
Fine-grain Dynamic Instruction Placement for
L0 Scratch-Pad Memory

Jongsoo Park
Stanford University

Stanford, California, USA
jongsoo@cva.stanford.edu

James Balfour∗
NVIDIA Research

Santa Clara, California, USA
jbalfour@cva.stanford.edu

William J. Dally
Stanford University

Stanford, California, USA
dally@cva.stanford.edu

ABSTRACT
We present a fine-grain dynamic instruction placement al-
gorithm for small L0 scratch-pad memories (spms), whose
unit of transfer can be an individual instruction. Our algo-
rithm captures a large fraction of instruction reuse missed by
coarse-grain placement algorithms whose unit of transfer is
restricted to loops or functions within the capacity of spms.
Evaluation of L0 spms with our fine-grain algorithm in 17
applications shows that the energy consumed by instruction
storage hierarchy is reduced by 38% and 31% compared to
that of L0 instruction caches and L0 spms with an ideal
coarse-grain algorithm, respectively.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers, Code Generation, Optimization

General Terms
Algorithms, Experimentation, Performance

Keywords
Code Placement, Compilers, Embedded Systems, Scratch-
Pad Memory

1. INTRODUCTION
Instruction storage hierarchy accounts for a large fraction

of the energy consumed by embedded processors. For ex-
ample, instruction cache contributes to 27% of the total en-
ergy consumed in the StrongARM processor [30]. To reduce
instruction delivery energy (which in this paper refers to
the energy consumed in instruction storage hierarchy), re-
searchers have proposed extending the hierarchy by adding
small instruction stores (typically 1KB or smaller) between
the L1 instruction cache and the processor [25, 28, 29, 14, 24,

∗This work was done when the author was at Stanford Uni-
versity.

This is the author’s version of the work. Not for redistribution
CASES’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-903-9/10/10 ...$10.00.

19, 20, 21, 22, 7]; in this paper, we call these L0 instruction
stores.

Scratch-pad memories [33, 5] (spms), shown in Figure 1(a),
are compiler-managed stores in which no tags are used to
associate locations in spms with memory addresses. There-
fore, spms consume less energy per access than caches with
the same capacity, lending themselves to being a natural
choice for L0 instruction stores. There are primarily two
types of instruction placement algorithms that target spms:
static and dynamic instruction placement. In static instruc-
tion placement algorithms [5, 39, 14, 2, 3, 45, 43, 42, 31],
the most frequently executed instructions are identified by
the compiler and preloaded prior to starting an application.
Throughout the application execution, the set of instruc-
tions that reside in the spm does not change. Due to their
static nature, static placement algorithms cannot efficiently
utilize the spm when an application has multiple hotspots
that do not fit in the spm altogether. In dynamic instruc-
tion placement algorithms [38, 37, 44, 41, 23, 40, 10, 11,
32], instructions are dynamically transferred into the spm
as needed, thereby utilizing spm space more efficiently. For
example, Udayakumaran et al. [40] show that their dynamic
placement technique achieves an average of 31% energy re-
duction over static placement.

Alternatively, a tag-based design for L0 called filter cache [25]
(fc), shown in Figure 1(b), can be used. fcs do not require
any compiler modification and preserve instruction set com-
patibility. Given this relative simplicity of fcs, spms must
have a sufficiently large energy efficiency advantage over fcs
to be the preferred choice. Although energy efficiency has
been the main motivation for using spms [5, 39, 38], they
have yet to show a notably higher energy efficiency over
fcs’. Section 2 details reasons behind this, one of which is

L1 Cache
(instruction or

unified)

SPM

Processor

L0 Scratch-Pad Memory (spm)

L1 Cache
(instruction or

unified)

Filter
Cache

Processor

tag

(b) Filter cache (fc)

Figure 1: L0 instruction stores

5

6

71aa

4 call

3

1

2

copy {5, 6, 71}

size 2

size 2

size 2
72aa

size 60

copy {1, 2}

copy {1, 2}

copy {1, 2}

size 3

size 2

size 2

(a) fine

5

6

7

4 call

3

1

2

size 3

size 3

size 61

copy 6

copy 6

size 2

size 2

(b) coarse

Figure 2: An example of (a) a fine-grain dynamic
instruction placement and (b) its coarse-grain coun-
terpart when the capacity of the SPM is 64. Blocks
placed in the SPM are shaded. Section 4 describes
the placement process in detail using the same ex-
ample.

the coarse-grain placement of instructions in spms — the
smallest unit of transfer is a loop or function.

This paper presents a fine-grain dynamic instruction place-
ment algorithm for spms that achieves an average of 38% in-
struction delivery energy savings over fcs. We evaluate 17
representative and non-trivial embedded applications from
MiBench [15] and rigorously compare spms to fc configura-
tions with the best energy efficiency. We also show that our
fine-grain algorithm achieves 31% instruction delivery en-
ergy savings over even an ideal coarse-grain dynamic place-
ment algorithm which achieves zero miss rate for instruc-
tions in loops or functions that fit the spm. The fine granu-
larity of our algorithm does not cause proliferation of copy
instructions, therefore maintaining execution time and static
code size similar to those of the coarse-grain algorithm.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 discusses the advan-
tages and disadvantages of spms and fcs with respect to
miss rates. Section 4 describes our fine-grain placement al-
gorithm. Section 5 presents the results of our evaluation,
and Section 6 concludes.

2. RELATED WORK
Here, we focus on differentiating our algorithm from other

dynamic instruction placement algorithms for spms [38, 37,
44, 41, 23, 40, 10, 11, 32], instead of attempting to exten-
sively review the whole body of spm work.

Udayakumaran et al. [40], Egger et al. [10], and Pabalkar
et al. [32] restrict the smallest unit of instruction transfer
to a loop or function, which results in a large fraction of
instruction reuse being missed. For example, Figure 2 shows
that, while a fine-grain algorithm can place blocks 1, 2, 5, 6,
and 71 in the spm, a coarse-grain algorithm can only place
block 6 in the spm since the other blocks belong to loops that
exceed the spm size. Figure 3 shows that even an ideal spm
placement algorithm cannot achieve more than 10% energy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

32 64 128 256 512

N
o

r
m

a
li

z
e
d

 I
n

s
tr

u
c
ti

o
n

D

e
li
v
e
r
y
 E

n
e
r
g

y

Capacity [instructions]

DM COARSE_IDEAL

Figure 3: Instruction delivery energy of filter caches
(FC) and SPMs with an ideal coarse-grain instruc-
tion placement (COARSE IDEAL). The instruction
delivery energy is normalized to the case when ev-
ery instruction is fetched from the L1 instruction
cache. Details on the evaluation setup are presented
in Section 5.

reduction over fcs with coarse-grain instruction transfers.
In Figure 3, we assume that the spm placement algorithm
achieves zero miss rate (including compulsory misses) for
instructions in loops or functions that fit the spm.

