjusted in qed, queues

are based on circular arrays avoiding linked-list based queues’ overhead associated

with dynamic memory allocation.

We compare the performance of qed with four alternative methods for finding

inter-actor queue capacities that maximize the throughput of dynamic stream ap-

plications. In the first method, we use statically-sized circular-array based queues

(in short, static queues) and search for their optimal capacities by measuring the

throughput as we change the capacities. In order to avoid exponential search steps of

exhaustive search, a heuristic search is performed. In short, the first method approx-

imates an optimum of statically-sized queues. In the second method, we construct an

optimal dynamic queue capacity adjustment using traces collected from executions

with unbounded queues. Then, we set capacities of statically-sized queues to 90%

percentile of capacities used during the constructed optimal capacity adjustment. In

the third method, we estimate optimal capacities of static queues by applying an an-

alytical model based on queueing theory that was developed by Navarro et al. [117].

In the fourth method, we use the Michael and Scott’s queue (ms queue) [112], consid-

ered to be one of the most efficient and scalable linked-list based non-blocking queue

designs in the literature [63,66,88,91,146].

We show that qed achieves a throughput similar (< 1% difference) to that of

static queues whose capacities are determined by the first alternative method (i.e.,

heuristic search). However, the search time of the first alternative method can be

hours for executing applications multiple times while changing queue capacities, and

we need to redo the search whenever we modify the application or encounter a new

architecture. In addition, it can be hard to choose a representative input data set

for the search so that we can find capacities optimal across a wide range of input

data. The second alternative method (i.e., using 90% percentile of capacities used

for optimal dynamic adjustments) requires considerably fewer application runs, but

shares a problem with the heuristic search — choosing a representative input data

1 Refer to Section 5.6 for a definition and benefits of non-blocking algorithms.

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 109

set for profiling. The third method (i.e., analytical estimation method) requires no

search time, but it does not accurately model the application behavior, resulting in an

average of 16% slowdown. In the last method, the ms queue is 18 % slower and incurs

3.9× tlb misses than optimally-sized static queues due to its un-throttled execution

of upstream actors and its overhead associated with dynamic memory allocations.

The remainder of this chapter is organized as follows: Section 5.2 presents qed fo-

cusing on its capacity adjustment procedure and non-blocking property. Section 5.3

describes four alternative methods for finding inter-actor queue capacities, namely

search, dynamic optima profiling, analytical estimation, and ms queue. Section 5.4

describes the applications and evaluation setup we use throughout this chapter. Sec-

tion 5.5 compares the performance of qed with the alternative methods. Section 5.6

reviews related work, and Section 5.7 summarizes this chapter.

5.2 QED (Queue Enhanced with Dynamic sizing)

This section introduces a non-blocking queue design that is array-based yet dynami-

cally sizable, called qed. Section 5.2.1 presents the main idea behind qed and how the

capacity is adjusted so that the throughput can be maximized with minimal memory

footprint. Section 5.2.2 describes qed’s reserve-commit interface for in-place com-

putation, and Section 5.2.3 details its implementation focusing on its non-blocking

property.

5.2.1 Capacity Adjustment

Initially, a queue allocates a large array (the current implementation uses an array

with 216 elements by default). We however actively use only a part of the array

and define the size of the actively used part the current capacity of the queue. We

define occupancy as the number of tokens that have been enqueued but yet to be

dequeued, which can be measured by the difference between the tail and head index.

The capacity opportunistically shrinks when the time variance of the occupancy is

small, and expands later only if the variance increases up to a certain level.

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 110

h=14

t=16

capacity > 16 h=14capacity = 16

t=1

enqueue

(a) shrinking

enqueue
capacity = 8 capacity = 16

t=0 t=9

h=1 h=1

(b) expanding

Figure 5.2: Examples of capacity adjustment.

01 // Adjust capacity. t: tail index, c: capacity
02 int adjustC(int t, int c, int occ) {
03 if (t == c && maxOcc - minOcc > c

2
&& occ > 1)

04 return 2c; // expand
05 if (isPowerOf2(t) && maxOcc - minOcc < t

2
&& occ < t)

06 return t; // shrink
07 return c;
08 }

Figure 5.3: Capacity adjustment procedure.

Figure 5.2 illustrates examples of shrinking and expanding the capacity. In the left

side of Figure 5.2(a), we are about to enqueue a token to the tail index, 16. Suppose

that the time variance of the occupancy has been small relative to the current capacity.

Then, instead of writing the token to index 16, we shrink the capacity to the tail index

value, wrap-around the tail index to 0, and write the token to index 0, as shown in

the right side of Figure 5.2(b). In the left side of Figure 5.2(b), we are about to

enqueue a token to index 0 after wrapping around the tail index. Suppose that the

time variance has been large relative to the current capacity, 8. Then, we double the

capacity and write the token to index 8.

The capacity is adjusted based on the variance of occupancy, which reflects the

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 111

01 template<typename T> class queue {
02 bool reserveEnqueue(int *index);
03 void commitEnqueue(int index);
04
05 bool reserveDequeue(int *index);
06 void commitDequeue(int index);
07
08 T array[MAX C]; // circular array
09 };
10 ...
11 int dequeueIndex, enqueueIndex;
12 while (!inQ.reserveDequeue(&dequeueIndex));
13 InputToken *in = &inQ.array[dequeueIndex];
14 foo(in->field1) // operations on in
15 ...
16 while (!outQ.reserveEnqueue(&enqueueIndex));
17 OutputToken *out = &outQ.array[enqueueIndex];
18 out->field2 = boo(in->field3); // access on in and out
19 ...
20 inQ.commitDequeue(dequeueIndex);
21 ...
22 out->field4 = bar(); // access on out
23 outQ.commitEnqueue(enqueueIndex);

Figure 5.4: Reserve-commit interface and its usage example.

run-time variation of application behavior. The variance of occupancy can lead to

stalls from transient empty or full states, which can be controlled by adjusting the

capacity. When the variance of occupancy is large relative to the current capacity,

we are likely to have many transient stalls; thus the capacity should expand. Con-

versely, when the variance of occupancy is relatively small, we are unlikely to have

transient stalls; thus the capacity can shrink to reduce memory footprint. Note that

qed does not attempt to avoid recurring empty or full states resulting from the dif-

ference between the long term time averages of enqueue and dequeue rate. The load

imbalance resulting from the difference in long term averages should be addressed by

load balancing scheduling instead of the capacity adjustment.

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 112

We need to answer the following two design questions with respect to the ca-

pacity adjustment: 1) How often do we check whether we need to shrink or expand

the capacity? 2) How can we measure the variance of the occupancy with minimal

overhead?

Regarding the first question, we check the condition for shrinkage when the tail

index is a power of two and check for expansion when the tail index wraps around

to 0. This design choice has the following advantages: First, the capacity is always

a power of two, which allows us to efficiently wrap around indices using bit-wise and

operations and compress the capacity value by storing its binary logarithm (detailed

in Section 5.2.3). Second, the overhead of checking the conditions is minimized by

reducing its frequency (log2C instead of C per tail index wrap-arounds, where C is

the capacity).

For the second question, we measure the difference between the minimum and

maximum occupancy of the queue during the last epoch, where epochs are defined

as the times between consecutive wrap-arounds of the tail index. The difference

between the minimum and maximum occupancy during the last epoch approximates

the variance of the occupancy, and we adjust the capacity based on this approximated

variance as shown in Figure 5.3. In the adjustC method shown in Figure 5.3, variables

occ, minOcc, and maxOcc denote the current occupancy, the minimum and maximum

occupancy during the last epoch, respectively. When (maxOcc - minOcc) is large (more

than half of the current capacity in our implementation), we double the capacity (the

second if condition of line 3 in Figure 5.3). When (maxOcc - minOcc) is small (less

than half of the current tail index in our implementation), we shrink the capacity to

the tail index value (the second if condition of line 5 in Figure 5.3). The reasons for

the last if conditions of lines 3 and 5 are described in Section 5.2.3.

5.2.2 Reserve-commit Interface

qed provides in-place access and avoids dynamic allocations by supporting the two

phase reserve-commit interface shown in lines 1-9 of Figure 5.4, which is adopted from

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 113

the gramps graphics pipeline programming model [141]. Through the pointer argu-

ment index, reserveEnqueue/Dequeue returns an index that points to a part of the

circular array associated with the queue. The return value of reserveEnqueue/Dequeue

is false when the queue is full/empty. The reserve-commit interface guarantees the

caller exclusive access to the part of the array pointed by the index until it receives

a corresponding commit call. Lines 11-23 in Figure 5.4 show an example of using

this reserve-commit interface. Note that operations on input and output tokens are

directly applied to parts of the circular arrays (lines 13, 14, 17, 18, and 22).

On the other hand, the conventional one-phase interface typically incurs overhead

from either copies or dynamic memory allocations of tokens. In the applications we

evaluate, the size of each token transferred between actors can be quite large (e.g.,

the token size of the most upstream queue in the MP3 decoder shown in Figure 5.9(f)

is 3KB). Copying the value of each large token to and from queues incurs significant

overhead. To avoid this overhead, pointers to the tokens, instead of values, are often

enqueued and dequeued, but this typically requires dynamic allocation of tokens.

Theoretically, one can manually implement a memory pool to reduce the overhead

from dynamic memory allocations. However, the circular array in qed already lends

itself to a memory pool specialized for the producer-consumer access pattern: memory

chunks released by dequeued tokens are reused for tokens enqueued later in a fifo

manner. The reserve-commit interface exposes this memory pool inherent in circular-

array based queues to the caller and saves efforts to manually implement a memory

pool. Wrapping the reserve-commit interface as the conventional one-phase interface

is straightforward and desirable when tokens have primitive types with small copy

cost.

5.2.3 Non-blocking Implementation

Figure 5.4 shows pseudo C++ code of our qed implementation. In lines 1-4, two

structs, PackedIndex and PackedIndexAndC, pack their fields into a single 64-bit

word (they are actually unions in order to be atomically accessed through their 64-bit

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 114

01 struct PackedIndex { int logical, physical; };
02 struct PackedIndexAndC {
03 int logical, physical:24, log2C:8;
04 }; // log2C: log2(capacity)
05
06 template<typename T> class Qed {
07 int presence[MAX C]; // initialized as zeros
08 PackedIndex head; PackedIndexAndC tail;
09 int minOcc = INT MAX, maxOcc = 0;
10 // last epoch’s min/max occupancy
11
12 bool reserveEnqueue(PackedIndex *ret) {
13 PackedIndexAndC old, new; int occ;
14 do {
15 old = tail; // atomic copy of tail to a local variable
16 int c = 2old.log2C;
17 occ = old.logical - head.logical;
18 if (occ ≥ c || presence[old.physical%c])
19 return false; // queue is full
20 new.log2C = log2(adjustC(old.physical, c, occ));
21 ret->logical = old.logical;
22 new.logical = old.logical + 1;
23 ret->physical = old.physical%2new.log2C;
24 new.physical = ret->physical + 1;
25 } while (!cas(&tail, old, new));
26 if (ret->physical == 0) minOcc = maxOcc = occ;
27 minOcc = min(minOcc, occ);
28 maxOcc = max(maxOcc, occ);
29 return true;
30 }
31
32 void commitEnqueue(PackedIndex reservedIndex) {
33 presence[reservedIndex.physical] = 1;
34 }

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 115

35 bool reserveDequeue(PackedIndex *ret) {
36 PackedIndex old, new;
37 do {
38 PackedIndexAndC t = tail; // atomic copy of tail
39 *ret = old = head; // atomic copy of head
40 ret->physical %= 2t.log2C;
41 if (ret->logical ≥ t.logical || !presence[ret->physical])
42 return false; queue is empty
43 new.logical = ret->logical + 1;
44 new.physical = (ret->physical + 1)%2t.log2C;
45 } while (!cas(&head, old, new));
46 return true;
47 }
48
49 void commitDequeue(PackedIndex reservedIndex) {
50 presence[reservedIndex.physical] = 0;
51 }
52 } // end of class Qed

Figure 5.4: qed implementation.

fields, but this is omitted to avoid clutter). In these structs, the logical index is a 32-

bit integer that points to a location in a logical unbounded array, whereas the physical

index is used to index the physical circular array. As opposed to statically-sized

circular-array queues, one cannot be inferred from the other since the capacity can

continuously change. Note that the 2’s complement arithmetic maintains the correct

semantic of logical indices in the presence of integer overflows: e.g., even after the tail

index wraps around to a negative value, (tailIndex.logical - headIndex.logical)

still results in a positive number. In addition to the logical and physical indices,

PackedIndexAndC uses its 8 bits to store log2 of the capacity. The physical index of

PackedIndexAndC is represented by 24 bits, which limits the maximum capacity to

224 = 16M, which we believe to be a practically sufficient number.

We have a presence flag associated with each array element (line 7) to check the

queue’s full or empty state. Simply inspecting the difference between the logical tail

and head index is not sufficient for full or empty checks since commitEnqueue/Dequeues

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 116

can be performed out of order. However, inspecting presence flags alone is also

insufficient when there is a lagging producer/consumer that takes a long time to

commitEnqueue/Dequeue after a reserveEnqueue/Dequeue. Suppose that thread

ti enters reserveEnqueue when the physical tail index is 1. When there is a lag-

ging thread tj that has reserved physical index 1 but has not committed, without

the first if condition in line 18, the physical index 1 will be double-reserved since

presence[1] is still 0. Therefore, we need to inspect both the presence flag and the

difference between the logical tail and head index as shown in lines 18 and 41.

