
LOAD-BALANCED ROUTING IN INTERCONNECTION

NETWORKS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Arjun Singh

March 2005

c� Copyright by Arjun Singh 2005

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

William J. Dally
(Principal Adviser)

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Nick Mckeown

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Nicholas Bambos

Approved for the University Committee on Graduate Stud-

ies.

iii

iv

Abstract

Interconnection networks enable fast data communication between components of a digi-

tal system. Today, interconnection networks are used in a variety of applications such as

switch and router fabrics, processor-memory interconnect, I/O interconnect, and on-chip

networks, to name a few.

The design of an interconnection network has three aspects — the topology, the routing

algorithm used, and the flow control mechanism employed. The topology is chosen to

exploit the characteristics of the available packaging technology to meet the requirements

(bandwidth, latency, scalability, etc.) of the application, at a minimum cost. Once the

topology of the network is fixed, so are the bounds on its performance. For instance, the

topology determines the maximum throughput (in bits/s) and zero-load latency (in hops)

of the network. The routing algorithm and flow control must then strive to achieve these

performance bounds.

The function of a routing algorithm is to select a path to route a packet from its source

to its destination. In this thesis, we demonstrate the significance of the routing algorithm

used in the network towards achieving the performance bounds set by the topology. Central

to this thesis, is the idea of load-balancing the network channels. A naive routing algorithm

that does not distribute load evenly over all channels, stands to suffer from sub-optimal

worst-case performance. However, unnecessary load-balancing is overkill. Spreading traf-

fic over all channels when there is no uneven distribution of traffic, leads to sub-optimal

best-case and average-case performance. This thesis explores routing algorithms that strive

to achieve high worst-case efficiency without sacrificing performance in the average or

best-case.

While performance metrics such as average latency and worst-case throughput are key

v

parameters in evaluating a network, there are several other important measures such as

amount of packet reordering, statistical guarantees on delay and network buffer occupancy,

to name a few. In the last part of this thesis, we propose a method to analyze the perfor-

mance of a class of load-balanced networks over these performance metrics.

vi

Acknowledgements

I am grateful above all to my advisor, Bill Dally, whose enthusiasm and insight have made

research a most enjoyable and fulfilling experience. His phenomenal breadth of knowledge

and ability to discern the key points of any research problem, continue to inspire me. I am

also grateful to my thesis and orals committee members, Professors McKeown, Bambos,

Peumans, and Rosenblum for their invaluable comments and feedback on my work.

I would like to thank the members of the Concurrent VLSI Architecture (CVA) group,

for their help and support throughout these years. I especially enjoyed the stimulating

brainstorming sessions with the members of the interconnect subgroup (Amit, Brian, Jin,

and John). I would also like to acknowledge Mattan, Nuwan, and Jung-Ho for being ex-

tremely supportive and understanding office mates.

For all the fun times at Stanford, I would like to thank all my friends — Indu, for her

support over the last few years, Datta, Sriram, Sahoo, Niloy, and Amal, for having been

there to help me in times of need. I also thank Sriram and Amit for proof reading parts of

my dissertation. Finally, I thank my father, mother, and sister, who have been a pillar of

strength for me and without whose encouragement none of this would have been possible.

This dissertation is dedicated to the loving memory of my departed mother who con-

tinues to guide me in spirit.

vii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 A brief introduction to interconnection networks 1