Steinke et al. [38], Verma et al. [44], and Egger et al. [10]
use integer linear programming to select the best set of in-
structions to be placed in spms, which does not scale well
for large applications.

Ravindran et al. [37] and Janapsatya et al. [23] use neither
coarse-grain placement nor an exponential time algorithm.
Ravindran et al. use traces and Janapsatya et al. use basic
blocks as their unit of instruction transfer, both of which are
less flexible than our algorithm where the length of trans-
fer blocks can be adjusted in increments of one instruction.
Ravindran et al. use temporal relation [12] to measure the
cost of placing multiple traces in the same spm location, and
Janapsatya et al. use a similar metric called concomitance.
Although using temporal relation or concomitance can min-
imize conflict misses of caches, we show in Section 3 that
applying these metrics to SPMs overlooks the tagless and
compiler-managed properties of spms. Using these metrics
not only unnecessarily complicates profiling and compilation
but can also misguide placement algorithms to make deci-
sions that are beneficial only in the presence of tags.

We also point out that the literature has not rigorously
compared spms against the best cache configurations. Sev-
eral papers use 4-way [38, 41, 10, 32] or 2-way associative
caches [37]. In Section 3 and 5.2, we show that higher asso-
ciativity does not necessarily result in lower miss rates when
the cache is small, which limits its instruction reuse mainly
to loops. Egger et al. [11] confirm this by showing that
direct-mapped caches outperform 4-way associative caches
with respect to execution time and energy.

Verma et al. [41] compare energy consumption of spms
and caches averaged over multiple capacities (128 to 1024
bytes). A more meaningful comparison would be between
maximums rather than average energy reductions.

Janapsatya et al. [23] measure performance by accumulat-
ing access times of spms and caches (e.g., the execution time

0

50

100

150

200

250

300

50 100 150 200 250

#
 o

f
m

is
s
e
s
 p

e
r

it
e
r
a
ti

o
n

L (Loop Size)

FA

DM

SPM

Figure 4: The number of misses per iteration for
straight-line loops where C (the capacity of stores)
is 64.

is 1µs if a cache with access time 1ns is accessed 1000 times).
However, since the access times of all spms and caches they
evaluated are faster than 1.7ns in a 0.18µm process, spms’
faster access time will not convert into fewer cycle counts in
most contemporary embedded processors.

A large body of spm-related work [38, 37, 44, 41, 23, 40,
10, 11] focuses on substituting L1 instruction caches. We
instead focus on extending the memory hierarchy by adding
another level (L0) with spms and comparing this to fcs.
This is because in L0 the majority of instruction reuse comes
from loops, for which the compiler has a proven ability to
optimize [1, 8, 26, 36].

As an alternative to software-managed spms, loop caches [28,
29] can be used as L0 instruction stores. Loop caches iden-
tify loops by observing backward jumps and store the iden-
tified loops to filter out costly access to larger stores. Loop
caches serve well for applications in which straight-line loops
dominate the performance. However, loop caches cannot
store loops with if-else branches, and Gordon-Ross et al. [14]
demonstrate that this is too inflexible in dealing with diverse
embedded applications. Gordon-Ross et al. [14] address this
inflexibility by pre-loading performance critical loops with
arbitrary shapes. However, the pre-loaded loop caches [14]
cannot overlay loops in different program phases, and thus
cannot efficiently use the loop cache capacity as Ravindran
et al. [37] show.

3. MISS RATES OF SPMS AND
FILTER CACHES

This section discusses advantages and disadvantages of
spms compared to fcs with respect to miss rates.

For a straight-line loop of length L, the following equa-
tions compute the number of misses (except compulsory
misses) per iteration for a fully associative fc with least
recently used replacement policy (yFA), a direct-mapped fc
(yDM), and an spm (ySPM), all with capacity C. We assume
that C instructions of the loop are placed in the spm and
the other L - C instructions are directly fetched from L1.

yfa =

(
0 if L ≤ C,

L if L > C
(1)

ydm =

8><>:
0 if L ≤ C,

2(L− C) if C < L ≤ 2C,

L if L > 2C

(2)

21

(a)

21
copy 1

or

21

copy 1

(b)

Figure 5: (a) A simple loop and (b) the result of
placing blocks 1 and 2 of the loop in the same SPM

location.

yspm =

(
0 if L ≤ C,

L− C if L > C
(3)

Figure 4 plots these equations when C is 64 and shows that
spms suffer from fewer conflict misses in straight-line loops.
The fewer conflict misses are achieved by placing only C
instructions in the spm, while the other L - C instructions
bypass it through the path from L1 to the processor shown
in Figure 1(a).

While we can easily minimize miss rates of spms for straight-
line loops, the same optimization is not trivial for codes
whose control flow is less regular. In fact, it is quite a chal-
lenge for spms to achieve fewer misses than fcs for less reg-
ular code.

Consider a loop shown in Figure 5(a) that typically exe-
cutes 1 during its first half of iterations and 2 for the sec-
ond half. For fc, placing 1 and 2 in memory addresses
mapped to the same fc location incurs few conflict misses.
In other words, instructions 1 and 2 have a weak temporal
relation [12]. Gloy et al. [12] minimize instruction cache con-
flict misses by finding a layout in which instructions mapped
to the same cache location have weak temporal relations.

We cannot, however, apply the same optimization scheme
to spms due to their lack of tags. In fact, we show that it
is always disadvantageous to place multiple instructions in
a single-level loop (a loop without inner loops) at the same
spm location. In this light, an optimal set of instructions to
be placed in spms with capacity C is the C most frequently
executed instructions for single-level loops (proof shown in
Appendix A), which motivates our algorithm (described in
Section 4).