The states atomically updated in reserveEnqueue are the logical/physical tail

indices and the capacity. We atomically copy these states to local variables (line 15),

check if the queue is not full (line 18), modify the local variables (lines 20-24), and

attempt to atomically update the states using a cas (compare-and-swap) operation

(line 25). The aba problem [66] is unlikely to happen since a part of the value

we compare-and-swap, the logical tail index, is a 32-bit sequence number. We do

not atomically update the minimum and maximum occupancy since race conditions

resulting from the non-atomic updates are benign ones that marginally affect only the

accuracy of the occupancy variation. The reserveDequeue method operates similarly

except that it updates only the logical and physical head indices.

In reserveDequeue, the tail indices and capacity can refer to out-dated values

when there is an enqueuer that concurrently updates their values. This however

does not lead to race conditions as long as the tail indices and the capacity are

atomically stored from enqueuers and atomically loaded from dequeuers. Suppose

that an enqueuer thread ti shrinks the capacity to 16, while a dequeuer thread executes

reserveDequeue with the physical head index 16. In this case, a race condition of

setting ret->physical to 16 using the old capacity in line 40 (the correct value is

0) and returning true from reserveDequeue cannot happen because of the following

reason: Due to line 6 of adjustC in Figure 5.3, right before ti has shrunk the capacity,

the physical tail index must have been 16, and, therefore, the logical tail and head

indices must have been equal (“tail.logical - head.logical == capacity” cannot

hold due to the third if condition in line 5 of adjustC). Since PackedIndexAndC is

atomically stored and loaded, an old capacity implies an old tail index, rendering the

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 117

first condition of line 41 true.

Suppose that an enqueuer thread ti expands the capacity from 16 to 32, while a

dequeuer thread executes reserveDequeue with the physical head index 15. In this

case, a race condition of setting new.physical to 0 using the old capacity in line 44

(the correct value is 16) and returning true cannot happen because of the following

reason: Due to the first if condition in line 3 of adjustC, the physical tail index

must have been 16 right before ti has expanded the capacity, rendering the third if

condition in line 3 of adjustC false.

Notice that we need modular operations in both lines 40 and 44 to avoid race con-

ditions that come from capacity adjustments between consecutive reserveDequeues.

Suppose that we are about to execute line 40 with the physical head index 16, and

the capacity has shrunk to 16 after the last successful reserveDequeue. In order to

set ret->physical to the correct value 0 instead of 16, we need the modular opera-

tion in line 40. Suppose that we are about to execute line 44 with the physical head

index 15, and the capacity has expanded from 16 to 32 thereafter. In order to set

new.physical to the correct value 0 instead of 16, we need the modular operation in

line 44.

We have implemented a few performance optimizations, which are omitted in Fig-

ure 5.4 to focus on presenting the principal ideas of qed. First, measuring the occu-

pancy as the difference between the logical tail and head index can be inaccurate since

there can be tokens that have been reserved but yet to be committed. To consider

this, we maintain a counter called reservedEnqueueCounter that is atomically incre-

mented per reserveEnqueue and decremented per commitEnqueue, and another simi-

lar counter called reservedEnqueueCounter for dequeues. The value of minOcc in line

9 of Figure 5.4 is computed as the minimum value of (tail.logical - head.logical

- reservedEnqueueCounter) during the last epoch,. Similarly, maxOcc is computed as

the maximum value of (tail.logical - head.logical + reservedDequeueCounter)

during the last epoch. Note that the computation of both variables are biased to-

ward easier expansions since we prioritize avoiding stalls due to buffers too small over

avoiding tlb or cache misses from larger capacities. Second, we optimize qed for the

case of single producer and/or single consumer. For example, cas is not necessary

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 118

Q1

Q2

Initial
Search

P0 P1

P2

Figure 5.5: Illustration of heuristic search procedure.

in reserveDequeue when only a single dequeuer exists. Refer to SpQed, ScQed, and

SpscQed in our Google code website [5] for the details of optimizations for the single

producer and/or single consumer cases.

5.3 Alternative Methods

This section describes methods for finding inter-actor queue capacities that are al-

ternative to qed. The methods described in this section use a statically-sized queue

implementation (in short, static queue). The static queue implementation is similar

to that of Tsigas and Zhang [146] with respect to its non-blocking and circular-array

based property. However, similar to qed, our static queue implementation provides

the reserve-commit interface described in Section 5.2.2. For the further details, refer

to qed static.h in our Google code website [5].

5.3.1 Static Optimum Approximation

Figure 5.5 illustrates our heuristic search procedure when there are two inter-actor

queues. First, we start an initial search that finds the capacity that maximizes the

profit (defined below), while keeping the capacities of each queue the same. We search

along the line from the origin to P0 while keeping Q1 and Q2 equal, and find that P0

maximizes profit. If we confine our definition of profit to speed-up only, capacities

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 119

0
10
20
30
40
50
60
70
80
90

2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
,0
2
4

2
,0
4
8

4
,0
9
6

8
,1
9
2

1
6
,3
8
4

3
2
,7
6
8

6
5
,5
3
6

P
r
o

fi
t

Q Capacity [tokens]

Q1 Q2 Q3

Figure 5.6: The profit of d3d10 as we change the capacity of Q1, Q2, and Q3.

may unnecessarily be increased even after near-maximum speed-up has been achieved

(e.g., in Figure 5.1(b), when the capacity is greater than or equal to 16).

Therefore, we define profit as logk(speedup)− log2(q̄), where the speed-up is regu-

larized [31] by the queue capacity. Here, q̄ denotes the average queue capacity, and k

is the regularization factor (i.e., how large a speed-up is considered to be beneficial by

increasing the overall queue capacities by a factor of 2). For example, k = 1.02 means

that we are willing to increase queue capacities by a factor of two if the speed-up from

doing so exceeds 2%. Figure 5.1(b) shows speed-up during an initial search. Although

the speed-up is maximized when the capacity is 64, our profit function is maximized

at 16 when k = 1.02. Although we find that profit varies with approximately convex

forms in the applications we evaluate, there can be local minima resulting from mea-

surement noise (e.g., when capacity is 32K in Figure 5.1(b)). To avoid local minima

during the search from the origin to P0 in Figure 5.5, we continue the search until

the profit drops by more than 5% from the maximum value seen so far. This initial

search quickly finds a configuration where no queue is a particular bottleneck, which

is used as the starting point of the main search described in the following:

Starting from the point found in the initial search (e.g., P0 in Figure 5.5), the

main search iterates over each inter-actor queue. For each iteration, we find the queue

capacity that maximizes the profit by varying only the capacity of the current queue.

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 120

In both directions (smaller and larger capacity), we continue the search until the profit

drops by more than 5%. For example, in Figure 5.5, the first iteration changes Q1

from P0 and finds that P1 maximizes the profit. Then, the second iteration changes

Q2 from P1 and finds that P2 maximizes the profit. Figure 5.6 shows the profit of

d3d10 as we change the capacity of Q1, Q2, and Q3. Since the profit is maximized

when the capacities are 16 in an initial search for d3d10, we start the main search

with Q1 = 16, Q2 = 16, and Q3 = 16. For Q1, we measure the profit when its

capacity is 8, 4, and 2 along the negative Q1 direction and find that 16 still achieves

the maximum profit. Then, we measure the profit as we increase the capacity from

32 to 8K, where the profit drops by more than 5%. Similarly, we select the capacity

of Q2 and Q3 to be 16.

One can view this procedure as a search through n dimensional space where each

dimension corresponds to an inter-actor queue capacity. Seen in this light, our heuris-

tic search resembles a coordinate descent search [7], which finds an optimum when the

target function is convex and differentiable [108]. In the coordinate descent method,

iterating over each dimension is repeated multiple times. For example, after searching

along lines P0-P1 and P1-P2, the coordinate descent method repeats more iterations,

checking whether the profit further improves by varying Q1 and Q2 again. However,

since our main objective is minimizing the number of search steps, we stop our search

after iterating over each dimension once. Note that each search step involves multiple

application runs to reduce measurement noise. Gradient-descent is a more popular

method to optimize convex functions and has better convergence properties, but it

requires measuring application throughputs multiple times to accurately compute a

gradient in our discrete search space.

Table 5.1 shows the results of our heuristic search procedure. We use k = 1.02

(i.e., we are willing to tolerate twice the queue capacities if it leads to more than 2%

of parallelization speed-up increase), and the search range for the queue capacities is

powers of two between 2 and 1M in the number of tokens. To be more conservative

on increasing queue capacities, one can increase the value of k. We can see that

our heuristic search achieves parallelization speed-up that is close to the maximum

found by an exhaustive search in d3d10, djpeg, hmmcalibrate, and mad. For dedup,

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 121

Table 5.1: Results of exhaustive search (ES), heuristic search (HS), dynamic optimal
approximation (DO), and analytical estimation (AE).The search range is powers of
two between 2 and 1M (in number of tokens). The results of exhaustive search for
dedup, ferret, and packet tracer are not available because hundreds of days are
needed. The results of analytical estimation for packet tracer are not presented
since it is not clear how to apply the model based on queueing theory to applications
with feed-back loops. For each step of exhaustive search and heuristic search, we run
the application 20 times and compute the average to consider measurement noise.
In event-driven simulation and analytical estimation, the time required for profiling
is included, and we run the application 20 times to compute averages during the
profiling.

App. Method
Queue Capacities [tokens] Search Search Speed

Q1 Q2 Q3 Q4 Q5 Q6 steps time up

d3d10

ES 8 64 64 8K 15 hours 5.75
HS 16 16 16 35 4 min. 5.62
DO 64 64 128 1 9 sec. 5.25
AE 4 32 16 1 7 sec. 5.31

dedup

ES N/A N/A N/A N/A 160K >500 days N/A
HS 256 2 2,408 2,048 63 5 hours 5.41
DO 8 4 2,048 4,096 1 5 min. 5.40
AE 4 4 8 32 1 5 min. 4.41

djpeg

ES 64 4 128 16 160K 10 hours 1.60
HS 64 4 64 8 37 3 sec. 1.60
DO 4 4 128 4 1 2 sec. 1.60
AE 4 4 8 4 1 <1 sec. 1.51

ferret

ES N/A N/A N/A N/A N/A 3.2M >50K days N/A
HS 2 2 2 128 128 98 40 hours 7.12
DO 4 4 4 128 128 1 24 min. 7.12
AE 4 4 8 32 16 1 24 min. 4.10

hmm
calibrate

ES 32 20 10 hours 7.65
HS 32 11 7 hours 7.65
DO 64 1 17 min. 7.65
AE 32 1 17 min. 7.65

mad

ES 32 4 8 8K 8 days 2.96
HS 64 4 8 39 1 hours 2.96
DO 16 4 4 1 1 min. 2.96
AE 8 4 4 1 1 min. 2.92

packet
tracer

ES N/A N/A N/A N/A N/A N/A 64M >100K days N/A
HS 64 64 1,024 32 16 2,048 117 6 hours 7.39
DO 4 1,024 32 32 32 16 1 4 min. 7.30
AE N/A N/A N/A N/A N/A N/A N/A N/A N/A

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 122

ferret, and packet tracer, an exhaustive search was not possible because it requires

hundreds of days. Our heuristic search finishes within two hundred steps in every

application.

5.3.2 Dynamic, Local Optimum Approximation

Although the heuristic search described in the previous section significantly reduces

the number of application runs necessary for approximating static optimal inter-actor

queue capacities, a considerable amount of time can still be required for each run. In

addition, the search may need to be repeated when the application is modified or a

different multi-core architecture is encountered. This section presents how queues can

be sized with even much fewer application runs by inspecting locally-optimal dynamic

capacity adjustments. Here, “locally-optimal” indicates that the constructed capacity

adjustment of a queue is optimal with respect to the producer-consumer actor pair

of the queue. Constructing globally optimal dynamic capacity adjustments remains

as future work.

Figure 5.7 illustrates the construction of locally-optimal dynamic capacity adjust-

ments. First, we run the application with unbounded queues so that enqueues never

block, and gather enqueue and dequeue event traces. Figure 5.7(a) is an example

trace of enqueue and dequeue events, where ei denotes ith enqueue time and di de-

notes ith dequeue time. Second, we delay enqueue events to reduce queue occupancies

as much as possible subject to the following two constraints, where e′i denotes the ith

delayed enqueue time:

e′i ≤ di , ∀i

e′i − e′i−1 ≥ ei − ei−1 , ∀i

The first constraint is due to causality between ith enqueue and ith dequeue event.

The second constraint is due to the time required for computing ith token in the

producer. Lastly, we compute occupancies at delayed enqueue events. The opti-

mal adjustment with respect to the enqueuer and dequeuer actors is setting queue

capacities to the computed occupancies at each delayed enqueue event.

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 123

e0e1 e2 e3

d3d2d1d0

(a)

d3d2d1d0

e0' e1' e2' e3'

(b)

q

t

1

2

(c)

Figure 5.7: Illustration of computing the optimal queue capacity adjustment. (a) A
trace from an execution with unbounded queues, where ei denotes ith enqueue and
di denotes jth dequeue. (b) Delay enqueues as much as possible. (c) Compute the
occupancy at each delayed enqueue event.

Figure 5.8 shows an example locally-optimal dynamic capacity adjustment of Q2

in d3d10 shown in Figure 5.9(a) with courtyard as the input. Note that, up to 0.03

second, optimal queue capacities are similar to the occupancies during an execution

with unbounded queues, since enqueue events cannot be delayed there (i.e., the pro-

ducer is the bottleneck). After 0.03 second, optimal queue capacities are significantly

smaller than the occupancies of unbounded queues by delaying enqueue events (i.e.,

the consumer is the bottleneck after 0.03 second).