1.2 The importance of interconnection networks 3

1.3 The need for load-balanced routing . 4

1.4 Load-balancing in networking . 6

1.5 Contributions . 7

1.6 Outline . 8

2 Preliminaries 10

2.1 Definitions . 11

2.2 Performance measures . 12

2.3 Performance bounds . 14

2.4 Torus networks . 15

2.5 Previous work on routing on torus networks 17

2.6 Traffic patterns . 19

3 Oblivious Load Balancing 20

3.1 Balancing a �-Dimensional ring: RLB and RLBth 20

3.2 RLB routing on higher dimensional tori 23

3.2.1 RLB threshold (RLBth) on higher dimensional tori 28

viii

3.3 Performance Evaluation . 28

3.3.1 Experimental setup . 28

3.3.2 Latency-load curves for RLB . 29

3.3.3 Effect of backtracking . 30

3.3.4 Throughput on specific traffic patterns 30

3.3.5 Throughput on random permutations 33

3.3.6 Latency . 35

3.4 Taxonomy of locality-preserving algorithms 37

3.5 Discussion . 40

3.5.1 The drawbacks of RLB . 40

3.5.2 Deadlock and livelock . 42

3.5.3 Packet reordering . 42

3.6 Summary . 43

4 GOAL Load Balancing 45

4.1 GOAL . 46

4.1.1 Virtual channels and deadlock . 47

4.1.2 Livelock . 47

4.2 Performance evaluation . 48

4.2.1 Throughput on specific patterns 49

4.2.2 Throughput on Random Permutations 52

4.2.3 Latency . 53

4.2.4 Stability . 53

4.2.5 Performance on Hot-Spot traffic 58

4.3 Summary . 59

5 Globally Adaptive Load-balancing 61

5.1 GAL: Globally Adaptive Load-balanced routing 61

5.1.1 GAL on a ring . 62

5.1.2 GAL routing in higher dimensional torus networks 63

5.2 Performance evaluation of GAL . 64

5.2.1 Throughput on benign and hard traffic 65

ix

5.2.2 Throughput on random permutations 65

5.2.3 Latency at low loads and hot-spot traffic 67

5.2.4 Stability . 68

5.3 Summary of GAL . 72

5.4 Motivation for Channel Queue Routing (CQR) 73

5.4.1 A Model from queueing theory . 73

5.4.2 Routing tornado traffic for optimal delay 74

5.4.3 GAL’s latency on tornado traffic 77

5.4.4 Routing tornado traffic with CQR 78

5.5 Channel Queue Routing . 81

5.6 CQR v.s. GAL: Steady-state performance 82

5.6.1 Summary of previous performance metrics 82

5.6.2 Latency at Intermediate Loads . 84

5.7 CQR v.s. GAL: Dynamic traffic response 85

5.7.1 Step Response . 85

5.7.2 Barrier Model . 86

5.8 Summary of CQR . 87

5.9 Summary of load-balanced routing on tori 88

6 Universal Globally Adaptive Load-Balancing 90

6.1 Motivation . 91

6.2 UGAL on arbitrary symmetric topologies 94

6.3 Fully connected graph . 96

6.3.1 Deadlock avoidance . 96

6.3.2 Throughput on benign and hard traffic 96

6.4 �-ary �-cube (torus) . 98

6.4.1 Deadlock avoidance . 98

6.4.2 Throughput on benign and hard traffic 98

6.4.3 Throughput on random permutations 99

6.5 Cube Connected Cycles . 101

6.5.1 Deadlock avoidance . 102

x

6.5.2 Throughput on benign and hard traffic 103

6.5.3 Throughput on random permutations 105

6.6 Summary . 107

7 Delay and buffer bounds 108

7.1 Background . 108

7.2 Many sources queueing regime . 110

7.3 Application to high-radix fat trees . 111

7.4 Results . 113

7.4.1 Increasing the radix � . 114

7.4.2 Analytically obtaining the CCDF 115

7.4.3 Approximating the delay CCDF 117

7.4.4 Bursty Flows . 118

7.5 Discussion . 119

7.5.1 Using buffer bounds to disable flow control 119

7.5.2 Bounding the reordering of packets 121

7.6 Summary . 125