In contrast to Ravindran et al. [37] and Janapsatya et
al. [23], we show why temporal relation is not a relevant
metric for spms as follows: Suppose that we place 1 and
2 in Figure 5(a) in the same spm location. The compiler
targeting the spm must conservatively assume that 2 may
be executed between consecutive executions of 1. Conse-
quently, the compiler must copy 1 from L1 to the spm either
immediately before every execution of 1 or immediately af-
ter every execution of 2, as shown in Figure 5(b). Although
many of these copies will unnecessarily transfer instructions
that already reside in the spm, this will not be noticed by
the spm due to the absence of tags.

4. ALGORITHM
This section describes how our algorithm finds a set of

instructions to be placed in spms in fine granularity to min-
imize the number of L1 accesses. We first give an overview
of our algorithm, then describe the details of each step.

We process each control flow graph by traversing the call

for each cfg of call graph in a post-order {
T = construct a loop tree of cfg
re-layout(cfg, T)
for each loop L of T in a post-order {

BL = find the longest BL

subject to the constraints shown in Section 4.2
insert copies and jumps for BL

remove redundant copies and jumps in inner loops
}

}

Figure 6: Pseudo code of our algorithm

graph in a post order. The call graph handles function point-
ers by adding edges from a function pointer call site to all
callees that may be referenced by the pointer. For each con-
trol flow graph, we construct a loop tree and re-layout the
code. Then, we traverse the loop tree in a post order. For
each loop visited, we select instructions to be placed in the
spm, and then insert copy and jump instructions. Figure 6
shows a pseudo-code of our algorithm.

4.1 Loop Tree Construction and Re-layout
We construct a loop tree as shown in Figure 7(a) by Havlak’s

algorithm [16] which can be used for both reducible and ir-
reducible control flow graphs [17]. In the loop tree, the root
represents the entire control flow graph, other non-leaf nodes
correspond to loops, and leaf nodes are basic blocks.

We estimate the execution frequency of each loop tree
node as follows: For each loop L, we estimate the average
iteration count of L, nL. We build a sub-region graph from
the subgraph of the control flow graph induced by L by re-
moving back-edges of L and contracting inner loops to single
nodes, as shown in Figure 7(b). For each child x of L, we
compute pL(x), the probability of executing x per execution
of the sub-region graph of L. We estimate pL(x)s either
by profiling or static analysis. In our static analysis, we
propagate pL(x)s starting from the loop header, assuming
that each branch direction is independently taken with 50%
probability. The execution probabilities annotated in Fig-
ure 7(b) are estimated by this static analysis. In our static
analysis, we set nL = ∞. Section 5.3 shows that the en-
ergy consumption difference between profiling and the static
analysis is less than 5%.

After estimating pL(x)s, we re-layout the code so that the
C most frequently executed children of a loop tree node are
contiguous in memory and can be copied to the spm as a sin-
gle group, where C is the spm capacity. In Figure 7, blocks
are numbered according to the ordering after re-layout. For
example, in Figure 7(c), blocks 1 and 2 are assigned smaller
numbers than block 3 since blocks 1 and 2 are more fre-
quently executed, assuming the execution probability shown
in Figure 7(b). To keep the overhead of inserting jump in-
structions from the re-layout to a minimum, instead of sort-
ing every child, we partition the children into a primary and
a secondary partition so that the primary partition contains
the C most frequently executed instructions. This partition-
ing is similar to Pettis and Hansen’s function splitting [35]
used for instruction cache miss optimization. Among the
children with the same execution probability, we prioritize
for inner loops.

4.2 Instruction Placement
For each loop L, we select a block of instructions to be

placed in the spm, denoted as BL. We find the longest BL

subject to the following three constraints:

1. |BL| ≤ C, where C is the spm capacity.

2. BL is a contiguous block of instructions starting from
the first instruction in L.

3. Let SLx be the set of inner loops and function calls
of L that can overwrite the spm location mapped to
instruction x. ∀ instruction x ∈ BL, c1 · pL(x) > c2 ·
(1

nL
+pL(SLx)), where c1 is the access energy difference

between the spm and L1 cache, and c2 is the energy
for copying an instruction from the L1 cache to spm;
pL(S) is the probability of executing any instruction
of S and pL(∅) = 0.

The first constraint is trivial1. The second constraint and
our re-layout method ensure that instructions copied into
the spm at incoming edges of L are the |BL| most frequently
executed ones. Note that this constraint is based on the
claim proven in Appendix A — placing the C most fre-
quently executed instructions of L in the spm minimizes the
number of L1 accesses for single-level loops. We assume that
the spm supports wrapping around the control from its last
entry to the first entry, which is important for reducing frag-
mentation. The third constraint ensures that energy saved
by fetching x from the spm during iterations of L outweighs
the cost of copying x at incoming edges to L and at outgoing
edges from SLx (inner loops or function calls that conflict
with x). Figure 7(e) shows an example of applying the third
constraint: 3 is not placed in the spm because its execu-
tion probability does not exceed the probability of executing
function call in 4 or executing inner loop {5, 6, 7}, both of
which use the entire spm (i.e., c1 ·p{1,2,3,4,5,6,7}(3) = c1 ·0.5 <
c2 · p{1,2,3,4,5,6,7}({4, {5, 6, 7}}) = c2 · 0.5, because c1 < c2).
Since we visit the call graph and loop trees in a post order,
we can determine SLxs, except for recursive functions. For
recursive functions, we conservatively assume that the callee
uses the entire spm.

Note that we keep our algorithm simple by imposing the
following two restrictions: First, the location from which
an instruction is fetched is constant regardless of which call
graph path or which control flow edge was taken. In other
words, the placement of an instruction is neither context-
sensitive nor flow-sensitive [1]. We can therefore denote in-
structions placed in spms as SPM instructions and the others
as non-SPM instructions. Second, at incoming edges of loop
L, we copy only one block of instructions, BL, into the spm.
The only other places where instructions are copied are at
outgoing edges from those inner loops or function calls that

1However, we need to consider the code size increase from
inserting copy and jump instructions when we compute |BL|.
Since we traverse the call graph and loop trees in post or-
ders, |BL| can decrease as we eliminate redundant copies and
jumps when we visit an outer loop or callee as described in
Section 4.3. In other words, we conservatively compute |BL|
larger than its eventual value. To reduce the gap between
the conservative |BL| and its eventual value, we apply simple
rules such as the following: when the outer loop fits in the
spm, we do not count copy or jump insertions between the
current loop and the outer loop since they will be eliminated
when we visit the outer loop.

cfg

1, 2, 3, 4, 5, 6, 7Entry

5, 6, 71

Exit

2 3 4

5 6 7

6

(a)