Ideally, we can achieve the dynamic optimal by following the constructed sequence

of adjustments. However, each run leads to different dynamic optima, and following

the optimal sequence of adjustments during run-time can incur significant overheads

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 124

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Q
ue

ue
 C

ap
ac

ity
/O

cc
up

an
cy

Time (sec)

Opt
Unbounded

Qed

Figure 5.8: An example dynamic optimal capacity adjustment of Q2 in d3d10 with
courtyard scene. The thick red line denotes the optimal capacity adjustment, the
thin solid black line denotes the occupancy during an execution with unbounded
queues, and the thin dotted line denotes a sequence of capacity adjustments by qed.

for storing a long sequence of adjustments. Instead, we use a heuristic that sets

the capacities to 90% percentile of capacities used during optimal adjustments con-

structed from 20 profiling runs, and we call this method dynamic, local optimum

approximation. For example, if 20 profile runs result in optimal capacity adjustments

similar to that is shown in Figure 5.8, we set the capacity of queue to 64.

In Table 5.1, the results of dynamic optimal approximation (do) are shown for

each application. The dynamic optimal approximation method achieves a throughput

within 1% of the heuristic search on average. Considering that the time required for

the dynamic optimal approximation is significantly faster than that of the heuristic

search, the dynamic optimal approximation is an attractive method for computing

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 125

queue capacities. However, the dynamic optimal approximation shares a problem with

the heuristic search — choosing a representative input data set for approximation

so that the found capacities are optimal across a wide range of input data. We

expect that run-time queue capacity adjustment is used in conjunction with load

balancing scheduling, as will be discussed in Section 5.5.3. In this setting, the pipeline

configuration keeps changing in run-time, further complicating the application of

methods based on profiling.

The method described in this section does not construct globally-optimal adjust-

ments because delayed enqueue events affect optimal dequeue timings of upstream

queues. Note that our method does not adjust the dequeue timings of upstream

queues and constructs adjustments in isolation per queue. If actors form an acyclic

connectivity, it is easy to extend the locally-optimal method described in this section

to construct globally-optimal adjustments: we visit queues in a reverse topological

order and construct adjustments of them by using the method described in this sec-

tion while using dequeue timings as the ones dictated by the delayed enqueue timings

of downstream actors. However, it is presently not clear how to further extend this

method to actors with a cyclic connectivity, which remains as future work.

5.3.3 Analytical Estimation

In the previous section, we show that our dynamic optimum approximation method

achieves a throughput similar to that achieved by the heuristic search method, while

significantly reducing the search time. Alternatively, we can reduce the search time

by using an analytical model of pipeline-parallel applications, which is examined in

this section.

Navarro et al. [117] develop an analytical model of pipeline-parallel applications

based on queueing theory. Based on the analytical model, they also present a method

to compute the minimum queue capacities that do not degrade the throughput. They

model each pipeline stage as an M/M/c/K/K queue where the first M denotes that

inter-arrival time follows a time-independent exponential distribution, the second M

denotes that the service time also follows a time-independent exponential distribution,

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 126

c denotes the number of servers (i.e., threads), the first K denotes the queue capacity,

and the second K denotes the client population. Since there are only K clients, the

arrival rate of clients decreases as more clients are present in the queue, whereas the

rate does not change in an infinite population model. For the details of this analytical

model, refer to [117]. In an M/M/c/K/K queue, the probability that n clients are

present (receiving service or waiting) in the queue, Pn, can be derived as follows

(Section 6.5 in [16]):

Pn =


(
K
n

)(λ
µ

)n

P0 , n < c

K!

(K − n)!c!cn−c

(
λ

µ

)n

P0 , n ≥ c

Here, λ denotes the arrival rate, and µ denotes the service rate of one server (i.e.,

thread). P0 is a normalization factor that makes the sum of Pn values 1. Using

these Pn values, we can compute the effective arrival rate of the i the stage, λei, as

follows [16,117]:

λei =
K∑

n=0

(K − n)
Pn(λ = 1

Tarr
, µ = µi, c = ci)

Tarr

Here, the slowest average service time, Tarr, is the maximum among
1

ciµi

, where

ci denotes the number of threads for the ith pipeline stage and µi denotes the average

service rate of the ith pipeline stage. When there is no limitation on queue capacity,

this slowest average service time determines the throughput. When queue capacities

are too small, throughput can be reduced from that is determined by the slowest

average service time, which we want to avoid. Therefore, for each stage, the following

condition should hold:

λei ≥
1

Tarr
⇒

K∑
n=0

(K − n)Pn(λ =
1

Tarr
, µ = µi, c = ci) ≥ 1

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 127

0 11400 28200 45000 61800 78600 95400 113400

cycles

de
ns

ity

0.
00

00
0

0.
00

00
6

0.
00

01
2

(a)

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

ac
f

(b)

Figure 5.9: Statistics of applications (measured by papi [32]). (a) A histogram of the
number of cycles per out stage iteration in ferret. (b) An auto-correlation function
of the number of cycles per PixelShader stage iteration in d3d10 with input fairy.
These dynamic/figures are generated by R [6], a statistics package. In (b), dotted
horizontal lines indicate the point of statistical significance — values between these
lines are not statistically significant.

Using this condition2, we can find the minimum queue capacity, K, that avoids

throughput reduction. We set the queue capacity to the smallest power of 2 that is

no smaller than K3.

In Table 5.1, analytical estimation (ae) rows present the result of applying the

analytical method developed by Navarro et al. [117]. We can see that their method

tends to underestimate the queue capacities, particularly in dedup and ferret, re-

sulting in a maximum of 74% and an average of 16% slowdown. This can be explained

by the following two facts: First, execution times of some pipeline stages do not fol-

low an exponential distribution. For example, Figure 5.9(a) shows a histogram of the

number of cycles per out stage iteration in ferret, which deviates from that of an

exponential distribution. Second, even those stages whose execution times follow an

exponential distribution not time-independent. For example, Figure 5.9(b) shows the

auto-correlation of the number of cycles per PixelShader stage iteration in ferret.

2 This condition can be interpreted as follows: The average number of empty entries in the queue
is greater than or equal to 1.

3 When we use queues with the reserve-commit interface described in Section 5.2.2, each producer
reserves one buffer space during its iteration. Therefore, we add the number of producers to K.

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 128

We can see high auto-correlation values at non-zero smaller lags, which implies that

the execution times are bursty and not time-independent.

5.4 Experimental Setup

This section describes the evaluation setup that we use throughout this chapter.

Figure 5.9 shows the pipeline configuration of each application we evaluate. As

opposed to the applications that have been evaluated for stream programming sys-

tems [51, 124], we select applications that have actors with variable input/output

rates. Dotted lines denote single-producer, single-consumer queues. Queues associ-

ated with solid lines are shared by multiple producers and/or multiple consumers.

For example, Q3 in dedup (Figure 5.9(b)) is shared by five Compress threads. The

details of applications we evaluate are as follows:

d3d10 (Figure 5.9(a)): A Direct3D pipeline that is ported from gramps [141].

Vertex Shader and Pixel Shader share the same thread pool. When both Vertex

Shader and Pixel Shader task can be executed, we give Pixel Shader priority to

reduce memory pressure as in Sugerman et al. [141]. Since a software rasterizer

completely dominates the performance of graphics pipelines [141], our Rasterizer

actor emulates a hardware rasterizer by emitting pre-computed rasterized outputs

that correspond to incoming triangles. We use courtyard, fairy, and teapot used

in [141], which represent a fragment-heavy scene, a vertex-heavy scene, and a mixed

scene, respectively. A fragment-heavy scene imposes heavier load on Pixel Shader

while a vertex-heavy scene imposes heavier load on Vertex Shader.

dedup (Figure 5.9(b)): Data stream compression using “de-duplication” in par-

sec benchmark suite [25]. We use the largest input set, native.

djpeg (Figure 5.9(c)): A jpeg decoder. We parallelize the 6b version imple-

mented by Independent jpeg Group [75] included in MediaBench [4, 96]. Instead of

sharing the input and output queues of DCT threads, we split the inputs and join

the outputs of DCT threads in round robin. This does not introduce load imbalance

between DCT threads since their execution time per input token is close to constant.

Run-time variation mainly comes from the Huffman actor whose execution time and

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 129

Vertex
Shader x a

Rasterizer
Pixel

Shader x
(7-a)

Output
Merger

Q1 Q2 Q3

... ...

(a) d3d10: Direct3D pipeline

Compress

Data
Process

FindAll
Anchors

Chunk
Process

Compress
x 5

Send
Block

Q1 Q2 Q3 Q4

...

(b) dedup: data compression

Huffman

DCT

Post
Process

PutPixel
Q1 Q3 Q4

DCT

Q2

DCT

(c) djpeg: jpeg decoder

CompressCompress
In Seg Extract Vec x 4 Rank x 8

Q1 Q2 Q3 Q4
Out

Q5

... ...

(d) ferret: similarity search

Viterbi
x 15

Histogram
Q1

...

(e) hmmcalibrate : hidden
Markov model calibration

DCT

Synth

OutputQ2 Q3

Synth

Huffman
Q1

(f) mad: mp3 decoder

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 130

Compress
Sampler Camera

Intersect
x a

Q1 Q2

...

Compress
Shader

Shadow
Intersect

x (12 – a)

Blend
Q5 Q6

Q3Q4

...

(g) packet tracer : a ray tracer implementation

Figure 5.9: Pipeline configuration of applications. Compress×5 in dedup denotes that
5 threads are assigned to the Compress stage. In d3d10, 7 threads are shared by two
shader stages. Similarly, in packet tracer, 12 threads are shared by two intersect
stages.

amount of output data depend on the entropy of the stream. As the input data

set, we use input base 4CIF 96bps.jpg and testimg.jpg from MediaBench, and

input small.jpg and input large.jpg from MiBench [55].

ferret (Figure 5.9(d)): Image similarity search in parsec benchmark suite. We

use the largest input set, native.

hmmcalibrate (Figure 5.9(e)): Calibrating hidden Markov model for biosequence

analysis from spec2006.

mad (Figure 5.9(f)): We parallelize the 0.14.2b version of mad mp3 decoder [149]

included in MiBench [55]. As in djpeg, we split the inputs and join the outputs of

Synth threads in a round robin manner. Run-time variation mainly comes from

Huffman as in djpeg. We use the 10 most popular free downloadable mp3 files from

Amazon.com.

packet tracer (Figure 5.9(g)): A ray tracer implementation with a feedback loop

that is ported from gramps [141]. Intersect and Shadow Intersect share the same

thread pool. Similar to shaders in d3d10, we give Shadow Intersect priority. When

neither input queue of Intersect is empty, the input queue along the feedback loop

(Q4) gets priority. We use the same input set used for d3d10.

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 131

We use two 2.26 GHz E5520 quad-core Intel Nehalem processors with hyper-

threading, 32kb 8-way set associative private L1 D-caches, 256kb 8-way set asso-

ciative private L2 caches, and 8mb 16-way set associative shared L3 caches. We use

Ubuntu server with Linux kernel version 2.6.32, and exclusive access to the machine

is provided. Applications are compiled by gcc 4.4.3 with -O3 option, and each thread

is assigned appropriate affinity value. All parallelization is done by pthread api. Per-

formance numbers are computed as the average of 20 runs. tlb misses and L1/L2

cache misses are measured by papi 4.1.2 [32], a performance counter library. L3 cache

misses are measured by perf, a performance analysis tool in Linux 4. The hardware

pre-fetcher is turned on when the execution time is measured and turned off when

tlb and cache misses are measured.

It would be ideal to evaluate with the Elm architecture as well to be consistent with

the evaluation in Chapter 4. In static applications evaluated in Chapter 4, executing

a few iterations of the steady state often suffices to accurately capture the application

behavior. In contrast, we typically need to execute applications from beginning to

end with large enough inputs to capture the dynamic behavior of applications we

evaluate in this chapter. Since the Elm simulator takes about 5K cycles to simulate

1 cycle, it would have taken about 4 days to simulate ferret as native.dat the

input. Instead of resorting into smaller input data, which may degrade the accuracy

of capturing the dynamic behavior of applications, we decided to use a real machine

(an Intel Nehalem machine in our case). The design of qed should be applicable to

architectures with more software controls such as Elm, although more optimizations

such as the ones exploiting scatter-gather dma operations are possible. How much

benefit we can get from this additional optimization opportunity remains as future

work.

Before starting any experiment with respect to queue capacities, we find the num-

ber of threads for each stage that achieves the maximum speed-up, which is shown

in Figure 5.9. An important optimization for pipeline-parallel applications is pack-

etization: send tokens as a packet to amortize communication and synchronization

4 The last level cache misses are counted by the uncore in the Intel Nehalem architecture, and
papi presently does not handle performance counters associated with the uncore.

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 132

overhead [141]. We use the degree of packetization that achieves maximum speed-up.

For example, we use packets with 128 tokens in d3d10.

5.5 Evaluation

5.5.1 Execution Time

Table 5.2 shows execution times and the number of tlb misses normalized to those

of static queues whose capacities are determined by the heuristic search method.

qed achieves execution times and tlb misses similar to those of approximated static

optima found by the heuristic search method.

The input set for measuring the execution time is the same as the one used for

searching the capacities of static queues (i.e., training and validation sets are the

same), which is favorable for the search method. When we use the static queues for

an input outside the training set, their capacities may not be optimal. For example,

when we increase the rendering resolution of d3d10 to 2048×2048, qed is 6% faster

than the static queues whose capacities are trained for 1024×1024 resolution. The

variance of the Rasterizer stage’s output rate increases at higher resolution, to which

qed adapts by expanding the capacity of Q3 by 30% on average.

