
1

Ayodele Embry
Ben Serebrin
John Maly
Melvyn Lim

EE 482 Project
May 31, 2000

SCD2SE: A Proposed Method To Achieve Low Energy and High Performance

I. ABSTRACT

The proliferation of handheld/portable devices in the consumer electronics market has made energy consumption an
increasingly important consideration in processor design. The goal in microchip design for handheld applications is
to decrease energy consumption as much as possible without any significant loss in performance. We propose
selective deactivation as a method to achieve a low energy, high performance design. Selective deactivation
involves deactivating portions of the processor that are not contributing significantly to the performance of a given
application. In this study, we analyze the tradeoffs between energy consumption and performance when
deactivating various parts of the processor.

II. INTRODUCTION

As feature sizes shrink, computer architects are introducing more functionality and complexity to today's
microprocessors. Most current processors have more than 500 million transistors, and some have over a billion
transistors. Many of these high performance systems largely ignore power constraints. However, as chip size and
functionality grow, so do power and energy consumption. This causes a problem for portable, battery-operated
devices. Today, consumers may be willing to accept slightly less performance in return for longer battery life.
However, as handheld and other portable devices become more prevalent, consumers will expect both higher
performance and longer battery life.

There has been considerable work on low power processors in recent years. Many processors are scaling voltage,
frequency, and feature sizes in order to lower energy requirements. Several architectures have proposed using
software to maximize energy efficiency [Sinha]. Sinha and Chandrakasan proposed using wireless communication
to make decisions about processing ability based on user input and sustainable battery life. Other architectures try
to reduce mis-speculation on branches [Manne]. As cache size increases due to decreasing feature sizes and larger
die sizes, the power consumed to access the cache becomes increasingly substantial. Some architectures solve this
problem by banking the cache and only accessing cache bank that is being used [Albonesi].

With the increased use of battery-operated devices, standby current has become an important constraint in chip
design. Most portable devices spend the majority of their time in standby mode, during which the system clock is
inactive. In this mode, current is drawn by the device due to the static leakage current of the gates in the circuit.
Although the standby current is several orders of magnitude lower than the active current during normal operation,
it typically dominates battery life due to the large fraction of time the device spends in standby mode. When supply
voltage is reduced (as is commonly done to reduce active power consumption), the device threshold voltage (Vt) is
also reduced to maintain proper scaling for performance. The reduction of Vt causes the sub-threshold leakage
current of the device to increase exponentially, thus making the leakage current of devices a major concern in next
generation portable chip design [Blaauw].

Many types of applications do not use all the available processing power on a chip efficiently. For instance, some
integer applications will not utilize the floating point hardware on a chip, which can occupy up to 20% of the chip
area, thus wasting both dynamic power due to clock switching and static power due to leakage. Other applications,

2

like databases, cannot take advantage of branch prediction and power is wasted fetching and executing from
incorrect paths [Manne]. Still other applications have a small working set and do not need to utilize the entire
cache.

If the programmer can identify the behavior of these applications or if the hardware or compiler can perform
profiling to analyze repeated usage, unused units could be deactivated to save considerable power and energy
without greatly impacting performance.

III. PROPOSED SOLUTION

One way to combat growing energy budgets for portable systems is to introduce an architecture that uses
application, compiler, and runtime hints to deactivate inefficiently utilized hardware by gating clock and power
supply inputs. Special instructions can be used to instruct the processor to deactivate certain hardware modules
before the application begins to run. At the completion of the application, the processor will be returned to its
completely active state. This will allow any applications that do not provide directives to run with full processor
functionality.

Deactivation directives could be supplied in three ways. First, the programmer could include directives in the
application code to tell the hardware which units may be inefficient and can be deactivated. Second, the compiler
can be designed to keep track of instructions and deactivate units that are used infrequently. For example, if there
are very few or no floating-point instructions, the FPU could be deactivated and those instructions could be
emulated in software. Third, if a unit operates below a certain level of occupancy or accuracy (in the case of a
predictor) at runtime, that unit can be deactivated. For example, if dynamic branch prediction accuracy is below a
certain threshold, the branch predictor could be deactivated on the fly and static branch prediction could be used
instead. Dynamic deactivation is not recommended for the cache since data may be spread among several banks
and transferring all of the state to a needed space would be difficult.