5, 6, 7
4

3

1

2

0.5

0.5

0.25
0.25

0.25

0.25

(b)

5

6

7

4 call

3

1

Entry

2

Exit

copy 6
size 3

size 3

size 61

size 2

size 2

(c)

5

6

71aa

4 call

3

1

Entry

2

Exit

copy {5, 6, 71}

size 2

size 2

size 2
72aa

size 60

size 3

size 2

size 2

(d)

5

6

71aa

4 call

3

1

Entry

2

Exit

copy {5, 6, 71}

size 2

size 2

size 2
72aa

size 60

copy {1, 2}

copy {1, 2}

copy {1, 2}

size 3

size 2

size 2

(e)

Figure 7: Example of placing instructions of loops in a 64-entry SPM. In (c)-(e), instructions placed in the
SPM are shaded. Basic blocks are numbered in the ordering after re-layout; we generate the code following
this order in our algorithm’s assembly output. Block 4 has a function call whose callee uses the entire SPM.
(a) The loop tree of the control flow graph shown in (c)-(e).
(b) The sub-region graph of the outer-most loop, in which edges are annotated with the execution probability
per iteration.
(c) A schedule after processing loop {6}. Since this loop fits within the SPM, the entire loop is placed in the
SPM.
(d) A schedule after processing loop {5, 6, 7}. Blocks 5 and 6 are placed in the SPM, and the redundant copy
of 6 at its incoming edge is eliminated. The first 59 instructions of block 7 are placed in the SPM as well and
extracted as a separate block 71.
(e) A schedule after processing the outer-most loop. This loop has an inner loop bigger than the SPM and a
function call whose callee uses the entire SPM. According to (b), the probability of executing the inner loop
or the function call per iteration is 0.5. Since 1 and 2 are the only ones with execution probability higher
than 0.5, we place 1 and 2 in the SPM.

can overwrite a portion of BL. As a result, the fine granular-
ity of our algorithm does not cause proliferation of copy in-
structions and therefore maintains execution time and static
code size similar to those of a coarse-grain algorithm, as will
be shown in Section 5.

4.3 Copy and Jump Insertion
After selecting SPM instructions (instructions to be placed

in the spm), we adjust the control flow by inserting copy and
jump instructions and then eliminate redundant copies and
jumps of inner loops.

We first insert copy instructions at incoming edges to the
current loop and outgoing edges from conflicting inner loops
and function calls. For example, in Figure 7(c), we insert
“copy 6” at the incoming edge of {6}. Since jumping to the
first instruction right after copying a block of instructions
is a common case, in addition to copy instructions, we sup-
port jcopy instructions that transfer instructions from the
L1 cache to the spm and jump to the first transferred in-
struction. To avoid an unnecessary copy at a basic block
with outgoing edges with different copy targets, we modify
jumps as shown in Figure 8. In Figure 8, symbolic addresses
that start with @ are mapped to main memory, while the first
arguments of jcopy instructions denote absolute addresses

@bb_i: ...

...

jump.lt @taken

@nontaken: ...

(a)

@bb_i: ...

...

jump.lt @bb_i_t

jcopy 17 @nontaken 15

@bb_i_t: jcopy 32 @taken 7

@nontaken: ...

(b)

Figure 8: Modifying a jump to avoid an unnecessary
copy when outgoing edges of bb_i have different copy
targets. (a) Before and (b) after the modification.

mapped to the spm. The third arguments of jcopy instruc-
tions denote the number of instructions that are transferred
by the jcopy instructions. When we return from a func-
tion to an spm location, we use an indirect copy instruction
whose source memory address and target spm location are
stored in registers.

If either the source or target of a fall-through control flow
edge becomes an spm instruction, we insert jump instruc-
tions at the edge. For example, in Figure 7(c), we insert an

Table 1: Experimental Setup

Baseline
No L0 instruction store,

4-way 16kb L1 I-cache with
8-instruction cache lines

lc Loop cache with flexible loop size scheme [29]

fa
Fully associative cache with lru replacement
policy and 8-instruction (32-byte) cache lines

dm
Direct-mapped fc with
8-instruction cache lines

coarse spm with an ideal coarse-grain placement
fine p spm with fine-grain placement
fine fine p without profiling

opt
Fully-associative fc with

optimal replacement policy [6]

instruction at the end of 5 that jumps to 6. We also insert
an instruction that jumps from 6 to 7.

A copy for an inner loop can be redundant after copies for
the current loop are inserted. For example, in Figure 7(d),
“copy 6”at the incoming edge of loop {6} becomes redundant
after “copy {5, 6, 71}” is inserted at the incoming edge of
loop {5, 6, 7}.

Placing instructions of an outer loop in the spm can ren-
der certain jump instructions in its inner loops unnecessary.
For example, the jumps from 5 to 6 and from 6 to 7 that
are added in Figure 7(c) become unnecessary in Figure 7(d)
because the edges from 5 to 6 and from 6 to 7 are no longer
the ones between an spm instruction and a non-spm instruc-
tion. Therefore we eliminate the jump instructions as shown
in Figure 7(d).

5. EVALUATION
This section describes the experimental setup for our al-

gorithm evaluation and analyzes the results.

5.1 Experimental Setup
For our evaluation, we use elm [4], a multi-core architec-

ture with 32-bit instructions, an in-order dual-issue pipeline
with 4 stages, software-managed memories, and a mesh on-
chip interconnection network. To make our evaluation less
sensitive from elm-specific features, we modify the architec-
ture model to a single-core one with a single-issue pipeline
and an L1 instruction cache, and change the compiler and
the simulator accordingly. Our algorithm is implemented
in elmcc, a compiler back-end for elm that reads fully-
optimized llvm intermediate representation [27].

We use all integer and fixed-point applications of MiBench [15].
We also use fft in MiBench after converting its floating
point operations to fixed-point ones. Since our processor
does not support floating point operations, we exclude the
other applications.

Table 1 summarizes the configurations used in the evalu-
ation. We compare spms with 32 - 512 instructions to fully
associative filter caches (fa), direct-mapped filter caches
(dm), and loop caches (lc) [28, 29]. For fa and dm, we
use 8-instruction (32-byte) cache lines, which achieve the
best energy-delay product [13] (under the assumption that
the instruction cache consumes 27% of the total energy as

Table 2: Energy per operation in pJ. “Refill” is the
per cache line size energy for FCs and the per word
energy for SPMs.