The dynamic optimum approximation method achieves an execution time within

1% of the heuristic search on average, while reducing the search time from several

hours to half an hour (the details of search times are presented in Table 5.1). The

analytical estimation based on queueing theory [117] results in a maximum of 74%

and an average of 16% slowdown since it does not accurately model the behavior of

applications (elaborated in Section 5.3.3).

The ms queue is on average 18% slower and incurs 3.9× tlb misses than the

heuristic search method. This is due to the ms queue’s un-throttled execution of

upstream stages and its overhead associated with dynamic memory allocation. In

order to separate these two effects, we also evaluate ms queues whose capacities are

bounded by those determined by the heuristic search (Bounded MS in Table 5.2).

Bounded MS reduces the number of tlb misses by 18% and improves the execution

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 133

Table 5.2: (a) Execution time and (b) the number of tlb misses normalized to those
of static queues with capacities determined by the heuristic search method described
in Section 5.3.1. Normalized execution time and tlb misses are presented with
95% margin of error assuming each application run is independent and identically
distributed (i.i.d.).

• do: static queues whose capacities are determined by dynamic, local optimum
approximation presented in Section 5.3.2.

• Analytical: analytical estimation based on queueing theory presented in Sec-
tion 5.3.3.

• ms: ms queues.

• Bounded ms: ms queues whose capacities are bounded by those determined by
the heuristic search method.

• Large enough: “large enough” (2K tokens) static queues.

(a) Normalized execution time

qed do Analytical ms Bounded ms Large enough
d3d10 0.99 ±0.04 1.07 ±0.05 1.06 ±0.10 1.26 ±0.06 1.20 ±0.08 1.18 ±0.08
dedup 1.00 ±0.04 1.00 ±0.02 1.23 ±0.02 0.98 ±0.01 0.98 ±0.02 1.00 ±0.03
djpeg 1.00 ±0.02 1.00 ±0.02 1.06 ±0.02 2.45 ±0.09 2.45 ±0.07 1.15 ±0.02
ferret 1.01 ±0.00 1.00 ±0.00 1.74 ±0.01 1.01 ±0.00 1.00 ±0.00 1.00 ±0.00

hmmcalibrate 0.99 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00
mad 0.96 ±0.00 1.00 ±0.01 1.01 ±0.01 1.04 ±0.01 1.03 ±0.01 1.05 ±0.03

packet tracer 1.02 ±0.00 1.01 ±0.00 N/A 1.02 ±0.00 1.02 ±0.00 1.00 ±0.00
geomean 1.00 1.01 1.16 1.18 1.17 1.05

(b) Normalized tlb misses

qed do Analytical ms Bounded ms Large enough
d3d10 1.30 ±0.10 1.03 ±0.10 1.02 ±0.05 4.46 ±0.15 2.82 ±0.09 2.02 ±0.10
dedup 0.98 ±0.11 1.10 ±0.15 0.94 ±0.10 0.99 ±0.15 1.02 ±0.10 0.97 ±0.06
djpeg 1.45 ±0.19 1.00 ±0.17 0.93 ±0.23 53.82 ±0.24 44.36 ±0.21 2.87 ±0.20
ferret 0.95 ±0.08 1.01 ±0.05 0.94 ±0.07 0.78 ±0.12 0.77 ±0.13 1.00 ±0.04

hmmcalibrate 1.00 ±0.03 1.01 ±0.04 1.00 ±0.04 1.25 ±0.06 1.22 ±0.04 1.00 ±0.03
mad 0.89 ±0.10 0.86 ±0.05 0.86 ±0.02 14.72 ±0.36 12.92 ±0.18 17.39 ±0.20

packet tracer 0.99 ±0.12 1.03 ±0.20 N/A 3.76 ±0.09 2.09 ±0.09 1.13 ±0.05
geomean 1.07 1.00 0.95 3.86 3.17 1.96

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 134

time by 1% by throttling execution of upstream stages. For example, in d3d10 with

unbounded ms queues, the Rasterizer stage advances unnecessarily faster than the

bottleneck stage PixelShader and accumulates many tokens between PixelShader

and Rasterizer. This un-throttled execution is avoided by bounded capacities in

Bounded MS and static queues, and by capacity adjustment based on the variance of

occupancy in qed. To make sure that memory allocation is not the parallelization

bottleneck, we also measured the ms queue’s performance with the Hoard alloca-

tor [21], but we observed a negligible (< 1%) execution time difference.

The “Large Enough” configuration represents a current common-practice of using

arbitrary large queues. We set the capacity of every queue to 2K tokens. We could

have used other arbitrary “Large Enough” capacities (e.g., dedup uses 1M tokens in

its original implementation), but we select the maximum capacity among those chosen

by the heuristic search (2,048). In d3d10, djpeg, and mad, execution times increase

by 18%, 15%, and 5% from those achieved by the heuristic search. These applications

have queue tokens larger than 1kb; therefore, large queue capacities result in a high

tlb miss rate. On the other hand, in the applications with smaller queue tokens

such as dedup, ferret, hmmcalibrate, and ferret, “Large Enough” shows small

slowdowns. This small slowdown mainly stems from the inefficiency of the cache

architecture implemented in present-day processors in handling producer-consumer

communication, which will be discussed in Section 5.5.3.

5.5.2 Energy Consumption

Figure 5.10 shows estimated energy consumption in the memory hierarchy normal-

ized to that of static queues whose capacities are determined by the heuristic search

method. Notice that this is a rough estimation to illustrate an energy saving trend

achieved by qed, which is based on the energy per operation listed in Table 5.3. The

estimated power consumption in the memory hierarchy is from 0.12 W (packet tracer)

to 1.60 W (djpeg). Qed achieves an average of 15% energy savings over ms and

“Large Enough” configurations. While d3d10, djpeg, and mad with qed show >10%

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 135

Table 5.3: Cache access energies that are estimated in a 45nm low-leakage process
using cacti [163] and dram access energy estimated using the results from Udipi et
al. [148]. Access energy of L1 is per word, and that of others is per cache line (16-
word). The dram access energy incorporates only the energy consumed in bit-lines,
which dominates the total dram access energy [148]. We assume a 4gb dram, with
two 2 gb ranks, each consisting of 256 mb, 4-bank devices as in [148]. The row-buffer
hit rates of dram is assumed as 35% following the results for 16-core cases presented
in [148]. As a rough estimation, dram write energy is assumed to be the same as the
read energy.

Energy [nJ] read write
32kb 8-way L1 0.008 0.006
256kb 8-way L2 0.134 0.118
8mb 16-way L3 0.515 0.401
dram 25.067 25,067

differences from either ms or “Large Enough” configuration, differences in other appli-

cations are small. In hmmer and packet tracer, a large fraction of energy is consumed

by L1-3 caches. Smaller queue capacities do not translate into fewer accesses to L1-3

caches in the cache coherency architecture used in the Nehalem processors, which

explains small energy savings of qed in hmmer and packet tracer. In dedup and

ferret, dram accounts for a large fraction of energy consumption, but the most of

them come from cold misses. Since token sizes of dedup and ferret are smaller than

those of d3d10, djpeg, and mad, increasing queue capacities to 2K tokens does not

incur many capacity misses in the L3 cache (which is also reflected in the number of

tlb misses shown in Table 5.2(b)).

5.5.3 Discussion

Long-term Variation

As described in Section 5.2.1, the main objective of qed is accommodating a short-

term variation of application behavior. This motivates the usage of short-term time

variance for adjusting the capacity in qed. Consequently, a long-term variation must

be handled by load balancing scheduling algorithms such as work stealing [29].

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 136

d3d10 dedup djpeg ferret hmmcalibrate mad packet_tracer avg.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Q
e
d

H
e
u
ri
s
ti
c

D
O

M
S

B
o
u
n
d
e
d
 M

S

L
a
rg

e
 E

n
o
u
g
h

Q
e
d

H
e
u
ri
s
ti
c

D
O

M
S

B
o
u
n
d
e
d
 M

S

L
a
rg

e
 E

n
o
u
g
h

Q
e
d

H
e
u
ri
s
ti
c

D
O

M
S

B
o
u
n
d
e
d
 M

S

L
a
rg

e
 E

n
o
u
g
h

Q
e
d

H
e
u
ri
s
ti
c

D
O

M
S

B
o
u
n
d
e
d
 M

S

L
a
rg

e
 E

n
o
u
g
h

Q
e
d

H
e
u
ri
s
ti
c

D
O

M
S

B
o
u
n
d
e
d
 M

S

L
a
rg

e
 E

n
o
u
g
h

Q
e
d

H
e
u
ri
s
ti
c

D
O

M
S

B
o
u
n
d
e
d
 M

S

L
a
rg

e
 E

n
o
u
g
h

Q
e
d

H
e
u
ri
s
ti
c

D
O

M
S

B
o
u
n
d
e
d
 M

S

L
a
rg

e
 E

n
o
u
g
h

Q
e
d

H
e
u
ri
s
ti
c

D
O

M
S

B
o
u
n
d
e
d
 M

S

L
a
rg

e
 E

n
o
u
g
h

N
o

r
m

a
li
z
e
d

 M
e
m

o
r
y
 E

n
e
r
g

y

L1 L2 L3 DRAM

Figure 5.10: Estimated energy consumption in the memory hierarchy normalized to
that of static queues with the heuristic search method.

For example, in dedup, the ChunkProcess stage encounters mostly duplicated

chunks during the first one second, and, then, starts encountering chunks that have

not seen before. Duplicated chunks are directly sent to the SendBlock stage bypassing

the Compress stage, while newly seen chunks are processed by the Compress stage.

This results in queue capacity adjustments shown in Figure 5.11, where the Compress

stage becomes the bottleneck from 1 to 3 seconds while processing a burst of newly

seen chunks. Qed adjusts its capacity from 256 to 512 at the beginning of the burst

but does not further expand the capacity, even though expansions up to 1500 will

result in a faster execution as indicated by the optimal adjustment. This is because

qed adjusts its capacity based on short-term time variance of occupancy. The long

term load imbalance from 1 to 3 seconds should be handled by a load balancing

scheduler that assigns more cores to the Compress stage.

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 137

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1 2 3 4 5 6 7 8

Q
ue

ue
 C

ap
ac

ity
/O

cc
up

an
cy

Time (sec)

Opt
Unbounded

Qed

Figure 5.11: An example capacity adjustment of Q3 in dedup shown in Figure 5.9(b)
that illustrates the need for a long-term load balancing mechanism that complements
qed’s handling of short-term variation. The thick red line denotes the optimal capac-
ity adjustment, the thin solid black line denotes the occupancy during an execution
with an unbounded queue, and the thin dotted line denotes a sequence of capacity
adjustment by qed.

Inefficiencies of the Current Cache Architecture Regarding Producer-consumer

Communications

Modest execution time differences (5%) between qed and static queues with arbitrary

large capacities are shown in Section 5.5.1. This modest difference mainly stems

from the inefficiency of the cache architecture implemented in present-day processors

in handling producer-consumer communication. Future processors that resolve this

inefficiency will further improve speed-ups and energy savings achieved by qed.

Figure 5.12 shows the throughput of a synthetic benchmark as we change the queue

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 138

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

10

20

30

40

50

60

70

0
.1

2
5

0
.2

5

0
.5 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6 T
L
B

 M
is

s
e
s
 [

1
M

 m
is

s
e
s
]

T
h

r
o

u
g

h
p

u
t

[
1

M
 o

p
e
r
a
ti

o
n

s
/

s
e
c
.]

Queue Capacity [KBytes]

Throughput TLB Misses

Figure 5.12: Throughput and tlb misses of a synthetic benchmark as we change the
queue capacity.

capacity. The synthetic benchmark has two threads, a producer and a consumer. The

producer enqueues packets with cache line size (16 integer numbers) 32M times, and

the consumer computes the sum of the numbers present in the received packets. We

assign affinity values to the threads so that they are mapped to the cores that share

an L3 cache. We observe that the throughput steeply increases when the queue does

not fit in the L2 private cache at 128kb 5 (the throughput decreases due to tlb misses

above 2mb, and it further decreases when the queue does not fit in the L3 cache at

8mb).

One may consider this as abnormal (performance improves when the working set

does not fit in caches), but this is a natural behavior of the cache architecture of Ne-

halem processors where L2 caches are private and invalidate-based cache coherency

protocol is implemented. Ha et al. [56] observe a similar behavior in their work

on concurrent dynamic analysis framework that extensively uses concurrent queues.

They explain that, when a queue fits in the L2 private cache, the consumer must

read a cache line with modified coherency state that resides in the remote L2 cache

owned by the producer, resulting in long latencies (measured to be 75 cycles in Molka

et al. [114]). When the queue does not fit in the L2 private cache and has sufficiently

5 This does not occur precisely at L2 cache capacity (256kb) since instructions and data other
than queue tokens are also present.

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 139

large occupancy, queue tokens are evicted to the shared L3 cache by the time con-

sumers read them, resulting in shorter latencies (measured to be 38 cycles in [114]).

As a result, stream applications need to either thrash private caches (when the queue

does not fit in the private cache) or suffer long latencies from remote caches (when the

queue fits in the private cache). Other inefficiencies of the current cache architectures

with respect to producer-consumer communication such as superfluous refills [103]

are discussed in Section 5.6 where we review related work.