8 Conclusion and future work 126

8.1 Future directions . 127

A Finding the worst-case throughput 129

A.1 Oblivious routing . 129

A.1.1 Worst-case traffic for oblivious routing 129

A.1.2 RLB is worst-case optimal on a ring (Theorem 4) 130

A.1.3 Worst-case permutations for different oblivious algorithms 131

A.2 Bounding the worst-case throughput of MIN AD routing 132

A.2.1 An algorithm for bounding the worst-case throughput of minimal

routing . 133

A.2.2 Experiments on different topologies 135

B GOAL is deadlock-free 140

xi

C Results for ��-ary �-cube network 142

D Probability of a queue being empty 143

Bibliography 144

xii

List of Tables

2.1 Previous routing algorithms for torus networks. 17

2.2 Traffic patterns for evaluation of routing algorithms on �-ary �-cubes 19

3.1 Saturation throughput of RLB and its backtracking variation 30

3.2 Comparison of saturation throughput of RLB, RLBth and three other rout-

ing algorithms on an 8-ary 2-cube for six traffic patterns 31

3.3 Average Saturation Throughput for 10� random traffic permutations 33

3.4 Average total, hop and queueing latency (in time steps) for ��� packets for

� sets of representative traffic paths at ��� load. �� �, �� � and ���

represent local, semi-local and non-local paths, respectively. � is node

(�,�), � is (�,�), � is (�,�), and � is (�,�). All other nodes send packets in

a uniformly random manner at the same load. 38

3.5 Taxonomy of locality preserving randomized algorithms. Saturation through-

put values are presented for an �-ary �-cube topology. 39

4.1 Deadlock avoidance schemes for the different routing algorithms 48

5.1 Table summarizing the performance of CQR and GAL. The throughput is

normalized to network capacity and latency is presented in cycles. 83

5.2 Report Card for all routing algorithms . 88

6.1 Traffic patterns for evaluation of routing algorithms on CCC(�). A node’s

address is represented in � bits for CCC(�). 104

C.1 Throughput numbers for a ��-ary �-cube 142

xiii

List of Figures

1.1 The functional view of an interconnection network. Terminals �� through

�� are connected to the network with bidirectional channels. 2

1.2 Realizing the 8-node network using a crossbar switch 2

1.3 Connecting the 8 nodes in a ring . 3

1.4 The 8 node ring with unidirectional channels 5

1.5 Minimally routed tornado traffic. Clockwise link load is 3. Counter clock-

wise link load is 0. 6

2.1 Notational latency vs. offered load graph 12

2.2 Accepted throughput vs. offered load . 13

2.3 Minimally routed pattern �� �, �� �, �� � 14

2.4 A �-ary �-cube (�� � torus) network . 16

2.5 Constructing a �-ary �-cube from � �-ary ��� �	-cubes 16

3.1 Non-minimally routing tornado traffic based on locality. The dashed lines

contribute a link load of �
�

while the solid lines contribute a link load of �
�
.

All links equally loaded with load = ��
�

. 21

3.2 Probability distribution of the location of the intermediate node in RLB.

All nodes in a similarly shaded region (quadrant) have equal probability of

being picked. 25

3.3 Traversing dimensions in fixed order causes load imbalance 26

3.4 An example of routing using RLB . 27

3.5 Avoiding backtracking in the RLB scheme. When the directions are fixed

for both phases, routing is done along the bold path instead of the dotted path. 27