Hit [pJ] Miss [pJ] Refill [pJ]
32-instruction fa 0.28 0.09 3.76
64-instruction fa 0.50 0.17 6.04
128-instruction fa 0.92 0.33 10.60
256-instruction fa 1.74 0.62 19.70
512-instruction fa 3.37 1.18 37.93
32-instruction dm 0.23 0.23 3.73
64-instruction dm 0.39 0.39 5.99
128-instruction dm 0.72 0.72 10.50
256-instruction dm 1.35 1.35 19.55
512-instruction dm 2.64 2.64 37.64
32-instruction spm 0.11 — 0.33
64-instruction spm 0.18 — 0.61
128-instruction spm 0.33 — 1.16
256-instruction spm 0.63 — 2.26
512-instruction spm 1.22 — 4.47
16kb L1 20.35 2.68 37.01

in the StrongARM processor [30]). To control for improve-
ments due to code re-layout, we apply the same re-layout
method to dms when it is beneficial. In the coarse configu-
ration, we evaluate the maximum energy savings that can be
achieved by a coarse-grain instruction placement: we assume
that spms achieve zero miss rates for instructions in loops or
functions that fit the spm. We have two configurations for
our fine-grain dynamic instruction placement algorithm: the
fine p configuration uses profiling information, while fine
uses a static method for computing execution frequency as
described in Section 4.1. To provide a lower bound for the
number of L1 cache accesses, we include fully associative
caches with an optimal replacement policy [6] (opt). Note
that this optimal replacement policy requires an oracle that
predicts the future, thus cannot be implemented. In our
evaluation, we are able to evaluate the performance of opt
as a theoretical bound by off-line trace-based simulations.
We use a 16kb L1 instruction cache with 8-instruction cache
lines and 4-way set associativity. The L1 instruction cache
with no L0 instruction store is the baseline of our compari-
son.

We measure the performance of fa and dm using the
Dinero IV trace-driven cache simulator [9]. We have im-
plemented trace-driven simulators for lc and opt.

Table 2 lists the energy of each operation estimated from
detailed circuit models of caches and memories realized in
a commercial 45 nm low-leakage cmos process. The models
are validated against hspice simulations, with device and
interconnect capacitances extracted after layout. Leakage
current contributes a negligibly small component of the en-
ergy consumption due to the use of low-leakage devices. dms
use srams to store tags and instructions; the tag array and
data array are accessed in parallel, and the tag check is
performed after both arrays are accessed. fas use cams to
store the tags and srams to store the instructions. fas are
designed so that the srams is only read when there is a hit
in the tag cam; consequently, a miss consumes less energy,
as only the tag array is accessed. When transferring instruc-

0.0

0.1

0.2

0.3

0.4

0.5

0.6

32 64 128 256 512

N
o

r
m

a
li

z
e
d

 L
1

 A
c
c
e
s
s
 C

o
u

n
t

Capacity [instructions]

LC

FA

DM

COARSE

FINE

FINE_P

OPT

(a) The number of L1 accesses
normalized to the baseline.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
o

r
m

a
li

z
e
d

 L
1

 A
c
c
e
s
s
 C

o
u

n
t

DM COARSE FINE FINE_P OPT

(b) The number of L1 accesses for 256-instruction configurations normalized
to the baseline where no L1 access is filtered.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

32 64 128 256 512

N
o

r
m

a
li
z
e
d

 I
n

s
tr

u
c
ti

o
n

D

e
li
v
e
r
y
 E

n
e
r
g

y

Capacity [instructions]

LC FA DM COARSE FINE FINE_P

(c) Instruction delivery energy
normalized to the baseline.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
o

r
m

a
li

z
e
d

 I
n

s
tr

u
c
ti

o
n

D
e
li

v
e
r
y
 E

n
e
r
g

y
DM COARSE FINE FINE_P

(d) Normalized instruction delivery energy
for 256-instruction configurations.

Figure 9: L1 access and energy consumption results. The averages are obtained by computing arithmetic
means over per-instruction-value of each benchmark, then normalizing each mean to the baseline processor
configuration.

tions from the L1 cache, the L1 tag is checked once and the
instructions are transferred over multiple cycles.

5.2 L1 Cache Access
Figure 9(a) compares the number of L1 cache accesses for

each configuration. The number of L1 cache accesses is nor-
malized to that of the baseline (no L0 store) and accounts
for the additional copy instructions in spm configurations.
At smaller capacities, spms result in fewer L1 accesses than
filter caches since there are many loops whose size is slightly
larger than the capacities of spms, for which the advantage of
spms is maximized as illustrated in Figure 4. When the ca-
pacity is as large as 512, fas and dms have fewer L1 accesses
because the proportion of instruction reuse not analyzable
at compile-time increases as the working set size increases.
Despite of its higher associativity, fas result in more L1 ac-
cesses than dms because the lru replacement policy works
poorly for (almost) straight-line loops that are slightly larger
than the cache capacity as described in Section 3. lc’s L1
access decreases by only 9% as we increase its capacity from
32 to 512 since there are not many straight-line loops larger
than 32, which is consistent with [14].

Figure 9(b) shows the number of L1 cache accesses for each
benchmark for the 256-instruction configurations. Note that
we execute whole programs, not just loops. To avoid clutter,
we omit lc and fa, which do not show advantages over dm.
Our fine-grain instruction placement algorithm (fine p and
fine) outperforms dms on most applications. coarse suf-
fers from more L1 accesses than dms on several applications,
especially for susan, mad, patricia, and pgp. These appli-
cations have performance-critical loops bigger than spms,
where frequently executed portion of the loops can only
be captured by a fine-grain placement algorithm or by dms
(e.g., the outer-most loop in Figure 7).

5.3 Energy Consumption
Figure 9(c) presents instruction delivery energy for each

configuration. Figure 9(d) shows the energy consumed in
each benchmark for the 256-instruction configurations, where
the maximum energy reduction is achieved. fine p achieves
an 87% reduction, while fa, dm and coarse achieve 73%,
78% and 80% reduction, respectively. Although coarse
achieves more energy reduction than dms, their difference,
2%, is small considering the fact that we assume an ideal spm

placement algorithm that achieves zero miss rate (includ-
ing compulsory misses) in coarse configuration. Our algo-
rithm without profiling (fine) does not consume more than
5% additional energy compared to fine p, which demon-
strates that our fine-grain instruction placement algorithm
achieves most of its benefit without profiling. Therefore, our
algorithm can be used without profiling by default, allow-
ing programmers to avoid complications from profiling and
selecting a representative input data set.