To address this inefficiency, processors should support a mechanism of associating

locality hints with cache lines. For example, Wang et al. [158] propose associating

evict-me hints with cache lines that have no temporal locality. Note that, although

the current Intel processors do support non-temporal memory operations, they bypass

the entire cache hierarchy and go directly to the main memory rather than using on-

chip L3 caches. With architecture support such as evict-me, we should be able to

consistently achieve maximum throughput (more than 60M operations per second)

at queue capacities smaller than 128kb when we perform measurements similar to

those shown in Figure 5.12. Alternatively, we can use an update-on-write coherency

protocol instead of an invalidate-on-write one for cache lines that are tagged with a

certain locality hint. Such architecture support renders smaller queue capacities more

preferable since consumers can read data from their private caches when queues fit

in the cache.

A Guideline to Select a Queue Design

This chapter focuses on queue designs for buffering data between actors in dynamic

stream applications. In other settings, general-purpose queue designs such as the ms

queue may be a better choice.

When we target static stream applications, statically-sized queues are simpler to

implement and have lower overhead than qed. As presented in Chapter 4, appro-

priate inter-actor queue capacities of static stream applications can be computed at

the compile time, and there is no need for dynamic adjustment of the capacities.

Although we expect that the implementation and verification cost of qed can be

amortized over many applications, it may not be desirable to implement qed from

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 140

Table 5.4: A guideline to select a queue design. Each “+” denotes that the design is
preferable when the corresponding condition is met.

Qed Statically-sized Ms

Inter-actor queue?
Yes +
No +

Static stream application?
Yes +
No + +

Have a qed implementation?
Yes +
No + +

Application behavior varies Yes + +
considerably depending on inputs? No +

The number of queues?
Many + +
Few +

Token size?
Large +
Small + +

scratch when a qed implementation is not already available for the target language or

architecture. Depending on the language or architecture, synchronization primitives

such as compare-and-swap may not be available, which demands partial reimple-

mentation of qed and verification of whether the implementation is free from race

conditions. In this case, using statically-sized queues and determining their capacities

by the heuristic search method presented in Section 5.3.1 can be a better option pro-

vided that the application behavior does not significantly vary over input data and

the number of queues is small enough to perform the search in a reasonable time.

When tokens are small and when we target an architecture where fitting queues in

L1 or L2 caches has little impact on the performance as in the current x86 processors

(discussed in the previous section), using statically-sized queues with “large enough”

capacities is a simple and efficient solution. Table 5.4 summarizes the guideline to

select a queue design.

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 141

5.6 Related Work

An algorithm is non-blocking if the suspension of a thread does not stop the progress

of the other threads. Non-blocking algorithms are less prone to deadlock/livelock and

robust with respect to abrupt thread terminations compared to lock-based algorithms.

They are also less prone to priority inversion, where a low-priority thread holding a

lock is preempted for a high-priority thread waiting for the lock, wasting cycles.

There are multiple levels of progress conditions for non-blocking data structures

(Chapter 3.7 in Herlihy and Shavit [66]). The strongest progress condition is wait-

free. A method is wait-free if it guarantees that every call finishes its execution in

a finite number of steps. This guarantees that every thread makes progress, hence

starvation-free. The second strongest progress condition is lock-free. A method is

lock-free if it guarantees that some threads make progress (system-wide progress).

The weakest progress condition is called obstruction-free. A method is obstruction-

free, if it executes in isolation, it finishes in a finite number of steps. qed satisfies

the obstruction-free property. Theoretically, an obstruction-free data structure can

make no system-wide progress but this only happens with a pathological scheduling

of threads. Obstruction-free retains the most important benefits of non-blocking algo-

rithms: it is less prone to deadlock and priority inversion. Herlihy et al. [65] argue that

obstruction-freedom admits substantially simpler implementations, and they believe

that, in practice, it provides the benefits of wait-free and lock-free implementations.

There is a large body of work [63,71,91,112,113] on designing efficient and scalable

non-blocking queues. qed is designed specifically for buffering data between actors in

stream applications, and, therefore, it should be distinguished from general-purpose

queue designs such as the ms queue.

Giacomoni et al. [46] present a cache-optimized concurrent queue implementation.

Their queue is lock-free and avoids cache-line thrashings that occur when the queue is

almost empty or full by maintaining a certain distance between the tail and head index

(called temporal slipping). However, theirs is a single-producer and single-consumer

queue, while multi-producer and multi-consumer ones are necessary for load balancing

when multiple threads are assigned to a pipeline stage with dynamic execution time

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 142

per iteration6. In our evaluation, since tokens are typically bigger than cache lines

due to packetization [141], the importance of temporal slipping has decreased.

Navarro et al. [117] apply queueing theory to performance modeling of pipeline-

parallel applications. We show that application behavior does not accurately follow

the assumption of their model and that their method under-estimates the queue

capacities. In order to analyze queueing models with less restrictive assumptions,

discrete-event simulations are typically used [16, 30], but they are not likely to yield

more accurate or faster modeling than our dynamic optimal profiling method.

Molka et al. [114] measure the latency and throughput of Nehalem memory system

for different sharing patterns. When a cache line is modified by a remote core that

shares an L3 cache, the latency in reading the cache line is 75 cycles when the working

set fits in L2, while the latency decreases to 38 cycles when the working set does not

fit in L2 but fits in L3. In the same setting, the read throughput is 13gb/s when

the working set fits in L2, while it increases to 19.9gb/s when the working set does

not fit in L2 but fits in L3. This latency and throughput difference prevents realizing

the full benefit of optimal queue capacities: while we want to find the smallest queue

capacities that accommodate the run-time variation of applications, the architecture

provides shorter latencies and higher throughputs to larger queue capacities.

Leverich et al. [103] compare two competing models of chip multiprocessor mem-

ory systems: hardware-managed coherent caches and software-managed streaming

memory. They conclude that a cache-based memory architecture can achieve similar

performance even in applications that have motivated the emergence of streaming ar-

chitectures. However, they also explain that their conclusion holds only if the cache

architecture resolves its inefficiencies with respect to producer-consumer sharing pat-

terns. For example, since caches often use write-allocate policies, when a producer

incurs a store miss due to modification by another producer, the entire cache line is

refilled from a remote or larger cache. This unnecessarily increases the latency and

wastes bandwidth because the refilled cache line will be used as write-only by the

producer, thus called superfluous refills.

6 We observe an average of 7% slowdown from using single-producer and single-consumer static
queues with round robin distribution.

CHAPTER 5. BUFFERS IN DYNAMIC STREAM APPLICATIONS 143

5.7 Chapter Summary

This chapter presents qed, a non-blocking queue design for minimizing memory foot-

print of inter-actor queues in dynamic stream applications. This is complementary to

the compile-time queue capacity analysis for static applications presented in Chap-

ter 4. In qed, the capacity of a queue is dynamically adjusted depending on the

run-time behavior of applications. The capacity expands only when the high run-time

variation of application behavior demands so. Otherwise, it is kept to a minimum,

throttling the execution of non-bottleneck actors. Although queues are dynamically

sizeable, they are based on circular arrays, thereby avoiding overhead associated with

dynamic memory allocations.

We compare the performance of qed with four alternative methods: heuristic

search, dynamic optimum approximation, analytical estimation, and the ms queue.

The analytical estimation method does not accurately model the application behav-

ior. The ms queue incurs un-throttled execution of upstream stages and overhead

associated with dynamic memory allocation. The heuristic search method approxi-

mates optima of statically-sized queues, achieving the highest throughput among the

alternative methods. However, the heuristic search requires long search times (up

to 40 hours) and representative training set selection. We show that qed achieves

a throughput similar to that of the heuristic search method, while requiring neither

search time nor training set selection.

Chapter 6

Conclusion

6.1 Summary and Contributions

This dissertation presented a collection of software mechanisms that improve the

energy efficiency of embedded computing, focusing on its most energy-hungry part —

instruction and data delivery. For instruction delivery energy, a compiler algorithm

that manages instruction scratch-pad memories (spms) is presented (Chapter 3). For

data delivery energy in stream applications commonly found in the embedded domain,

I presented a compile-time queue capacity computation analysis (Chapter 4) and

a queue data structure that adjusts its capacity at run-time (Chapter 5). These

mechanisms were estimated to save 87% of instruction delivery energy, 33% of data

delivery energy in static stream applications, and 15% of data delivery energy in

dynamic stream applications. This contributes to a large fraction of energy savings

of the Elm architecture compared to conventional risc embedded processors.

Our instruction spm management algorithm (Chapter 3) is differentiated from

previous spm management algorithms in that spms with our algorithm achieves not

only smaller L0 access energy and faster execution times but also fewer L1 accesses

than filter caches. Key ideas behind our algorithm are 1) fine-grain instruction place-

ment and 2) careful consideration of the tagless and compiler-managed properties of

spms.

144

CHAPTER 6. CONCLUSION 145

The compile-time queue capacity computation analysis for static stream appli-

cations (Chapter 4) determines minimum queue capacities that sustain throughput

of stream graphs with arbitrary connection. This analysis enables flexible transfor-

mations of stream graphs, which was previously avoided due to potential deadlocks

or throughput degradation. This dissertation exemplifies this advantage by team

scheduling, in which actors are aggregated and amortized to minimize communica-

tion and synchronization.

The dynamically-sized array-based queue design called qed (Chapter 5) throttles

the execution of non-bottleneck actors and expands its capacity only when the high

run-time variation of application behavior demands so. The capacity adjustment is

based on the approximated time variance of queue occupancy. Although this adjust-

ment is a heuristic, it is shown that qed achieves a throughput similar to that of

the approximated static and dynamic optimum presented in Chapter 5. Qed has an

advantage over the methods computing approximated static and dynamic optimum

since qed requires neither long search times nor careful training set selection.

A central theme of the Elm architecture design was improving energy efficiency by

exposing controls over deep and distributed storage hierarchies to the compiler [12].

From the compiler’s perspective, critical design decisions were 1) the selection of

resources to be controlled by the compiler, 2) architecture supports to make the

software control efficient, and 3) compiler algorithm design strategies.

A resource should be controlled by the compiler only if the compiler can analyze

the usage of the resource accurately enough to realize energy efficiency improvements.

This may seem obvious but careful evaluation and insight on the system is required

to do so. For example, note that our spm management algorithm targets small L0

instruction spms, where the majority of locality captured comes from loops, for which

the compiler has a proven ability to analyze. In contrast, according to our evalua-

tion, energy efficiency benefit of using spms compared to caches is not as promising

at other levels of the memory hierarchy with larger stores, where the locality from

irregular control flows plays an important role. It is also important to complement

compiler analyses with run-time mechanisms to cover portions that are not accurately

analyzable in compile time. For example, a dynamically-sized queue data structure

CHAPTER 6. CONCLUSION 146

(Chapter 5) was necessary to optimize the data delivery of dynamic parts of stream

applications to complement the static queue capacity computation analysis (Chap-

ter 4).

In order to achieve effective compiler control over resources, it is crucial to give

the compiler flexibility and uniformity so that the compiler has ample space to op-

timize and is free from dealing with corner cases. To this end, Elm provides several

architectural features. For example, instruction spms in Elm provide wrap-around

access to make instruction spm placement algorithm simpler and suffer less fragmenta-

tion. Instruction spms in Elm also provide non-blocking instruction transfers so that

the spm management algorithm can primarily focus on optimizing energy consump-

tion without excessive consideration on performance overhead. Dma operations with

strided/scatter/gather accesses allow the compiler to flexibly choose memory layout

of inter-actor queues, which is particularly important for reducing the overhead of

actors that split or join streams.

Regarding algorithm design strategy, we prefer searching for sub-optimal answers

over large solution spaces to searching for optimal answers over restricted solution

spaces. For example, several previous spm management algorithms [41, 139, 156]

formulate spm placement problem as integer linear programming (ilp). Even though

their ilp formulations find optimal solutions, due to the time complexity of ilp solvers,

their solution space is restricted to transferring instructions in blocks with coarse

granularity. Instead, our algorithm expands the solution space to one with finer-grain

blocks and uses a heuristic (our algorithm is optimal only with respect to non-nested

loops as shown in Claim 3.4.1). As another example, whereas sgms [90] restricts

synchronization and communication boundaries as the minimum steady state of the

entire application, team scheduling relaxes the restriction to apply synchronization

and communication minimizing transformations in a flexible order starting from those

that yield the maximum gain (Chapter 4).

The following section lists future directions that can improve the work presented.

CHAPTER 6. CONCLUSION 147

6.2 Future Directions

Application to Other Domains

Although embedded computing and high performance computing (hpc) are the low-

end and high-end extreme of the computing spectrum, respectively, they share nu-

merous characteristics. Both computing domains are severely constrained by energy

consumption: embedded devices are constrained by their battery life and the biggest

challenge for next generation hpc computing is identified as energy efficiency [89].

In addition, applications in both embedded and hpc tend to have regular control

flow and data access patterns compared to their desktop computing counterparts.

Therefore, they are amenable to interesting compile-time and run-time locality opti-

mizations that improve energy efficiency. I believe that the techniques presented in

this dissertation, particularly the instruction spm management algorithm, are appli-

cable to the hpc. The question is how many changes will be needed in the algorithms

due to different cost structures in hpc (e.g., hpc applications typically work on larger

data sets and use floating point operations that are more energy-hungry than fixed-

point operations in embedded applications).