xiv

3.6 RLB delay-load curves for various traffic patterns 29

3.7 Performance of different algorithms on NN (Nearest neighbor) traffic . . . 32

3.8 Performance of different algorithms on BC (Bit Complement) traffic 32

3.9 Histograms for the saturation throughput for 10� random permutations. (a)

RLB, (b) VAL, (c) ROMM, (d) DOR. 34

3.10 Histograms for 10� packets routed from node A(0,0) to node C(1,3). (a)

ROMM, (b) RLBth, (c) RLB, (d) VAL. The network is subjected to UR

pattern at 0.2 load. 36

3.11 Adversarial traffic for RLB . 41

4.1 Example route from S (0,0) to D (2,3) through the minimal quadrant (+1,+1) 46

4.2 Comparison of saturation throughput of seven algorithms on an �-ary �-

cube for two benign traffic patterns. 49

4.3 Comparison of saturation throughput of seven algorithms on an �-ary �-

cube for four adversarial traffic patterns 50

4.4 Performance of different algorithms on UR (Uniform Random) traffic . . . 51

4.5 Performance of different algorithms on TOR (Tornado) traffic 51

4.6 Histograms for the saturation throughput for 10� random permutations. (a)

DOR, (b) ROMM, (c) RLB, (d) CHAOS (e) MIN AD (f) GOAL. 54

4.7 Best-case, Average and Worst-case Saturation Throughput for 10� random

traffic permutations . 55

4.8 Average total — hop (�) and queueing () — latency for ��� packets for

� sets of representative traffic paths at ��� load 55

4.9 Accepted Throughput for BC traffic on (a) GOAL and (b) CHAOS 56

4.10 Accepted Throughput for BC traffic on (a) DOR (b) VAL (c) ROMM (d)

Oblivious RLB algorithms — RLB & RLBth. The minimum throughput

(Min or
�) over all source-destination pairs remains flat post-saturation

just like the average throughput (Avg or
�). 57

4.11 Saturation Throughput for the Hot-Spot traffic pattern and the background

Bit Complement pattern. 58

xv

5.1 A packet is injected into the non-minimal injection queue when the mini-

mal injection queue for its destination reaches a threshold. 62

5.2 GAL on tornado traffic on an � node ring 63

5.3 GAL node for a �-D torus . 64

5.4 Comparison of saturation throughput on benign traffic on an �-ary �-cube . 65

5.5 Comparison of saturation throughput on adversarial traffic on an �-ary �-cube 66

5.6 Histograms for the saturation throughput for 10� random permutations. (a)

GAL, (b) Ideal. 66

5.7 Best-case, Average and Worst-case Saturation Throughput for 10� random

traffic permutations . 67

5.8 Average total — hop (�) and queuing () — latency for ��� packets for �

sets of representative traffic paths at ��� load 68

5.9 Saturation Throughput for the Hot-Spot traffic pattern and the background

Bit Complement pattern . 69

5.10 GAL with fixed threshold is unstable for UR traffic at ��� offered load . . . 70

5.11 GAL is stable with threshold variation post saturation. UR traffic at ���

load switches to TOR at ���� load on Cycle ���. 71

5.12 The optimal fraction of traffic in the minimal and non-minimal paths for

tornado traffic on an � node ring . 76

5.13 Optimal minimal, non-minimal and overall latency of the theoretical model

for tornado traffic on an � node ring . 76

5.14 GAL on tornado traffic on an 8 node ring at the point when it switches from

minimal to non-minimal. Only 1 set of injection queues corresponding to

the destination is shown. 77

5.15 Latency-load plot for GAL on tornado traffic on an � node ring 78

5.16 CQR on tornado traffic on an � node ring at the point when it switches from

minimal to non-minimal . 79

5.17 CQR throughput on tornado traffic on an � node ring 80

5.18 Latency-load plot for CQR on tornado traffic on an � node ring 80

5.19 Quadrant selection from source (�� �) to destination (�� �) in CQR 82

xvi

5.20 Performance of GAL and CQR on UR traffic at 1.1 offered load. (a)

Throughput decreases over time for GAL (with fixed threshold) as it is

unstable post saturation (b) CQR is stable post saturation. 83

5.21 Latency profile of CQR and GAL for the 2D-tornado traffic 84

5.22 Transient response of CQR and GOAL to the tornado traffic pattern at 0.45

load started at cycle 0 . 85

5.23 Dynamic response of CQR and GAL v.s. the batch size per node showing

CQR’s faster adaptivity . 87

6.1 A � node toy network. We consider the permutation: � � �; � � �. The

black arrows show the paths along which MIN AD routes traffic. 91

6.2 Optimally routing a permutation traffic pattern with VAL. The thick (� hop)

arrows signify a load of
��, while the thin (� hop) arrows contribute a link

load of
��. 92

6.3 UGAL throughput on a � node network for UR traffic 93

6.4 UGAL throughput on a � node network for permutation traffic 93

6.5 Latency-load plots for UGAL on a � node network for UR and permutation

traffic . 94

6.6 The congested channel, �, at saturation 96

6.7 Latency-load plots for UGAL on UR and PERM traffic on ��. UGAL

saturates at � for UR and at ��� for PERM. 97

6.8 Throughput of MIN AD, VAL, and UGAL on UR and PERM traffic pat-

terns on �� . 98

6.9 Comparison of saturation throughput of three algorithms on an �� � torus

for two benign traffic patterns . 99

6.10 Comparison of saturation throughput of three algorithms on an �� � torus

for four adversarial traffic patterns . 100

6.11 Histograms for the saturation throughput for 10� random permutations on

an �� � torus. (a) MIN AD, (b) UGAL. 100

6.12 Throughput of MIN AD, VAL, and UGAL in the best, average and worst-

case of ��� traffic permutations on an �� � torus 101

xvii

6.13 A Cube connected cycle, CCC(3) . 102

6.14 Example of MIN AD routing from source �� to destination �� on CCC(�) . 103

6.15 Comparison of saturation throughput of three algorithms on CCC(�) for

two benign traffic patterns . 104

6.16 Comparison of saturation throughput of three algorithms on CCC(�) for

four adversarial traffic patterns . 105

6.17 Histograms for the saturation throughput for 10� random permutations on

CCC(�). (a) MIN AD, (b) UGAL. 106

6.18 Throughput of MIN AD, VAL, and UGAL in the best, average and worst-