To provide context, an 87% reduction in the energy con-
sumed by the instruction storage hierarchy would result in
a 23% reduction in the total dynamic energy consumed in
processors such as the StrongARM [30], in which 27% of the
total dynamic energy is consumed by the instruction cache.

While energy consumption is meaningful as the final met-
ric, L1 access count is the most important variable that
the compiler can directly optimize. The relative energy effi-
ciency of an spm placement algorithm compared to that of
fcs varies as the memory hierarchy or circuit design changes.
For example, if an spm placement algorithm achieves smaller
energy consumption than fcs despite of more L1 accesses,
the same spm placement algorithm may result in worse en-
ergy efficiency when we have an L1 cache with a larger ca-
pacity or higher associativity, where reducing L1 access is
more important that reducing the unit L0 access energy. In
addition, in [34], it is shown that cacti [46] tends to over-
estimate energy consumption in small L0 stores since the
cache architecture assumed by cacti mainly targets caches
that are bigger than or equal to typical L1 cache capacities.
Conversely, if an spm placement algorithm achieves smaller
energy consumption with fewer L1 accesses, its relative en-
ergy efficiency compared to that of fcs is less dependent on
a specific memory hierarchy or circuit design. Therefore, en-
ergy reduction of spms should not be reported without the
number of L1 accesses in order to measure the energy effi-
ciency of an spm placement algorithm in a less architecture
and circuit dependent manner.

5.4 Performance and Code Size
To quantify fc’s and spm’s impact on execution time, we

assume a penalty of 1 cycle for each fc miss as in [22, 25]
and a load-use penalty of 1 cycle for spms. Gordon-Ross et
al. [14] assume a penalty of 4 cycles for each fc miss, but the
1 cycle penalty can be achieved by critical word first tech-
nique [18]. For a copy whose target spm location is stored in
a register (e.g., a copy of function return target), we assume
a penalty of 2 cycles. The processor allows one outstanding
copy and stalls when a second one is attempted before the
first completes. To focus on the aspect of instruction deliv-
ery, we disregard L1 data cache miss and branch miss predic-
tion penalty. Within this setup, the 256-instruction fine p
incurs an average of 1.0% execution time overhead, while
256-instruction dm incurs 1.7% overhead2. We optimize the
cache line size of dms for the best energy-delay product [13].
By increasing the cache line size, we capture more spatial
locality and miss fewer instructions, resulting in a lower per-

2This is an upper bound of fine p’s performance overhead
since its baseline is an ideal case without L1 cache and
branch miss prediction penalty; e.g., if we assume an L1
cache miss penalty of 32 cycles, a 128-instruction bimodal
branch predictor, and a branch miss penalty of 2 cycles, the
256-instruction fine p’s performance overhead is reduced to
0.7%.

formance overhead. However, at the same time, this leads
to the transfer of more unnecessary instructions from the L1
cache. We find that 8-instruction cache lines balance this
trade-off and achieve the best energy-delay product. For
example, by increasing the cache line size from 2 to 8, the
performance overhead of the 256-instruction dm filter cache
decreases from 5.8% to 1.7%, while the reduction of energy
consumed by the instruction hierarchy changes minimally
(from 78.4% to 78.3%).

Copy instructions increase the code size by, on average,
2.9% with 256-instruction fine p and 2.1% with the same
capacity coarse. This demonstrates that the fine granu-
larity of our algorithm does not cause proliferation of copy
instructions. Note that, although fine p increases the code
size, it achieves smaller performance overhead than dm. This
is because fine p pre-fetches instructions hiding the L1 ac-
cess latency.

6. CONCLUSION
This paper presents a dynamic instruction placement al-

gorithm for L0 spms that shows a notable instruction deliv-
ery energy savings (38%) over fcs. This is achieved by 1)
fine-grain instruction placement where the length of transfer
blocks can be adjusted in increments of one instruction and
2) careful consideration of the tagless and compiler-managed
properties of spms. Since our fine-grain algorithm achieves
31% instruction delivery energy reduction over even an ideal
coarse-grain algorithm, spms now have a better chance to
become the preferred choice over fcs by providing energy
saving that justifies the cost of compiler and instruction
set modifications. In addition, processor designers will be
able to make well-informed decisions on L0 instruction stores
based on our rigorous comparison against the best fc con-
figurations in 17 representative applications and detailed en-
ergy model.

7. ACKNOWLEDGMENTS
We thank Jooseong Kim for his help on our compiler back-

end implementation, and David Black-Schaffer and Clinton
Buie for discussion on our algorithm in its initial stage. We
thank Claude Reichard, Evelin Sullivan, and Hyejun Ra for
their feedback on writing, and the anonymous reviewers who
provided valuable comments. This work is supported in part
by the Semiconductor Research Corporation under Grant
2007-HJ-1591 and in part by the National Science Founda-
tion under Grant CNS-0719844. Jongsoo Park is supported
in part by a Samsung Scholarship, and James Balfour is
supported in part by the Cadence Design Systems Stanford
Graduate Fellowship.

8. REFERENCES
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and

Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 2007.

[2] Federico Angiolini, Luca Benini, and Alberto Caprara.
Polynomial-Time Algorithm for On-chip Scratchpad
Memory Partitioning. In International Conference on
Compilers, Architecture, and Synthesis for Embedded
Systems (CASES), pages 318–326, 2003.

[3] Federico Angiolini, Francesco Menichelli, Alberto
Ferrero, Luca Benini, and Mauro Olivieri. A
Post-Compiler Approach to Scratchpad Mapping of
Code. In International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems
(CASES), pages 259–267, 2004.

[4] James Balfour, William J. Dally, David
Black-Schaffer, Vishal Parikh, and Jongsoo Park. An
Energy-Efficient Processor Architecture for Embedded
Systems. Computer Architecture Letters, 7(1), 2008.

[5] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee,
M. Balakrishnan, and Peter Marwedel. Scratchpad
Memory: A Design Alternative for Cache On-chip
Memory in Embedded Systems. In International
Conference on Hardware Software Codesign, pages
73–78, 2002.

[6] L. A. Belady. A Study of Replacement Algorithms for
Virtual-storage Computer. IBM Systems Journal,
5(2):78–101, 1966.