Hybrid Instruction Scratch-pad Memory

As a hybrid design, instruction spms can have a few tags associated with instruction

blocks that are transferred by the compiler. Before transferring a block to the instruc-

tion spm, we can look up the tags to avoid unnecessary transfers. This compensates

a disadvantage of compiler-based approaches with respect to the lack of run-time in-

formation — the compiler must re-transfer instructions to the spm if there is even a

slight chance of them having been overwritten. Since tags are associated with blocks,

if the typical block size is sufficiently large, we can keep the tag storage small so that

tag lookup overhead is minimal.

CHAPTER 6. CONCLUSION 148

Interaction with Dynamic Scheduling

Dynamic scheduling algorithms need to be incorporated to complement the static

scheduling implemented in elmhc. Without dynamic scheduling such as work steal-

ing [29], dynamic stream applications parallelized in pipelining can suffer from severe

load imbalance. Perhaps, a load balancing scheduling specialized for streaming ap-

plications can offer better locality and response time. The gramps project [141]

investigates scheduling algorithms tailored to pipeline-parallel applications, expand-

ing its scope from graphics pipelines. It would be also interesting to investigate

the interaction between load balancing dynamic scheduling and the run-time inter-

actor queue capacity adjustment mechanism presented in Chapter 5. As discussed

in Section 5.5.3, the capacity adjustment mechanism is designed for accommodat-

ing short-term load imbalance, while dynamic scheduling needs to handle long-term

load imbalance. It would be ideal if imbalance handling is optimally divided so that

the queue capacity adjustment deals with load imbalance if and only if the duration

of imbalance is not long enough to justify overheads associated with load balancing

scheduling.

Multi-modal Stream Applications

Dynamic stream applications typically have static parts in them, and these parts can

be statically scheduled to minimize communication and synchronization overhead

while a dynamic scheduling algorithm is used globally. It would be interesting to look

at how statically scheduled parts and dynamically scheduled parts can constructively

coexist, maximizing the communication and synchronization overhead reduction in

statically scheduled parts while minimizing the overall load imbalance.

Interaction with Data-level Parallelism

Only trivially data-parallel actors without any state are presently parallelized (i.e.,

fissioned) in elmhc. Affine partitioning algorithms [44, 45, 105] can be applied to ex-

ploit more data-level parallelism from actors. As a complement to affine partitioning

CHAPTER 6. CONCLUSION 149

algorithms, explicit data parallelization can be performed as in the Sequoia program-

ming language [43]. A question is how to attain the best combination of data-level

parallelism with pipeline parallelism, and how to efficiently orchestrate vertical data

movements optimized for data-level parallelism (e.g., blocking [94]) and horizontal

data movements optimized for pipeline parallelism (e.g., dmas between producers

and consumers). Gordon et al. [50, 51] investigate the first question and present a

series of reasonable heuristics to exploit data-level and pipeline parallelism together.

However, they do not consider two key factors for finding a good combination of

both parallelisms: 1) the locality between data-parallel partitions of adjacent stages

and 2) the amount of state associated with each stage. These two factors determine

how much non-local communication will be incurred when data-level parallelism is

exploited. An extreme case is when 1) the entire pipeline can be fused into a sin-

gle stage, 2) we can find an affine partitioning with no communication for the fused

stage, and 3) the fused stage is associated with no state. In this case, data-level par-

allelism results in no communication and excellent load balance. However, there can

be cases where partitions for data-level parallelism result in non-local communication

between stages. State associated with stages also leads to cache misses when the sum

of the state size of all stages exceeds the cache capacity and data-level parallelism is

solely exploited. A partitioning algorithm that is aware of the locality trade-offs from

these two factors should be able to achieve better parallelism speed-up and energy

efficiency.

Multi-dimensional Streams

For applications such as image processing, whose data are inherently multi-dimensional,

it is often awkward to describe data reuse pattern in one dimension. The Elk pro-

gramming language is designed so that its syntax can be easily extended to multi-

dimensional streams. However, how to efficiently orchestrate the data movement

of multi-dimensional streams is still an open question. Generalized Multidimensional

Synchronous Data Flow [116] and Windowed Synchronous Data Flow [83] frameworks

CHAPTER 6. CONCLUSION 150

support multi-dimensional streams but require significant time complexity. Black-

Schaffer [26, 28] suggests support for two-dimensional streams as a reasonable com-

promise that captures most of the applications with multi-dimensional streams while

keeping the time complexity manageable. It would be interesting to quantify the ben-

efits obtained from supporting two-dimensional streams with respect to performance

and productivity.

Bibliography

[1] ANTLR Praser Generator Webpage. http://www.antlr.org.

[2] ELM Webpage. Concurrent VLSI Architecture Group, Stanford University.
http://cva.stanford.edu/projects/elm/software.htm.

[3] Janino Embeddable Java Compiler Webpage. http://janino.codehaus.org.

[4] MediaBench II Benchmark. http://euler.slu.edu/~fritts/mediabench/mb2/

index.html.

[5] QED: Queue Enhanced with Dynamic sizing, Google Code website. https://code.

google.com/p/qed.

[6] The R Project for Statistical Computing. http://www.r-project.org.

[7] T. Abatzoglou and B. O’Donnell. Minimization by Coordinate Descent. Journal of
Optimization Theory and Applications, 36(2):163–174, 1982.

[8] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, 2007.

[9] Federico Angiolini, Luca Benini, and Alberto Caprara. Polynomial-Time Algorithm
for On-chip Scratchpad Memory Partitioning. In International Conference on Com-
pilers, Architecture, and Synthesis for Embedded Systems (CASES), pages 318–326,
2003.

[10] Federico Angiolini, Francesco Menichelli, Alberto Ferrero, Luca Benini, and Mauro
Olivieri. A Post-Compiler Approach to Scratchpad Mapping of Code. In Interna-
tional Conference on Compilers, Architecture, and Synthesis for Embedded Systems
(CASES), pages 259–267, 2004.

[11] M. Armand and J.-M. Tarascon. Building better batteries. Nature, 414(6861):359–
367, 2001.

[12] James Balfour. Efficient Embedded Computing. PhD thesis, Stanford University, 2010.

151

http://euler.slu.edu/~fritts/mediabench/mb2/index.html
http://euler.slu.edu/~fritts/mediabench/mb2/index.html
https://code.google.com/p/qed
https://code.google.com/p/qed
http://www.r-project.org

BIBLIOGRAPHY 152

[13] James Balfour, William J. Dally, David Black-Schaffer, Vishal Parikh, and Jongsoo
Park. An Energy-Efficient Processor Architecture for Embedded Systems. Computer
Architecture Letters, 7(1):29–32, 2008.

[14] James Balfour, R. Curtis Harting, and William J. Dally. Operand Registers and
Explicit Operand Forwarding. Computer Architecture Letters, 8(2):60–63, 2009.

[15] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and Peter Mar-
wedel. Scratchpad Memory: A Design Alternative for Cache On-chip Memory in
Embedded Systems. In International Conference on Hardware Software Codesign,
pages 73–78, 2002.

[16] Jerry Banks, John Carson, Barry L. Nelson, and David Nicol. Discrete-Event System
Simulation. Prentice Hall, 2004.

[17] Luiz André Barroso. The Price of Performance. ACM Queue, 3(7):48–53, 2005.

[18] Daniel U. Becker and William J. Dally. Allocator Implementations for Network-on-
Chip Routers. In Conference on Supercomputing (SC), pages 1–12, 2009.

[19] L. A. Belady. A Study of Replacement Algorithms for Virtual-storage Computer.
IBM Systems Journal, 5(2):78–101, 1966.

[20] Richard Bellman. On a Routing Problem. Quarterly of Applied Mathematics,
16(1):87–90, 1958.

[21] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson.
Hoard: A Scalable Memory Allocator for Multithreaded Applications. In Interna-
tional Conference on Architecture Support for Programming Language and Operating
Systems (ASPLOS), pages 117–128, 2000.

[22] Shuvra S. Bhattacharyya, Joseph T. Buck, Soonhoi Ha, and Edward A. Lee. Gen-
erating Compact Code from Dataflow Specifications of Multirate Signal Processing
Algorithms. IEEE Transactions on Circuits and Systems, 42(3):138–150, 1995.

[23] Shuvra S. Bhattacharyya, Praveen K. Murthy, and Edward A. Lee. APGAN and
RPMC: Complementary Heuristics for Translating DSP Block Diagrams into Efficient
Software Implementations. Design Automation for Embedded Systems, 2(1):33–60,
1997.

[24] Shuvra S. Bhattacharyya, Sundararajan Sriram, and Edward A. Lee. Optimizing
Synchronization in Multiprocessor DSP Systems. IEEE Transactions on Signal Pro-
cessing, 45(6):1605–1618, 1997.

[25] Christian Biena, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC
Benchmark Suite: Characterization and Architectural Implications. In International
Conference on Parallel Architectures and Compilation Techniques (PACT), pages 72–
81, 2008.

BIBLIOGRAPHY 153

[26] David Black-Schaffer. Block Parallel Programming for Real-Time Applications on
Multi-core Processors. PhD thesis, Stanford University, 2008.

[27] David Black-Schaffer, James Balfour, William J. Dally, Vishal Parikh, and Jongsoo
Park. Hierarchical Instruction Register Organization. Computer Architecture Letters,
7(2):41–44, 2008.

[28] David Black-Schaffer and William J. Dally. Block-Parallel Programming for Real-
Time Embedded Applications. In International Conference on Parallel Programming
(ICPP), pages 297–306, 2010.

[29] Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded Computa-
tions by Work Strealing. Journal of ACM (JACM), 46(5):720–748, 1999.

[30] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor Shridharbhai Trivedi.
Queueing Networks and Markov Chains: Modeling and Performance Evaluation with
Computer Science Applications. Wiley-Interscience, 2006.

[31] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[32] S. Browne, J. Dongarra, N. Garner, G. Ho, and Mucci P. A Portable Programming In-
terface for Performance Evaluation on Modern Processors. The International Journal
of High Performance Computing Applications, 14(3):189–204, 2000.

[33] G. J. Chaitin. Register Allocation & Spilling via Graph Coloring. In Compilter
Construction, pages 98–105, 1982.

[34] Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen. Low-Power
CMOS Digital Design, 1992.

[35] Yoonseo Choi, Yuan Lin, Nathan Chong, Scott Mahlke, and Trevor Mudge. Stream
Compilation for Real-time Embedded Multicore Systems. In International Symposium
on Code Generation and Optimization (CGO), pages 210–220, 2009.

[36] John Cocke and Ken Kennedy. An Algorithm for Reduction of Operator Strength.
Communications of the ACM, 20(11):850–856, 1977.

[37] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently Computing Static Single Assignment Form and the Control Depen-
dence Graph. ACM Transactions on Programming Language and Systems (TOPLAS),
13(4):451–490, 1991.

[38] William J. Dally, James Balfour, David Black-Schaffer, James Chen, R. Curtis Hart-
ing, Vishal Parikh, Jongsoo Park, and David Sheffield. Efficient Embedded Comput-
ing. IEEE Computer, 41(7):27–32, 2008.

BIBLIOGRAPHY 154

[39] William J. Dally and Brian Towles. Principles and Practices of Interconnection Net-
works. Morgan Kaufmann, 2004.

[40] Jan Edler and Mark D. Hill. Dinero IV Trace-Driven Uniprocessor Cache Simulator.

[41] Bernhard Egger, Chihun Kim, Choonki Jang, Yoonsung Nam, Jaejin Lee, and
Sang Lyul Min. A Dynamic Code Placement Technique for Scratchpad Memory Using
Postpass Optimization. In International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES), pages 223–233, 2006.

[42] Bernhard Egger, Jaejin Lee, and Heonshik Shin. Dynamic Scratchpad Memory Man-
agement for Code in Portable System with an MMU. ACM Transactions on Embedded
Computing Systems (TECS), 7(2):1–38, 2008.

[43] Kayvon Fatahalian, Timothy J. Knight, Mike Houston, Mattan Erez, Daniel Reiter
Horn, Larkhoon Leem, Ji Young Park, Manman Ren, Alex Aiken, William J. Dally,
and Pat Hanrahan. Sequoia: Programming the Memory Hierarchy. In Conference on
Supercomputing (SC), 2006.

[44] Paul Feautrier. Some Efficient Solutions to the Affine Scheduling Problem: I. One-
dimensional Time. International Journal of Parallel Programming, 21(5):313–348,
1992.

[45] Paul Feautrier. Some Efficient Solutions to the Affine Scheduling Problem: II. Mul-
tidimensional Time. International Journal of Parallel Programming, 21(6):389–420,
1992.

[46] John Giacomoni, Tipp Moseley, and Manish Vachharajani. FastForward for Efficient
Pipeline Parallelism. In ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 43–52, 2007.

[47] Nikolas Gloy and Michael D. Smith. Procedure Placement using Temporal-
ordering Information. ACM Transactions on Programming Languages and Systems
(TOPLAS), 21(5):977–1027, 1999.

[48] Ricardo Gonzalez. Xtensa: A Configurable and Extensible Processor. IEEE Micro,
20(2):60–70, 2000.

[49] Ricardo Gonzalez and Mark Horowitz. Energy Dissipation in General Purpose Mi-
croprocesors. IEEE Journal of Solid-State Circuits, 31(9):1277–1284, 1996.

[50] Michael I. Gordon. Compiler Techniques for Scalable Performance of Stream Programs
on Multicore Architectures. PhD thesis, Massachusetts Instituite of Technology, 2010.

[51] Michael I. Gordon, William Thies, and Saman P. Amarasinghe. Exploiting Coarse-
grained Task, Data, and Pipeline Parallelism in Stream Programs. In International
Conference on Architecture Support for Programming Language and Operating Sys-
tems (ASPLOS), pages 151–162, 2006.