While deactivating portions of the hardware can save energy, it is also very important that application performance
not be greatly impacted. Only unused or unneeded hardware should be disabled. We initially chose to model four
different types of hardware deactivation – the L2 cache, the ALU, the FPU, and the branch prediction unit.

L2 cache

Shrinking the cache size when possible is an obvious strategy for saving power. The trend in state of the art
microprocessors today is to use growing transistor budgets to increase fast, on-chip cache memory [Kamble]. For
the MIPS R10000, 30% of the chip area is devoted to cache memory and that number is increasing on newly
released chips. Published reports also corroborate the fact that on-chip static RAM caches consume substantial
fraction of overall chip power ranging from 25% for the DEC 21164 CPU to 43% for the StrongARM SA-110 from
Digital [Kamble]. Therefore, reducing cache energy consumption can significantly reduce the energy consumption
for the entire chip.

Banking caches has relieved some of the power stress on large caches, since only the bank being accessed adds to
the line capacitance. However, as feature sizes shrink and die sizes increase, the impact of leakage current on cache
power and energy dissipation also increases. At very low voltages, the power dissipation due to subthreshold
leakage can become comparable in magnitude to the switching power dissipation of the circuit. In order to decrease
the impact of leakage current, it must be possible to completely shut off unused or unneeded portions of the cache
to save energy. Assuming unused cache components can be adequately deactivated (such that they will consume
significantly less power than when activated), the savings could be vital.

ALU/FPU

Some chip designs use extra area to implement additional functional units such as ALUs and FPUs. This allows
increased performance on computationally intensive applications that contain sufficient instruction-level

3

parallelism. Deactivating additional ALUs may save power in applications that have considerable amounts of
instruction dependence and are not able to take advantage of additional processing units.

Many present day portable computing applications do not consist of many floating-point operations. Most of the
associated arithmetic is handled by the ALU for such tasks as graphical user interface updates. However, evolving
microarchitectures and increased expectations by users for improved graphics may drive FPUs onto chips for
portable devices. Power savings could be substantial if applications that do not need FPU functionality could be
run with the unit deactivated. Any floating-point instructions that are encountered would be emulated with integer
instructions, much like the StrongARM chip. The StrongARM has no FPU; instead, a slightly enhanced multiplier-
adder unit is implemented in the ALU.

Branch Prediction Unit

Some applications, like unpredictable database-type applications, do not benefit from branch prediction. The energy
usage of such applications can actually be increased by branch prediction. The branch predictor can be deactivated
when running applications that have very low prediction accuracy. This will prevent additional energy being spent
executing repeatedly down incorrect paths.

The motivation for this decision arose out of Montanaro's "A 160-MHz, 32-b, .5-W CMOS RISC Microprocessor",
which avoided the use of a branch prediction unit to save power; branches incurred a one-cycle penalty for
branches taken. A dedicated adder in the instructional unit was used to calculate branch target addresses, and this
had to run every cycle (regardless of whether the instruction was a branch or not). But the tradeoff can still be
worthwhile since the FPU occupies about 20% of the logic area of the chip.

IV. METHODOLOGY

A. Simulations

In our experiment, we looked at the effect of deactivating the hardware listed in Figure 1. We used the
SimpleScalar simulator [Austin] configured approximately to the specifications of the MIPS R10000 processor
[Vasseghi]. Daniel Citron provided the necessary configuration and code files [Citron]. Figure 2 details the
processor features.

We ran several applications from the Spec95 benchmark suite to determine performance and energy consumption
with selective hardware deactivation. Due to time and information limitations, we were only able to run four
integer benchmarks: go, compress, gcc, and m88ksim. We skipped the first 500 million instructions to prime the
cache, then ran the applications for 100 million instructions.

Hardware Action Sizes
L2 Cache Shrink size of cache by deactivating unneeded banks 0KB, 64KB, 256KB, 1024KB
FPU Deactivate FPU and emulate in software
Branch prediction Deactivate branch prediction unit and perform no

speculation
Predict not taken with no
speculation,
Bimodal w/ 1024 entries

ALU Remove ALU 1, 2, 4

Figure 1: Hardware deactivation options

4

Frequency 200 MHz
Voltage 3.3V
Process 0.35 µm
L1 Cache – I & D 32KB, 2-way
L2 Cache – U 512KB, 2-way
ALU 2

Figure 2: MIPS R10000 specifications

B. Estimated Energy Dissipation

Although many power studies solely use power as the metric, we use energy as our metric. Power can be
misleading, especially when dealing with battery-powered devices. Even if the power consumption of a device is
cut in half, the device will drain the same amount of stored battery energy if it takes twice as long to run the same
application. Therefore, one must consider the requirements of the application: is the processor expected to
continuously run but may be allowed to have reduced performance, or must it complete a finite-length task within a
required time?