[7] David Black-Schaffer, James Balfour, William J.
Dally, Vishal Parikh, and Jongsoo Park. Hierarchical
Instruction Register Organization. Computer
Architecture Letters, 7(2):41–44, 2008.

[8] John Cocke and Ken Kennedy. An Algorithm for
Reduction of Operator Strength. Communications of
the ACM, 20(11):850–856, 1977.

[9] Jan Edler and Mark D. Hill. Dinero IV Trace-Driven
Uniprocessor Cache Simulator. Technical Report,
University of Wisconsin, 1999.
http://www.cs.wisc.edu/ markhill/DineroIV.

[10] Bernhard Egger, Chihun Kim, Choonki Jang,
Yoonsung Nam, Jaejin Lee, and Sang Lyul Min. A
Dynamic Code Placement Technique for Scratchpad
Memory Using Postpass Optimization. In
International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES), pages
223–233, 2006.

[11] Bernhard Egger, Jaejin Lee, and Heonshik Shin.
Dynamic Scratchpad Memory Management for Code
in Portable System with an MMU. ACM Transactions
on Embedded Computing Systems (TECS), 7(2):1–38,
2008.

[12] Nikolas Gloy and Michael D. Smith. Procedure
Placement using Temporal-ordering Information.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 21(5):977–1027, 1999.

[13] Ricardo Gonzalez and Mark Horowitz. Energy
Dissipation in General Purpose Microprocesors. IEEE
Journal of Solid-State Circuits, 31(9):1277–1284, 1996.

[14] Ann Gordon-Ross, Susan Cotterell, and Frank Vahid.
Tiny Instruction Caches for Low Power Embedded
Systems. ACM Transactions on Embedded Computing
Systems (TECS), 2(4):449–481, 2003.

[15] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan
Ernst, Todd M. Austin, Trevor Mudge, and
Richard B. Brown. MiBench: A Free, Commercially
Representative Embedded Benchmark Suite. In IEEE
4th Annual Workshop on Workload Characterization,
pages 83–94, 2001.

[16] Paul Havlak. Nesting of Reducible and Irreducible
Loops. ACM Transactions on Programming Languages
and Systems (TOPLAS), 19(4):557–567, 1997.

[17] M. S. Hecht and Jeffrey D. Ullman. Characterizations
of Reducible Flow Graphs. Journal of the ACM
(JACM), 21(3):367–375, 1974.

[18] John L. Hennessy and David A. Patterson. Computer
Architecture: A Quantitative Approach. 2003.

[19] Stephen Hines, Joshua Green, Gary Tyson, and David
Whalley. Improving Program Efficiency by Packing
Instructions into Registers. In International
Symposium on Computer Architecture (ISCA), pages
260–271, 2005.

[20] Stephen Hines, Gary Tyson, and David Whalley.
Reducing Instruction Fetch Cost by Packing
Instructions into Register Windows. In International

Symposium on Microarchitecture (MICRO), pages
19–29, 2005.

[21] Stephen Hines, Gary Tyson, and David Whalley.
Addressing Instruction Fetch Bottlenecks by Using an
Instruction Register File. In Conference on Languages,
Compilers, and Tools for Embedded Systems
(LCTES), pages 165–174, 2007.

[22] Stephen Hines, David Whalley, and Gary Tyson.
Guaranteeing Hits to Improve the Efficiency of a
Small Instruction Cache. In International Symposium
on Microarchitecture (MICRO), pages 433–444, 2007.

[23] Andhi Janapsatya, Aleksandar Ignjatović, and Sri
Parameswaran. A Novel Instruction Scratchpad
Memory Optimization Method based on
Concomitance Metric. In Asia and South Pacific
Design Automation Conference, pages 612–617, 2006.

[24] Murali Jayapala, Francisco Barat, Tom Vander Aa,
Francky Catthoor, Henk Corporaal, and Geert
Deconinck. Clustered Loop Buffer Organization for
Low Energy VLIW Embedded Processors. IEEE
Transactions on Computers, 54(6):672–683, 2005.

[25] Johnson Kin, Munish Gupta, and William H.
Mangione-Smith. The Filter Cache: An Energy
Efficient Memory Structure. In International
Symposium on Microarchitecture (MICRO), pages
184–193, 1997.

[26] Monica Lam. Software Pipelining: An Effective
Scheduling Technique on VLIW Machines. In
Conference on Programming Language Design and
Implementation (PLDI), pages 318–328, 1988.

[27] Chris Lattner and Vikram Adve. LLVM: A
Compilation Framework for Lifelong Program
Aanalysis & Transformation. In International
Symposiumon Code Generation and Optimization
(CGO), pages 75–86, 2004.

[28] Lea Hwang Lee, Bill Moyer, and John Arends.
Instruction Fetch Energy Reduction Using Loop
Caches for Embedded Applications with Small Tight
Loops. In International Symposium on Low Power
Electronics and Design (ISLPED), pages 267–269,
1999.

[29] Lea Hwang Lee, Bill Moyer, and John Arends.
Low-Cost Embedded Program Loop Caching -
Revisited. Technical Report CSE-TR-411-99,
University of Michigan, 1999.

[30] James Montanaro, Richard T. Witek, Krishna Anne,
Andrew J. Black, Elizabeth M. Cooper, Daniel W.
Dobberpuhl, Paul M. Donahue, Jim Eno, Gregory W.
Hoeppner, David Kruckemyer, Thomas H. Lee, Peter
C. M. Lin, Liam Madden, Daniel Murray, Mark H.
Pearce, Sribalan Santhanam, Kathryn J. Snyder, Ray
Stephany, and Stephen C. Thierauf. A 160-MHz, 32-b,
0.5-W CMOS RISC Microprocessor. IEEE Journal of
Solid-State Circuits, 31(11):1703–1714, 1996.

[31] Nghi Nguyen, Angel Dominguez, and Rajeev Barua.
Memory Allocation for Embedded Systems with a
Compile-Time-Unknown Scratch-Pad Size. ACM
Transactions on Embedded Computing Systems
(TECS), 8(3):1–32, 2009.

[32] Amit Pabalkar, Aviral Shrivastava, Arun Kannan, and
Jongeun Lee. SDRM: Simultaneous Determination of
Regions and Function-to-Region Mapping for
Scratchpad Memories. High Performance Computing,
pages 569–582, 2008.