BIBLIOGRAPHY 155

[52] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli,
Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoffman, David Maze, and
Saman P. Amarasinghe. A Stream Compiler for Communication-Exposed Architec-
tures. In International Conference on Architecture Support for Programming Language
and Operating Systems (ASPLOS), pages 291–303, 2002.

[53] Ann Gordon-Ross, Susan Cotterell, and Frank Vahid. Tiny Instruction Caches for
Low Power Embedded Systems. ACM Transactions on Embedded Computing Systems
(TECS), 2(4):449–481, 2003.

[54] Jayanth Gummaraju and Mendel Rosenblum. Stream Programming on General-
Purpose Processors. In International Symposium on Microarchitecture (MICRO),
pages 343–354, 2005.

[55] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor
Mudge, and Richard B. Brown. MiBench: A Free, Commercially Representative
Embedded Benchmark Suite. In IEEE 4th Annual Workshop on Workload Charac-
terization, pages 83–94, 2001.

[56] Jungwoo Ha, Matthew Arnold, Stephen M. Blackburn, and Kathryn S. McKinley.
A Concurrent Dynamic Analysis Framework for Multicore Hardware. In Conference
on Object Oriented Programming Systems Languages and Applications (OOPSLA),
pages 155–174, 2009.

[57] Soonhoi Ha and Edward A. Lee. Compile-Time Scheduling and Assignment of Data-
Flow Program Graphs with Data-Dependent Iterations. IEEE Transactions on Com-
puters, 40(11):1225–1238, 1991.

[58] S. Habnic and J. Gaisler. Status of the LEON2/3 processor development. In Data
Systems in Aerospace (DASIA), 2007.

[59] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov,
Benjamin C. Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz. Un-
derstanding Sources of Inefficiencies in General-Purpose Chips. In International Sym-
posium on Computer Architecture (ISCA), pages 37–47, 2010.

[60] Amir H. Hashemi, David R. Kaeli, and Brad Calder. Efficient Procedure Mapping
using Cache Line Coloring. In ACM SIGPLAN conference on Programming Language
Design and Implementation (PLDI), pages 171–182, 1997.

[61] Paul Havlak. Nesting of Reducible and Irreducible Loops. ACM Transactions on
Programming Languages and Systems (TOPLAS), 19(4):557–567, 1997.

[62] M. S. Hecht and Jeffrey D. Ullman. Characterizations of Reducible Flow Graphs.
Journal of the ACM (JACM), 21(3):367–375, 1974.

BIBLIOGRAPHY 156

[63] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat Combining and the
Synchronization-Parallelism Tradeoff. In ACM Symposium on Parallel Algorithms
and Architectures (SPAA), pages 355–364, 2010.

[64] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. 2003.

[65] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-Free Synchroniza-
tion: Double-Ended Queues as an Example. In International Conference on Dis-
tributed Computing Systems, pages 522–529, 2003.

[66] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann, 2008.

[67] Stephen Hines, Joshua Green, Gary Tyson, and David Whalley. Improving Program
Efficiency by Packing Instructions into Registers. In International Symposium on
Computer Architecture (ISCA), pages 260–271, 2005.

[68] Stephen Hines, Gary Tyson, and David Whalley. Reducing Instruction Fetch Cost
by Packing Instructions into Register Windows. In International Symposium on Mi-
croarchitecture (MICRO), pages 19–29, 2005.

[69] Stephen Hines, Gary Tyson, and David Whalley. Addressing Instruction Fetch Bottle-
necks by Using an Instruction Register File. In Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES), pages 165–174, 2007.

[70] Stephen Hines, David Whalley, and Gary Tyson. Guaranteeing Hits to Improve the
Efficiency of a Small Instruction Cache. In International Symposium on Microarchi-
tecture (MICRO), pages 433–444, 2007.

[71] Moshe Hoffman, Ori Shalev, and Nir Shavit. The Baskets Queue. Principles of
Distributed Systems, pages 401–414, 2007.

[72] H. Peter Hofstee. Power Efficient Processor Architecture and the CELL Processor.
In International Symposium on High-Performance Computer Architectures (HPCA),
pages 258–262, 2005.

[73] Steven Hsu, Vishak Venkatraman, Sanu Mathew, Himanshu Kaul, Mark Anders,
Saurabh Dighe, Wayne Burleson, and Ram Krishnamurthy. A 2GHz 13.6mW 12x9b
Multiplier for Energy Efficient FFT Accelerators. In European Solid-State Circuit
Conference, pages 199–202, 2005.

[74] Wen-mei W. Hwu and Pohua P. Chang. Achieving High Instruction Cache Per-
formance with an Optimizing Compiler. In International Symposium on Computer
Architecture (ISCA), pages 242–251, 1989.

[75] Independent JPEG Group. http://www.ijg.org.

http://www.ijg.org

BIBLIOGRAPHY 157

[76] International Technology Roadmap for Semiconductors. http://www.itrs.net.

[77] International Technology Roadmap for Semiconductors. Model for Assessment of
CMOS Technologies and Roadmaps (MASTAR). http://www.itrs.net/models.

html.

[78] Andhi Janapsatya, Aleksandar Ignjatović, and Sri Parameswaran. A Novel Instruction
Scratchpad Memory Optimization Method based on Concomitance Metric. In Asia
and South Pacific Design Automation Conference, pages 612–617, 2006.

[79] Murali Jayapala, Francisco Barat, Tom Vander Aa, Francky Catthoor, Henk Cor-
poraal, and Geert Deconinck. Clustered Loop Buffer Organization for Low Energy
VLIW Embedded Processors. IEEE Transactions on Computers, 54(6):672–683, 2005.

[80] M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnana, I. Kadayif, and
A. Parikh. Dynamic Management of Scratch-Pad Memory Space. In Design Au-
tomation Conference (DAC), pages 690–695, 2001.

[81] Michal Karcmarek, William Thies, and Saman Amarasinghe. Phased Scheduling
of Stream Programs. In Conference on Language, Compiler, and Tool Support for
Embedded Systems (LCTES), pages 103–112, 2003.

[82] George Karypis and Vipin Kumar. METIS: Unstructured Graph Partitioning and
Sparse Matrix Ordering System. Technical report, Department of Computer Science,
University of Minnesota, 1995.

[83] J. Keinert, C. Haubelt, and J. Teich. Modeling and Analysis of Windowed Syn-
chronous Algorithms. In International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 14–19, 2006.

[84] Johnson Kin, Munish Gupta, and William H. Mangione-Smith. The Filter Cache: An
Energy Efficient Memory Structure. In International Symposium on Microarchitecture
(MICRO), pages 184–193, 1997.

[85] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing.
220(4598):671–680, 1983.

[86] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Lazy Code Motion. In Conference
on Programming Language Design and Implementation (PLDI), pages 224–234, 1992.

[87] Ming-Yung Ko, Chung-Ching Shen, and Shuvra S. Bhattacharyya. Memory-
constrained Block Processing for DSP Software Optimization. Journal of Signal Pro-
cessing Systems, 50(2):163–177, 2008.

[88] Alex Kogan and Erez Petrank. Wait-Free Queues with Multiple Enqueuers and De-
queuers. In ACM Symposium on Principles and Practice of Parallel Programming
(PPoPP), 2011.

http://www.itrs.net
http://www.itrs.net/models.html
http://www.itrs.net/models.html

BIBLIOGRAPHY 158

[89] Peter Kogge, Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson,
William Dally, Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon
Hiller, Sherman Karp, Stephen Keckler, Dean Klein, Robert Lucas, Mark Richards,
Al Scarpelli, Steven Scott, Allan Snavely, Thomas Sterling, R. Stanley Williams, and
Katherine Yelick. ExaScale Computing Study: Technology Challenges in Achieving
Exascale Systems. 2008.

[90] Manjunath Kudlur and Scott Mahlke. Orchestrating the Execution of Stream Pro-
grams on Multicore Platforms. In Conference on Programming Language Design and
Implementation (PLDI), pages 114–124, 2008.

[91] Edya Ladan-Mozes and Nir Shavit. An Optimistic Approach to Lock-Free FIFO
Queues. Distributed Computing, 20(5):323–341, 2007.

[92] Kumar N. Lalgudi, Marios C. Papaefthymiou, and Miodrag Potkonjak. Optimizing
Computations for Effective Block-Processing. ACM Transactions on Design Automa-
tion of Electronic Systems, 5(3):604–630, 2000.

[93] Monica Lam. Software Pipelining: An Effective Scheduling Technique on VLIW Ma-
chines. In Conference on Programming Language Design and Implementation (PLDI),
pages 318–328, 1988.

[94] Monica Lam, Edward Rothberg, and Michael Wolf. The Cache Performance and
Optimizations of Blocked Algorithms. In International Conference on Architecture
Support for Programming Languages and Operating Systems (ASPLOS), pages 63–
74, 1991.

[95] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation. In International Symposium on Code Generation
and Optimization (CGO), pages 75–86, 2004.

[96] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and Communication Systems. In
International Symposium on Microarchitectures (MICRO), pages 330–335, 1997.

[97] Edward A. Lee. A Coupled Hardware and Software Architecture for Programmable
Digital Signal Processors. PhD thesis, University of California, Berkeley, 1986.

[98] Edward A. Lee and David G. Messerschmitt. Static Scheduling of Synchronous Data
Flow Programs for Digital Signal Processing. IEEE Transactions on Computers,
36(1):24–35, 1987.

[99] Lea Hwang Lee, Bill Moyer, and John Arends. Instruction Fetch Energy Reduction
Using Loop Caches for Embedded Applications with Small Tight Loops. In Interna-
tional Symposium on Low Power Electronics and Design (ISLPED), pages 267–269,
1999.

BIBLIOGRAPHY 159

[100] Lea Hwang Lee, Bill Moyer, and John Arends. Low-Cost Embedded Program Loop
Caching - Revisited. Technical Report CSE-TR-411-99, University of Michigan, 1999.

[101] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna, Jonathan Babb,
Vivek Sarkar, and Saman Amarasinghe. Space-Time Scheduling of Instruction-Level
Parallelism on a Raw Machine. In International Conference on Architecture Support
for Programming Languages and Operating Systems (ASPLOS), pages 46–57, 1998.

[102] Thomas Lengauer and Robert E. Tarjan. A Fast Algorithm for Finding Dominators in
Flowgraph. ACM Transactions on Programming Language and Systems (TOPLAS),
1(1):121–141, 1979.

[103] Jacob Leverich, Hideho Arakida, Alex Solomatnikov, Amin Firoozshahian, Mark
Horowitz, and Christos Kozyrakis. Comparative Evaluation of Memory Models for
Chip Multiprocessors. ACM Transactions on Architectures and Code Optimization
(TACO), 5(3):1–30, 2008.

[104] Amy W. Lim, Gerald I. Cheong, and Monica S. Lam. An Affine Partitioning Al-
gorithm to Maximize Parallelism and Minimize Communication. In International
Conference on Supercomputing, pages 228–237, 1999.

[105] Amy W. Lim and Monica S. Lam. Maximizing Parallelism and Minimizing Syn-
chronization with Affine Transforms. In Symposium on Principles of Programming
Languages (POPL), pages 201–214, 1997.

[106] Kevin Lim, Parthasarathy Ranganathan, Juchuan Chang, Chandrakant Patel, Trevor
Mudge, and Steven Reinhardt. Understanding and Designing New Server Architec-
tures for Emerging Warehouse-Computing Environments. In International Symposium
on Computer Architecture (ISCA), pages 315–326, 2008.

[107] Yuan Lin, Manjunath Kudlur, Scott Mahlke, and Trevor Mudge. Hierarchical Coarse-
grained Stream Compilation for Software Defined Radio. In International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems (CASES), pages
115–124, 2007.

[108] Zhi-Quan Luo and Paul Tseng. On the Convergence of the Coordinate Descent
Method for Convex Differentiable Minimization. volume 72, pages 7–35, 1992.

[109] Yves Mathys and André Châtelain. Verification Strategy for Integration 3G Baseband
SoC. In Design Automation Conference (DAC), pages 7–10, 2003.

[110] Peter Mattson. A Programming System for the Imagine Media Processor. PhD thesis,
Stanford University, 2002.

[111] S. McFarling. Program optimization for instruction caches. In International Con-
ference on Architecture Support for Programming Languages and Operating Systems
(ASPLOS), pages 183–191, 1989.

BIBLIOGRAPHY 160

[112] Maged M. Michael and Michael L. Scott. Simple, Fast, and Practical Non-Blocking
and Blocking Concurrent Queue Algorithms. In ACM Symposium on Principles of
Distributed Computing (PODC), pages 267–275, 1996.

[113] Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. Using Elimination to
Implement Scalable and Lock-Free FIFO Queues. In ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 253–262, 2005.

[114] Daniel Molka, Daniel Hackenberg, Robert Schone, and Matthias S. Muller. Mem-
ory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor
System. In International Conference on Parallel Architectures and Compilation Tech-
niques (PACT), pages 261–270, 2009.

[115] James Montanaro, Richard T. Witek, Krishna Anne, Andrew J. Black, Elizabeth M.
Cooper, Daniel W. Dobberpuhl, Paul M. Donahue, Jim Eno, Gregory W. Hoeppner,
David Kruckemyer, Thomas H. Lee, Peter C. M. Lin, Liam Madden, Daniel Mur-
ray, Mark H. Pearce, Sribalan Santhanam, Kathryn J. Snyder, Ray Stephany, and
Stephen C. Thierauf. A 160-MHz, 32-b, 0.5-W CMOS RISC Microprocessor. IEEE
Journal of Solid-State Circuits, 31(11):1703–1714, 1996.