case of ��� traffic permutations on CCC(�) 106

7.1 An upstream queue feeding some flows into a downstream queue 110

7.2 Simplified scenario of the set up of two queues 111

7.3 A �-ary �-tree . 112

7.4 The �-ary �-tree used in our smulations 112

7.5 Queue depth at each hop of a �-ary �-tree for (a) k=2 (b) k=4 (c) k=8 and

(d) k=16 . 114

7.6 Analytically derived queue depth against the measured queue depth at each

hop for a ��-ary �-tree at ��� load . 116

7.7 End-to-end packet delay (theoretical and measured) for a ��-ary �-tree at

different injected loads . 117

7.8 Queue depth at each hop of a ��-ary �-tree for bursty traffic and ��� load . . 118

7.9 Queue depth at each hop of a ��-ary �-tree for bursty traffic and 0.6 load . . 119

7.10 End-to-end packet delay for a ��-ary �-tree for bursty traffic at an injected

load of 0.6 . 120

7.11 Buffer depth requirement at various injection loads 121

7.12 Reordering of packets sent over � different paths 122

7.13 Time-line for deriving ROB occupancy . 123

7.14 Bounding the Reorder Buffer Occupancy 124

7.15 ROB size requirements at various injection loads 125

A.1 We consider edge (�� �) of an �-node ring 131

xviii

A.2 The channel load graph for edge (� � �) for RLB on an �-node ring. The

maximum weight matching is shown in black arrows. 131

A.3 Worst case traffic permutation for 2 phase ROMM. Element
�� �� of the

matrix gives the destination node for the source node ��� � 132

A.4 Worst case traffic permutation for RLB. Element
�� �� of the matrix gives

the destination node for the source node ��� �	 133

A.5 Constructing an adversarial pattern for minimal routing on an � � � torus.

We construct the NSPE graph for edge �� �. 136

A.6 The NSPE graph for edge (� � �) and its maximum matching (matched

arrows are shown in black) . 137

A.7 The adversarial traffic pattern returned by the matching for edge �� � . . . 137

A.8 Constructing an adversarial pattern for minimal routing on a �� node cube

connected cycle. We construct the NSPE graph for edge �� �. 138

A.9 An adversarial pattern for which the throughput of any minimal algorithm

is ��� of capacity . 139

xix

xx

Chapter 1

Introduction

1.1 A brief introduction to interconnection networks

An interconnection network is a programmable system that enables fast

data communication between components of a digital system. The network

is programmable in the sense that it enables different connections at different

points in time. The network is a system because it is composed of many compo-

nents: buffers, channels, switches, and controls that work together to deliver

data.

— Principles and Practices of Interconnection Networks (Chapter 1.1),

Dally & Towles [12]

The functional view of an interconnection network is illustrated in Figure 1.1. Eight

terminal nodes are connected to the network with bidirectional channels. When a source

terminal (say ��) wants to communicate with a destination terminal (say ��), it sends data

in the form of a message into the network and the network delivers the message to ��.

Using the same resources, the network can deliver the above message in one cycle, and a

different message in the next cycle.

The interconnection network of Figure 1.1 may be realized in several ways. One ap-

proach is to provision the system such that there is a possible point-to-point connection

between every pair of terminals. As illustrated in Figure 1.2, one way of implementing

1

2 CHAPTER 1. INTRODUCTION

Interconnection Network

T1
T2 T3 T4 T5 T6 T7T0

Figure 1.1: The functional view of an interconnection network. Terminals �� through ��

are connected to the network with bidirectional channels.

such an arrangement is by connecting the terminals to a crossbar switch. At every cycle,

the crossbar connects each source terminal with one distinct destination terminal.

T1 T2 T3 T4 T5 T6 T7T0

Crossbar Switch

Figure 1.2: Realizing the 8-node network using a crossbar switch

An alternative way to implement the network may be to connect each terminal, ��,

to a router node, ��, and connect the router nodes in a ring using bidirectional channels

(Figure 1.3). While this implementation connects the terminals with much less wiring than

may be required in the crossbar realization, the drawback is that all terminals no longer

have point-to-point connections. In our example, �� can now send data to �� either through

nodes ��, ��, ��, ��, and �� or through ��, ��, ��, ��, and ��. For this reason, this

implementation is called a multi-hop network.

Irrespective of the way the interconnection network is realized, the network itself plays

a vital role in determining the performance of the system as a whole. We next examine

some digital systems wherein we might encounter interconnection networks and explain

why the network’s performance is a key component of the performance of the system as a

whole.

1.2. THE IMPORTANCE OF INTERCONNECTION NETWORKS 3

R0 R1 R2 R3

R4R5R6R7

Ring Network

T0 T1 T2 T3

T4T5T6T7

Figure 1.3: Connecting the 8 nodes in a ring

1.2 The importance of interconnection networks

Today, interconnection networks are used in almost all digital systems that have two or

more components to connect. In a computer system, the “terminal nodes” from the previous

section could be processors and memories, or I/O devices and controllers, communicating

with each other. They could also be input and output ports in the case of communication

switches and network routers. Interconnection networks may also connect sensors and

actuators to processors in control systems, host and disk nodes in I/O networks and on-chip

cores in chip multiprocessors.

The performance of most digital systems today is limited by their communication or

interconnection, not by their logic or memory. Hence, it is imperative that the underlying

interconnection network perform efficiently to improve the efficacy of the entire system.