[33] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru
Nicolau. Efficient Utilization of Scratch-Pad Memory
in Embedded Processor Applications. In European
Design and Test Conference, pages 7–11, 1997.

[34] Jongsoo Park, James Balfour, and William J. Dally.
Maximizing the Filter Rate of L0 Compiler-Managed
Instruction Stores by Pinning. Technical Report 126,
Concurrent VLSI Architecture Group, Stanford
University, 2009.

[35] Karl Pettis and Robert C. Hansen. Profile Guided
Code Positioning. In ACM SIGPLAN conference on
Programming Language Design and Implementation
(PLDI), pages 16–27, 1990.

[36] Bob Ramakrishna Rau. Iterative Modulo Scheduling:
An Algorithm for Software Pipelining Loops. In
International Symposium on Microarchitecture
(MICRO), pages 63–74, 1994.

[37] Rajiv A. Ravindran, Pracheeti D. Nagarkar,
Ganesh S. Dasika, Eric D. Marsman, Robert M.
Senger, Scott A. Mahlke, and Richard B. Brown.
Compiler Managed Dynamic Instruction Placement in
a Low-Power Code Cache. In International Symposium
on Code Generation and Optimization (CGO), pages
179–190, 2005.

[38] Stefan Steinke, Nils Grunwald, Lars Wehmeyer,
Rajeshwari Banakar, M. Balakrishnan, and Peter
Marwedel. Reducing Energy Consumption by
Dynamic Copying of Instructions onto Onchip
Memory. In International Symposium on Systems
Synthesis, pages 213–218, 2002.

[39] Stefan Steinke, Lars Wehmeyer, Bo-Sik Lee, and Peter
Marwedel. Assigning Program and Data Objects to
Scratchpad for Energy Reduction. In Conference on
Design, Automation and Test in Europe (DATE),
pages 409–415, 2002.

[40] Sumesh Udayakumaran, Angel Dominguez, and
Rajeev Barua. Dynamic Allocation for Scratch-Pad
Memory Using Compile-Time Decisions. ACM
Transactions on Embedded Computing Systems
(TECS), 5(2):472–511, 2006.

[41] Manish Verma and Pter Marwedel. Overlay
Techniques for Scratchpad Memories in Low Power
Embedded Processors. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems,
14(8):802–815, 2006.

[42] Manish Verma, Klaus Petzold, Lars Wehmeyer, Heiko
Falk, and Peter Marwedel. Scratchpad Sharing
Strategies for Multiprocess Embedded Systems: A
First Approach. In Workshop on Embedded Systems
for Real-Time Multimedia, pages 115–120, 2005.

[43] Manish Verma, Lars Wehmeyer, and Peter Marwedel.
Cache-Aware Scratchpad Allocation Algorithm. In
Conference on Design, Automation and Test in
Europe (DATE), 2004.

[44] Manish Verma, Lars Wehmeyer, and Peter Marwedel.
Dynamic Overlay of Scratchpad Memory for Energy
Minimization. In International Conference on
Hardware/software Codesign and System Synthesis,
pages 104–109, 2004.

[45] Lars Wehmeyer, Urs Helmig, and Peter Marwedel.
Compiler-optimized Usage of Partitioned Memories. In
Workshop on Memory Performance Issues, pages
114–120, 2004.

[46] Steven J.E. Wilton and Norman P. Jouppi. CACTI:
An Enhanced Cache Access and Cycle Time Model.
IEEE Journal of Solid-State Circuits, 31(5):677–688,
1996.

APPENDIX
A. APPENDIX

Let G be the subgraph of the control flow graph induced
by a single-level loop (a loop without any inner loops), L.
We follow Havlak’s definition of loop header and back-edges [16].
The header of L is the first visited node of L when we depth-

first search the control flow graph to construct a loop tree.
The back-edges of L are the edges whose source is in L
and whose target is the header of L. When L is a natural
loop [17], the header is uniquely defined regardless of the
particular depth-first search order used, and it has exactly
one back-edge. Let L’s header be G’s entry. When L is a
natural loop, let the source of L’s unique back-edge be G’s
exit. When L is not a natural loop, we add an exit node in
G and connect sources of L’s back-edges to the exit node.

A set S dominates a node x, denoted by S dom x, if every
path in G from the entry to x must go through at least one
element in S. S post-dominates a set T , denoted by S pdom
T , if every path in G from an element in T to the exit must
go through at least one element in S. Let Ax be the set of
program locations in L where a “copy x” resides. Let Xi be
the set of instructions in L that are placed at the ith spm
location.

Lemma A.1. For a correct copy schedule, ∀x ∈ Xi,
(Ax dom x) ∨
((Ax pdom Xi − {x}) ∧
(x resides in the ith spm location at incoming edges of L

whose target is L’s header)).

Proof. Lemma A.1 We prove the contrapositive of Lemma A.1.
Assume (Ax ¬dom x) ∧ (Ax ¬pdom Xi −{x}). By the def-
inition of dom and pdom, this assumption implies that the
control can follow a path from an element of Xi − {x} to x
through the loop header without executing any“copy x”. In
this case, the ith spm location does not hold x when the pro-
cessor tries to fetch it from the spm to execute. Assume (Ax

¬dom x) ∧ (x does not reside in the ith spm location at in-
coming edges of L whose target is L’s header). This implies
that the control can flow from the outside of L to x through
the loop header without executing any “copy x”.

Let p(x) be the execution frequency of x and p(S) =P
x∈S p(x). Let the baseline be a schedule such that ∀x ∈ L,

p(Ax) = p(x); e.g., copy x right before executing it. If x sat-
isfies the first clause of Lemma A.1 (i.e. Ax dom x), then
p(Ax) ≥ p(x). Therefore, the only way of reducing p(Ax)
from the baseline is through the second clause; but at most
one instruction in Xi can satisfy the second clause since only
one can reside in the ith spm location at L’s incoming edges.
Hence, the implication of Lemma A.1 is that, among the in-
structions placed in the same spm location, at most one can
have fewer L1 accesses than the baseline. Based on this, we
can easily prove the following claim.

Claim A.1. Let C be the capacity of the spm and L be
a single-level loop. Placing the C most frequently executed
instructions of L in the spm achieves the minimum number
of L1 accesses3.

3It is minimum under the assumption that loop fission and
code duplication are not allowed. However, loop fission can
be implemented as a separate compilation phase, while code
duplication incurs an exponential code size increase in the
worst case.