Energy dissipation data was estimated using information about the configuration of the various units and runtime
data from the 4 chosen Spec95 benchmarks. The energy dissipation was measured in a slightly different manner for
each of the units and described in the following section.

Cache

For cache energy consumption, we ran the applications with no L2 cache and L2 cache sizes of 64KB, 256KB, and
1024KB. We assumed 4 integer ALUs and bimodal branch prediction unit for all four cache size configurations.
Using the Kamble and Ghose paper on analytical models for caches, we calculated the energy dissipated through
bitlines and wordlines. We did not consider output line dissipation, although it constitutes a considerable
percentage of cache power, due to time constraints and the lack of complete capacitive modeling information for
cache output lines. The Kamble and Ghose model calculates the dissipated energy using information on cache
organization and size and on dynamic behavior through misses and hits. We assumed minimum sized transistors
for the core memory elements and realistically sized pass transistors. Therefore, our results are very conservative in
the amount of power that the caches use. We model a combination of L1 and L2 cache energy in our results.

ALU

In order to determine ALU energy consumption, we ran the benchmarks with bimodal branch prediction and the
maximum size cache of 1024KB. Energy was approximated by assuming that each individual ALU has an equal
area and transistor count. Since the 2 ALUs in the R10000 occupy about 14% of the logic area, we assumed that
each individual ALU would occupy about 7% of the logic area. Energy was determined using a percentage of
transistor count equal to the percentage of logic area to calculate capacitance with minimum sized transistors.

For these energy calculations, interconnect power dissipation (which is, admittedly, a considerable amount) was
ignored due to a lack of easy modeling.

Branch Prediction Unit

In order to evaluate branch prediction, we ran our benchmarks once using a not taken scheme and again using
bimodal prediction. We could not determine explicit energy usage since we were unable to find information about
the area footprint of the branch prediction hardware. We assume that the storage and logic for branch prediction is
considerably smaller than other structures in the chip as justification for disregarding power usage due to the branch

5

predictor itself. However, we examined the number of additional instructions that were executed because of
incorrect branch prediction. Because branch prediction takes place every cycle, energy is dissipated every cycle
when accessing the branch history table. In addition, energy is wasted due to taking the incorrect path. Instructions
that are executed speculatively but will not ever commit take up space and expend energy.

FPU

Energy dissipated by the FPU was estimated by assuming that the number of logic transistors in the FPU is
proportional to the percentage of logic area occupied by the FPU. The FPU takes up approximately 20% of the
logic area of the chip. By shutting off the FPU completely when it is not efficiently used, a considerable amount of
energy can be saved. This problem is similar to that of excessive large caches in that leakage power will become
more important as time passes. However, on the performance side, IPC is decreased due to the additional cycles
needed to emulate floating point operations.

V. RESULTS

We used an evaluation matrix to consider both energy savings and performance. Performance is measured as
instructions executed per cycle and energy is measured as energy dissipated per instruction. Instructions per Cycle
tells us how well the processor is performing while Energy per Instruction tells us how low the energy costs were.
Both must be balanced in order to have an efficient, effective architecture. This allows us to measure tradeoffs
between power and performance to determine whether or not these changes can be worthwhile.