For instance, in a computer system, the interconnection network between processor and

memory determines key performance factors such as the memory latency and memory

bandwidth. The performance of the interconnection network in a communication switch

largely determines the capacity (data rate and number of ports) of the switch.

The performance of an interconnection network can be measured using a rich set of

metrics. The most common metrics are throughput and latency. Other important metrics

include reliability, graceful degradation in the presence of faults, in-order delivery of data

4 CHAPTER 1. INTRODUCTION

packets, and delay guarantees in communicating data. To meet the performance specifica-

tions of a particular application, the topology, routing, and flow control of the network must

be implemented. The topology of the network refers to the arrangement of the shared set

of nodes and channels. Once a topology has been chosen, the routing algorithm determines

a path (sequence of nodes and channels) a message takes through the network to reach its

destination. Finally, flow control manages the allocation of resources to packets as they

progress along their route. The topology sets limits on the performance of the network

while the routing and flow-control strive to realize these performance limits.

In this thesis, we focus on the routing of packets through the network. In other words,

given the topology, and assuming ideal flow control, we attempt to route packets through

the network to give high performance on several metrics.

1.3 The need for load-balanced routing

The routing method employed by a network determines the path taken by a packet from

a source terminal node to a destination terminal node. Networks with high path diversity

offer many alternative paths between a source and destination. Oblivious routing algorithms

choose between these paths based solely on the identity of the source and destination of the

message while adaptive algorithms may base their decision on the state of the network.

A good routing algorithm makes its route selection in a manner that exploits locality to

provide low latency and high throughput on benign traffic. Many applications also require

the interconnection network to provide high throughput on adversarial traffic patterns. In

an Internet router, for example, there is no backpressure on input channels. Hence, the

interconnection network used for the router fabric must handle any traffic pattern, even the

worst-case, at the line rate, or else packets will be dropped. To meet their specifications,

I/O networks must provide guaranteed throughput on all traffic patterns between host and

disk nodes. Some multicomputer applications are characterized by random permutation

traffic1. This arises when operating on an irregular graph structure or on a regular structure

1Random permutation traffic in which each node sends all messages to a single, randomly-selected node
should not be confused with random traffic in which each message is sent to a different randomly selected
node.

1.3. THE NEED FOR LOAD-BALANCED ROUTING 5

that is randomly mapped to the nodes of the machine. Performance on these applications

is limited by the throughput of the network on adversarial patterns.

A routing algorithm must strike a balance between the conflicting goals of exploiting

locality on benign traffic while load-balancing on adversarial traffic. To achieve high per-

formance on benign traffic, Minimal Routing (MR) — that chooses a shortest path for each

packet — is favored. MR, however, performs poorly on worst-case traffic due to load im-

balance. With MR, an adversarial traffic pattern can load some links very heavily while

leaving others idle. To improve performance under worst-case traffic, a routing algorithm

must balance load by sending some fraction of traffic over non-minimal paths hence, de-

stroying some of the locality.

7 6 5
4

3210

Figure 1.4: The 8 node ring with unidirectional channels

In order to better understand the tradeoffs inherent in minimally routing a benign and

a difficult traffic pattern, we revisit our example of the � node ring from Figure 1.3. For

brevity, we drop the terminal nodes from our discussion and concentrate solely on the router

nodes and the channels. For the sake of simplicity, we also consider each bidirectional

channel in the figure as two unidirectional channels, one for each direction. Moreover,

each channel has a bandwidth of � bits/s. Figure 1.4 shows the simplified version of the �

node ring. We consider minimally routing a benign and a hard traffic pattern on this ring.

For the benign pattern, nearest neighbor (NN), all traffic from node � is distributed

equally amongst its neighboring nodes (half to node ���2 and half to node ���). Since the

channels have bandwidth �, each node can inject traffic at an optimal rate of �� (throughput,

� ��) if traffic is simply routed along minimal paths. We call such a traffic benign as all

the channels are naturally load balanced if MR is used to route packets.

For the difficult pattern, we consider the worst-case traffic for MR on a ring, tornado

(TOR) traffic. In TOR, all traffic from node � is sent nearly half-way-around the ring, to

2All operations on node ids are done modulo the total number of nodes.

6 CHAPTER 1. INTRODUCTION

0 1 2 3
4567

Figure 1.5: Minimally routed tornado traffic. Clockwise link load is 3. Counter clockwise
link load is 0.

node �� �. Figure 1.5 shows how minimally routing TOR leads to high load on the clock-

wise channels keeping the counter clockwise channels completely idle. This results in con-

siderable load imbalance leading to a poor throughput of � ��� (����� of the optimal

throughput as we shall demonstrate in the subsequent chapters3). Achieving good perfor-

mance on adversarial patterns such as TOR requires routing some traffic non-minimally

(the long way around the ring) to balance the load.