[116] Praveen K. Murthy and Edward A. Lee. Multidimensional Synchronous Dataflow.
IEEE Transactions on Signal Processing, 50(8):2064–2079.

[117] Angeles Navarro, Rafael Asenjo, Siham Tabik, and Calin Cascaval. Analytical Mod-
eling of Pipeline Parallelism. In International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 281–290, 2009.

[118] Nghi Nguyen, Angel Dominguez, and Rajeev Barua. Memory Allocation for Embed-
ded Systems with a Compile-Time-Unknown Scratch-Pad Size. ACM Transactions
on Embedded Computing Systems (TECS), 8(3):1–32, 2009.

[119] Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. Signals & Systems.
Prentice Hall, 1997.

[120] Amit Pabalkar, Aviral Shrivastava, Arun Kannan, and Jongeun Lee. SDRM: Simul-
taneous Determination of Regions and Function-to-Region Mapping for Scratchpad
Memories. High Performance Computing, pages 569–582, 2008.

[121] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. Efficient Utilization of
Scratch-Pad Memory in Embedded Processor Applications. In European Design and
Test Conference, pages 7–11, 1997.

[122] Jongsoo Park, James Balfour, and William J. Dally. Maximizing the Filter Rate of L0
Compiler-Managed Instruction Stores by Pinning. Technical Report 126, Concurrent
VLSI Architecture Group, Stanford University, 2009.

BIBLIOGRAPHY 161

[123] Jongsoo Park, James Balfour, and William J. Dally. Fine-grain Dynamic Instruction
Placement for L0 Scratch-Pad Memory. In International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES), pages 137–146, 2010.

[124] Jongsoo Park and William J. Dally. Buffer-space Efficient and Deadlock-free Schedul-
ing of Stream Applications on Mulit-core Architectures. In ACM Symposium on Par-
allel Algorithms and Architectures (SPAA), pages 1–10, 2010.

[125] Jongsoo Park and William J. Dally. Guaranteeing Forward Progress of Unified Reg-
ister Allocation and Instruction Scheduling. Technical Report 127, Concurrent VLSI
Architecture Group, Stanford University, 2011.

[126] Jongsoo Park, Sung-Boem Park, James Balfour, David Black-Schaffer, Christos
Kozyrakis, and William J. Dally. Register Pointer Architecture for Efficient Embed-
ded Computing. In Conference on Design, Automation and Test in Europe (DATE),
pages 600–605, 2007.

[127] Karl Pettis and Robert C. Hansen. Profile Guided Code Positioning. In ACM SIG-
PLAN conference on Programming Language Design and Implementation (PLDI),
pages 16–27, 1990.

[128] Jose Luis Pino, Shuvra S. Bhattacharyya, and Edward A. Lee. A Hierarchical Mul-
tiprocessor Scheduling Systems for DSP Applications. Technical Report UCB/ERL
M95/36, University of California, Berkeley, 1995.

[129] Michael Powell, Se-Hyun Yang, Babak Falsafi, Kaushik Roy, and T. N. Vijaykumar.
Gated-Vdd: A Circuit Technique to Reduce Leakage in Deep-Submicron Cache Mem-
ories. In International Symposium on Low Power Electronics and Design (ISLPED),
pages 90–95, 2000.

[130] Isabelle Puaut and Christophe Pais. Scratchpad memories vs locked caches in hard
real-time systems: a quantitative comparison. In Conference on Design, Automation
and Test in Europe (DATE), pages 1484–1489, 2007.

[131] P. Puschner and Ch. Koza. Calculating the Maximum Execution Time of Real-Time
Programs. Real-Time Systems, pages 159–176, 1989.

[132] Bob Ramakrishna Rau. Iterative Modulo Scheduling: An Algorithm for Software
Pipelining Loops. In International Symposium on Microarchitecture (MICRO), pages
63–74, 1994.

[133] Rajiv A. Ravindran, Pracheeti D. Nagarkar, Ganesh S. Dasika, Eric D. Marsman,
Robert M. Senger, Scott A. Mahlke, and Richard B. Brown. Compiler Managed
Dynamic Instruction Placement in a Low-Power Code Cache. In International Sym-
posium on Code Generation and Optimization (CGO), pages 179–190, 2005.

BIBLIOGRAPHY 162

[134] Sebastian Ritz, Matthias Pankert, Vojin Živojnović, and Heinrich Meyr. Optimum
Vectorization of Scalable Synchronous Dataflow Graphs. In International Conference
on Application-Specific Array Processors (ASAP), pages 285–296, 1993.

[135] Vivek Sarkar and Guang R. Gao. Optimization of Array Accesses by Collective Loop
Transformations. In Conference on Programming Language Design and Implementa-
tion (PLDI), pages 194–205, 1991.

[136] Gilbert Christopher Sih. Multiprocessor Scheduling to Account for Interprocessor
Communication. Memorandum No. UCB/ERL M91/29, University of California,
Berkeley, 1991.

[137] Olli Silven and Kari Jyrkkä. Observations on Power-efficiency Trends in Mobile Com-
munication Devices. EURASIP Journal of Embedded Systems, 2007(1):17–17, 2007.

[138] Sundararajan Sriram and Shuvra S. Bhattacharyya. Embedded Mutiprocesors:
Scheduling and Synchronization. CRC, 2009.

[139] Stefan Steinke, Nils Grunwald, Lars Wehmeyer, Rajeshwari Banakar, M. Balakrish-
nan, and Peter Marwedel. Reducing Energy Consumption by Dynamic Copying of
Instructions onto Onchip Memory. In International Symposium on Systems Synthesis,
pages 213–218, 2002.

[140] Stefan Steinke, Lars Wehmeyer, Bo-Sik Lee, and Peter Marwedel. Assigning Program
and Data Objects to Scratchpad for Energy Reduction. In Conference on Design,
Automation and Test in Europe (DATE), pages 409–415, 2002.

[141] Jeremy Sugerman, Kayvon Fatahalian, Solomon Boulos, Kurt Akeley, and Pat Han-
rahan. GRAMPS: A Programming Model for Graphics Pipeline. ACM Transactions
on Graphics (TOG), 28(1):1–11, 2009.

[142] Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. WCET Cen-
tric Data Allocation to Scratchpad Memory. In International Real-Time Systems
Symposium (RTSS), pages 223–232, 2005.

[143] Gustavo E. Téllez, Amir Farrahi, and Majid Sarrafzadeh. Activity-Driven Clock De-
sign for Low Power Circuits. In International Conference on Computer-Aided Design
(ICCAD), pages 62–65, 1995.

[144] William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. A Practical Ap-
proach to Exploiting Coarse-Grained Pipeline Parallelism in C Programs. In Inter-
national Symposium on Microarchitectures (MICRO), pages 356–369, 2007.

[145] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A Language
for Streaming Applications. In Compilter Construction, pages 49–84, 2002.

BIBLIOGRAPHY 163

[146] Philippas Tsigas and Yi Zhang. A Simple, Fast and Scalable Non-Blocking Concurrent
FIFO Queue for Shared Multiprocessor Systems. In ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 134–143, 2001.

[147] Sumesh Udayakumaran, Angel Dominguez, and Rajeev Barua. Dynamic Allocation
for Scratch-Pad Memory Using Compile-Time Decisions. ACM Transactions on Em-
bedded Computing Systems (TECS), 5(2):472–511, 2006.

[148] Aniruddha N. Udipi, Naveen Muralimanohar, Niladrish Chatterjee, Rajeev Balasub-
ramonian, Al Davis, and Norman P. Jouppi. Rethinking DRAM Design and Organiza-
tion for Energy-Constrained Multi-Cores. In International Symposium on Computer
Architecture (ISCA), pages 175–186, 2010.

[149] Underbit Technologies, Inc. MAD: MPEG Audio Decoder. http://www.underbit.

com/products/mad.

[150] US Environmental Protection Agency. Report to Congress on Server and Data
Center Efficiency. http://www.energystar.gov/ia/partners/prod_development/

downloads/EPA_Datacenter_Report_Congress_Final1.pdf.

[151] Jan-Willem van de Waerdt, Stamatis Vassiliadis, Sanjeev Das, Sebastian Mirolo,
Chris Yen, Bill Zhong, Carlos Bastos, Jean-Paul van Itegem, Dinesh Amirtharaj,
Kulbhushan Kalra, Pedro Rodriguez, and Hans van Antwerpen. The TM3270 Media-
Processor. In International Symposium on Microarchitecture (MICRO), pages 331–
342, 2005.

[152] Richard van Nee and Ramjee Prasad. OFDM for Wireless Multimedia Communica-
tions. Artech Hoise, Inc., Norwood, MA, USA, 2000.

[153] Manish Verma and Pter Marwedel. Overlay Techniques for Scratchpad Memories in
Low Power Embedded Processors. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 14(8):802–815, 2006.

[154] Manish Verma, Klaus Petzold, Lars Wehmeyer, Heiko Falk, and Peter Marwedel.
Scratchpad Sharing Strategies for Multiprocess Embedded Systems: A First Ap-
proach. In Workshop on Embedded Systems for Real-Time Multimedia, pages 115–120,
2005.

[155] Manish Verma, Lars Wehmeyer, and Peter Marwedel. Cache-Aware Scratchpad Allo-
cation Algorithm. In Conference on Design, Automation and Test in Europe (DATE),
2004.

[156] Manish Verma, Lars Wehmeyer, and Peter Marwedel. Dynamic Overlay of Scratchpad
Memory for Energy Minimization. In International Conference on Hardware/software
Codesign and System Synthesis, pages 104–109, 2004.

http://www.underbit.com/products/mad
http://www.underbit.com/products/mad
http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf

BIBLIOGRAPHY 164

[157] Yi-Pin Eric Wang and Tony Ottosson. Cell Search in W-CDMA. IEEE Journal on
Selected Areas in Communications, 18(8):1470–1482, 2000.

[158] Zhenlin Wang, Kathryn S. McKinley, Arnold L. Rosenberg, and Charles C. Weems.
Using the Compiler to Improve Cache Replacement Decisions. In International Con-
ference on Parallel Architectures and Compilation Techniques (PACT), pages 199–
208, 2002.

[159] Mark N. Wegman and F. Kenneth Zadeck. Constant Propagation with Conditional
Branches. ACM Transactions on Programming Language and Systems (TOPLAS),
13(2):181–210, 1991.

[160] Lars Wehmeyer, Urs Helmig, and Peter Marwedel. Compiler-optimized Usage of
Partitioned Memories. In Workshop on Memory Performance Issues, pages 114–120,
2004.

[161] Lars Wehmeyer and Peter Marwedel. Influence of Memory Hierarchies on Predictabil-
ity for Time Constrained Embedded Software. In Conference on Design, Automation
and Test in Europe (DATE), pages 600–605, 2005.

[162] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for Re-
duced CPU Energy. In Symposium on Operating Systems Design and Implementation
(OSDI), pages 13–23, 1994.

[163] Steven J.E. Wilton and Norman P. Jouppi. CACTI: An Enhanced Cache Access and
Cycle Time Model. IEEE Journal of Solid-State Circuits, 31(5):677–688, 1996.

[164] Michael E. Wolf and Monica S. Lam. A Data Locality Optimizing Algorithm. In
Conference on Programming Language Design and Implementation (PLDI), pages
30–44, 1991.

[165] Ahmad Zmily and Christos Kozyrakis. Block-Aware Instruction Set Architecture.
ACM Transactions on Architectures and Code Optimization (TACO), 3(3):327–357,
2006.

	Abstract
	Acknowledgement
	Introduction
	Motivation
	Contributions
	Collaboration
	Organization

	The Elm Project and Its Programming System
	Elm Architecture Overview
	System-level Architecture
	Micro-architecture

	Elm Programming System
	Low-level Compiler Back-end
	High-level Parallelizing Stream Programming System

	Chapter Summary

	Instruction Scratch-pad Memory
	Overview
	Related Work
	Dynamic Instruction Placement of SPMs
	Loop Caches
	Tagless Hit Caches

	Analytic Comparison of Miss Rates of SPMs and Caches
	Algorithm
	Pre-processing
	Instruction Placement
	Copy and Jump Insertion
	Optimality for Single-level Loops

	Evaluation
	Experimental Setup
	L1 Cache Access
	Energy Consumption
	Execution Time and Code Size

	Discussion
	Sensitivity on L1 vs L0 Read Energy Ratio
	Effectiveness of Bypassing
	Interaction with Other Architectural Features

	Chapter Summary

	Buffers in Static Stream Applications
	Overview
	Queue Capacity Computation Algorithm
	Team Scheduling
	Team Formation
	Amortization
	Time Complexity

	Evaluation
	Experimental Setup
	Buffer Space Limited Experiment
	Amortization Factor Limited Experiment
	Discussion: Sensitivity to Architectural Parameters

	Related Work
	SDF Scheduling for Single-core Architectures
	SDF Scheduling for Multi-core Architectures
	Loop Transformations

	Chapter Summary

	Buffers in Dynamic Stream Applications
	Overview
	QED (Queue Enhanced with Dynamic sizing)
	Capacity Adjustment
	Reserve-commit Interface
	Non-blocking Implementation

	Alternative Methods
	Static Optimum Approximation
	Dynamic, Local Optimum Approximation
	Analytical Estimation

	Experimental Setup
	Evaluation
	Execution Time
	Energy Consumption
	Discussion

	Related Work
	Chapter Summary

	Conclusion
	Summary and Contributions
	Future Directions

	Bibliography