Cache Performance

0

0.5

1

1.5

2

2.5

3

go compress gcc m88ksim

In
st

ru
ct

io
n

s
p

er
 C

yc
le

no L2

64K

256K

1024K

ALU Performance

0

0.5

1

1.5

2

2.5

3

go compress gcc m88ksimIn
st

ru
ct

io
n

s
p

er
 C

yc
le

1 ALU

2 ALU

4 ALU

Figure 3: Performance measured in instructions per cycle

Cache Energy

0.00E+00

5.00E-10

1.00E-09

1.50E-09

2.00E-09

2.50E-09

3.00E-09

3.50E-09

4.00E-09

go compress gcc m88ksim

E
n

er
g

y
p

er
 In

st
ru

ct
io

n

no L2

64K

256K

1024K

ALU Energy

0.00E+00

2.00E-09

4.00E-09

6.00E-09

8.00E-09

1.00E-08

1.20E-08

1.40E-08

1.60E-08

go compress gcc m88ksim

E
n

er
g

y
P

er
 In

st
ru

ct
io

n

1 ALU

2 ALU

4 ALU

Figure 4: Energy dissipated per instruction. For the cache this calculation includes both the L1 and L2 cache
energy due to wordline and bitline switching capacitance.

6

Energy / Performance

0.00E+00
5.00E-10
1.00E-09
1.50E-09
2.00E-09
2.50E-09
3.00E-09
3.50E-09

no L2 64K 256K 1024K

Jo
u

le
s

p
er

 C
yc

le

go

compress

gcc

m88ksim

Energy/Performance

0.00E+00
2.00E-09
4.00E-09
6.00E-09
8.00E-09
1.00E-08
1.20E-08
1.40E-08

1 ALU 2 ALU 4 ALU

Jo
u

le
s

p
er

 C
yc

le

go

compress

gcc

m88ksim

Figure 5: Power vs. Performance.

L2 Cache Results

Cache energy per instruction is graphed for the combination of L1 (fixed size) and L2 (variable size) cache energy
consumption due to bitline and wordline switching. The dynamic cache energy consumption for m88ksim does not
change as the size of the L2 cache decreases. This is due to its extremely small working set, which fits completely
in the L1 cache, and the large number of L1 accesses. L2 cache accesses are so infrequent that dynamic power does
not suffer due to bitline and wordline loading. Likewise, the performance of m88ksim is also constant. However,
we did not evaluate static leakage power dissipation that takes place in the L2 cache, so static power might
dominate dynamic power for the cache due to the small number of accesses.

Gcc, compress, and go behave similarly in energy consumption. They show a small increase in dynamic power for
cache sizes from 64KB to 256KB and then a jump in dynamic power due to wordline and bitline loading with a
cache size of 1024KB. Compress and go show a negligible increase in performance with larger cache size.
However, go shows a considerable increase in IPC with the 256KB cache size and no additional gain with 1024KB.

When we examine the results for our figure of merit, energy per cycle, for the applications, we see a small
knee/saddle point for gcc, go, and compress at 256KB. This implies that these applications could benefit from
cache deactivation, which will decrease power dissipation yet cause only a negligible impact on performance.

ALU Results

Compress, gcc, and m88ksim have very similar performance when the number of ALUs is scaled. Their
performance does not increase when the number of ALUs is increased. Only go shows a performance benefit from
increasing the number of ALUs beyond 1. Further, the energy per instruction increases considerably as the number
of ALUs is increased. When we look at the relative energy per performance, we see that moving to 2 ALUs causes
an increase in energy for all the applications except m88ksim and moving to 4 ALUs causes a substantial increase in
energy dissipated. Thus, 2 ALUs seems to be the best compromise between performance and energy consumption,
which is also the reason that most processors use no more than 2 ALUs. However, where low energy consumption
is more essential than performance, applications could still benefit from allowing ALU deactivation to move from 2
ALUs to 1 ALU.

7

Bimodal Branch Prediction

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

go compress gcc m88ksim

B
ra

n
ch

 In
st

ru
ct

io
n

s

Mispredicted

Committed

Branch Prediction Performance

0

0.5

1

1.5

2

2.5

go compress gcc m88ksimIn
st

ru
ct

io
n

s
p

er
 C

yc
le

NT

Bimodal

(a) (b)

Branch Prediction

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

go compress gcc m88ksim

In
st

ru
ct

io
n

 C
o

u
n

t

NT

Bimodal

(c)

Figure 6: Branch prediction performance.
NT is a static not taken predictor.