We could balance TOR traffic by completely randomizing the routing (VAL) as sug-

gested by Valiant [50], sending from node � to a random intermediate node � and then from

� to � � �. Each of these two phases is a perfectly random route and hence uses ��� �

links on average for a total of � links traversed per packet. These links are evenly divided

between the clockwise and counterclockwise rings, two each. Thus, even though we are

traversing one more link on average than for minimal routing, the per-node throughput for

VAL is higher on TOR, � ���. The problem with purely randomized routing is that it

destroys locality. For the NN traffic pattern, throughput is still ��� while MR gives � ��.

Through the most part of this thesis, we shall propose routing algorithms that strive

to achieve good worst-case performance without sacrificing the locality inherent in benign

traffic.

1.4 Load-balancing in networking

Load balancing has been of interest in the networking community over the last few years.

As the line rates continue to increase, load balancing plays a key role in building high

3This throughput asymptotically degrades to ��� (��� of optimal) as the number of nodes becomes large.

1.5. CONTRIBUTIONS 7

speed interconnection networks within Internet routers [4] and also guaranteeing high per-

formance in the network backbone [54].

In Internet routers, the worst-case throughput largely determines the capacity of the

router [12, 49] since the worst-case throughput effectively determines the maximum load

that the fabric is guaranteed to handle. Load-balancing has proved to be a useful technique

to ensure high guaranteed throughput delivered by the router fabric.

Load-balanced switches were first introduced as Birkhoff-von Neumann (BN) switches

by Chang et al [4, 5]. These switches consist of two back-to-back crossbar stages. Similar

to Valiant’s load balancing scheme, the first stage load balances the incoming traffic pattern

by spreading traffic uniformly and at random among the first stage’s output ports. The

second stage then delivers traffic to the actual destination port. Based on the BN switch, a

lot of work has been done to incorporate efficient load balancing within Internet switches

[20, 21].

Recently, Keslassy et al [21] showed that using a fully connected graph topology with

Valiant’s two phase routing ensures optimal guaranteed throughput. From the point of

view of worst-case throughput, this is the optimal load balancing scheme. However, this

scheme does not optimize either the throughput on benign traffic patterns or the latency of

packet delivery. The load balancing routing algorithms in this thesis strive to achieve high

worst-case throughput without sacrificing performance in the average or best-case, while

delivering packets with low latency.

1.5 Contributions

This thesis includes several key contributions to the study of load-balanced routing on

interconnection networks.

We first concentrate on a popular interconnection topology, torus or �-ary � cube net-

works and design efficient routing algorithms for them:

� RLB: Locality-preserving Randomized Oblivious routing [43]. We propose efficient

oblivious routing algorithms that provide high worst-case and average-case perfor-

mance while sacrificing modest performance in the best case. However, they do not

give optimal worst-case performance for generic torus networks.

8 CHAPTER 1. INTRODUCTION

� GOAL: Globally Oblivious Adaptive Locally routing [41]. GOAL improves the worst

case performance of RLB by introducing adaptivity in its path selection. GOAL gives

optimal worst-case performance but suffers from sub-optimal best-case behavior.

� GAL: Globally Adaptive Load-balanced routing [44, 42]. GAL senses global conges-

tion adaptively and alleviates GOAL’s problem of sacrificing performance in the best

case. GAL is the only known algorithm that gives optimal worst-case and best-case

performance compared to all known routing algorithms for torus networks.

From torus networks, we extend our focus to generic regular topologies.

� UGAL: Universal Globally Adaptive Load-balanced routing [40]. We extend the

concepts of GAL to propose a universal routing scheme on any regular topology.

UGAL gives provably optimal worst case performance without sacrificing any per-

formance in the best-case.

Finally, our focus shifts to other performance metrics such as delay and buffer occu-

pancy guarantees and packet reordering in load-balanced, high radix interconnection net-

works.

� Delay and buffer bounds in high radix interconnection networks [39]. We analyze

the buffer occupancy, end-to-end delay, and packet reordering in load-balanced high

radix interconnection networks. Our results suggest that modest speedups and buffer

depths enable reliable networks without flow control to be constructed.