Branch Prediction Results

The not taken predictor always guesses not taken and only begins to execute instructions that it knows will
complete. On the other hand, the bimodal predictor will sometimes guess incorrectly and begin to fetch and
execute down the wrong path. As evident from Figure 6a, compress and gcc have a considerable percentage of
mispredicted branches. For compress the percentage is almost 45%. Go, however, has almost perfect branch
prediction. After running tests with bimodal prediction, we noticed that 100 million instructions were not actually
committed, but issued. M88ksim committed only 90 million, compress committed only 57 million, and gcc
committed only 70 million instructions. However, since a branch occurs once every 6 instructions on average, the
mispredicted instruction count accounts for the deviation – these instructions were issued/executed but not
committed since they were belonged to the wrongly predicted path. Even with the large misprediction rate,
performance improvements are substantial when moving from static to dynamic branch prediction. Even with a
45% misprediction rate, compress still almost doubles its performance. This means that special care must be taken
in deciding to shut off branch prediction units to ensure that adequate performance is obtained while minimizing
mispredictions and energy use. It may be better to improve the accuracy of the predictor than to completely
deactivate it.

We were not able to calculate energy dissipation of the branch prediction unit due to the lack of information about
chip power dissipation for instructions that begin execution but are later squashed.

Floating Point Results

For the FPU, performance is not actually measured with the unit disabled due to limitations in the simulation
software that we used. Two of the applications, go and m88ksim, have no floating point instructions while gcc has
a very small number of floating point instructions. Because of the considerable area occupied by the FPU, these
applications would significantly enhance energy per performance if the FPU were deactivated.

8

VI. INSIGHTS

• It is difficult to obtain physical models for power, which rely on process parameters. The best way to get
power information is to build the chip and measure it. However, at the same time, power constraints must be
known before the chip is built. There is a major need for analytical models.

• Many assumptions had to be made to perform the power calculations. We tried to err on the conservative
side, but we realized that without interconnect measurements, we could not get a true picture of the power
consumption.

• Simply knowing die area is not enough to do efficient power calculations. The number of transistors
dedicated to each unit and its functional and electrical behavior must also be known.

• It is easier to do studies using older technology because more information and architectural details have been
published.

• It is also important to understand how the simulator measures values. For example, we had expected the
“maximum instruction” (–max:inst num) command line option to specify the limit on the number of
instructions committed, instead of the number of instructions issued/executed (as it turned out).

• Although leakage current is not currently a major factor in power dissipation, it will become more important
in coming years as feature sizes continue to shrink and voltages are scaled.

VII. CONCLUSION

Using different combinations of cache size, number of ALUs, and branch prediction, we have shown that selective
deactivation can help reduce the energy consumed by a processor per unit performance. This is especially pertinent
to handheld/portable applications, which are rapidly growing in usage and popularity. Certain hardware units are
more suitable for selective deactivation than others. Deactivating portions of the cache and the FPU produced
improvements in energy per performance, while scaling down the number of ALUs brought a decrease in energy
per performance and turning off branch prediction impacted performance significantly. Given this preliminary
analysis, we believe that selective deactivation is a promising approach in low power, high performance design.
Further work must be done with more detailed and accurate power models to explore this approach.

9

BIBLIOGRAPHY

[Kamble] Milind B. Kamble and Kanad Ghose. Analytical Energy Dissipation Models for Low Power Caches.
ACM, 1997.

[Sinha] Amit Sinha and Anantha P. Chandrakasan. Energy Aware Software. 13th International Conference on
VLSI Design, January 2000.

[Manne] Srilatha Manne, Artur Klauser, and Dick Grunwald. Pipeline Gating: Speculation Control for Energy
Reduction. ISCA ’98 , 1998

[Albonesi] David Albonesi. An Architectural and Circuit-Level Approach to Improving the Energy Efficiency of
Microprocessor Memory Structures. 1999.

[Montanaro] James Montanaro et all. A 160-MHz, 32-b, 0.5-W CMOS RISC Microprocessor. IEEE Journal of
Solid State Circuits, 1996.

[Blaauw] David Blaauw. Power Management Issues in High Performance Processor Design.
Proceedings of the IEEE Alessandro Volta Memorial Workshop on Low-Power Design, 1998.

[Vasseghi] Vasseghi et al, "200MHz Superscalar RISC Microprocessor Processor", IEEE Journal of Solid-State
Circuits, 1996.

[Austin] Austin et al, “SimpleScalar: Simulation Tools for Microprocessor and System Evaluation”,
www.simplescalar.org.

[Citron] Daniel Citron, C.S. Department, Hebrew University of Jerusalem, citron@cs.huji.ac.il. Personal
communication.