1.6 Outline

For the remainder of this thesis, we first focus on efficient oblivious and adaptive routing on

torus or �-ary � cube networks. Chapter 2 introduces preliminary notations that will be used

throughout the thesis. Chapters 3, 4, and 5 explore efficient algorithms designed to load

balance torus networks. Chapter 6 builds on the concepts used for routing on tori to propose

a universal routing algorithm on a generic regular topology that load balances the network

without sacrificing locality. Finally, Chapter 7 addresses the problem of bounding the buffer

1.6. OUTLINE 9

occupancy and end-to-end delay in load-balanced, high radix interconnection networks.

Conclusions and future work are presented in Chapter 8. A method for finding worst-case

traffic patterns in presented in Appendix A. Appendix B proves that GOAL is deadlock

free. Throughput results for a ��-ary �-cube network are presented in Appendix C. An

expression for the probability of a queue being empty is derived in Appendix D.

Chapter 2

Preliminaries

Before we address the problem of designing load-balanced routing algorithms, we list our

assumptions and provide a description of the network model. First, we abstract a topology

as a graph — a collection of router nodes connected by directed edges (channels). The

set of nodes is denoted as � and the size of this set is � �� �. Likewise, the set of

channels is � and its size is � ���. Each channel has a bandwidth of � bits/s. The

bisection bandwidth, B, of the topology is the sum of the bandwidth of the channels that

cross a minimum bisection (a cut that partitions the entire graph nearly in half) of the graph.

Without loss of generality, each of the router nodes has an associated terminal node. We do

not explicitly include these terminal nodes in our figures to avoid unnecessary clutter. Data

is injected by the terminal nodes in packets which are further divided into fixed-sized flow

control units called flits. Since this thesis is about routing, we assume ideal flow control

and concentrate on single-flit sized packets.

In the rest of this chapter, we first formalize a few terms that will be used throughout

this thesis. We shall then put these terms in perspective by briefly explaining how the

performance of interconnection networks is typically measured. We then present a bound

on the worst-case throughput for a network. Finally, we introduce torus networks and give

a brief description of some traffic patterns we shall use on these networks.

10

2.1. DEFINITIONS 11

2.1 Definitions

Injection rate (Offered load) (
): The injection rate,
, is the amount of data that each

terminal node injects into the network on average.

Traffic matrix (Traffic pattern) (�): The destination of the traffic injected by each ter-

minal node is given by a � �� traffic matrix, �. Each entry, ��� , of � corresponds

to the fraction of traffic injected from terminal node � destined for terminal node �. It

follows that the entries in each row add to �. A node is said to be oversubscribed if

the sum of its column entries in � is greater than �. A traffic matrix is admissible if

none of the nodes is oversubscribed.

Permutation matrix (�): A traffic matrix�with a single � entry in each row and column.

All other entries are �. Each source node sends traffic to a single distinct destination

node.

Uniform Random traffic (��): A traffic matrix in which every node sends data uni-

formly and at random to every destination. All entries in � equal ��� .

Routing algorithm (�): A routing algorithm maps a source-destination pair to a path

through the network from the source to the destination. Oblivious algorithms select

the path using only the identity of the source and destination nodes. Adaptive algo-

rithms may also base routing decisions on the state of the network. Both oblivious

and adaptive algorithms may use randomization to select among alternative paths.

Minimal algorithms route all packets along some shortest path from source to desti-

nation, while non-minimal ones may route packets along longer paths.

Channel load (�����
��): The amount of data crossing channel � on average when rout-

ing traffic matrix � at an injection rate
, with routing algorithm �.

Throughput (�����): The maximum
 that the terminal nodes can inject such that no

channel is saturated, or is required to deliver more data than its bandwidth supports.

Capacity (����): The ideal throughput for UR traffic, given by ���� . Throughout this

thesis, we shall normalize both the throughput and the offered load to the capacity of

12 CHAPTER 2. PRELIMINARIES

the network.

Worst-case throughput (�����): The worst-case throughput for routing algorithm �

over the space of all admissible traffic matrices,

�����	 ���
	
�����	

2.2 Performance measures

We place the terms defined above in perspective and briefly explain the basics of evaluating

the performance of a routing algorithm. For a given traffic pattern, �, and routing algo-

rithm, �, we can describe the performance of an interconnection network with two graphs

as shown in Figures 2.1 and 2.2. The steady-state performance of the network at offered

loads below the saturation point is described by Figure 2.1 which shows the average latency

per packet plotted against the offered load,
. The zero-load latency or hop-count, � , is

the �-intercept of this curve and the throughput, �, is the �-coordinate of the asymptote.

At offered loads greater than �, average steady-state latency is infinite.

Θ

H

Offered Load α

A
ve

ra
ge

 L
at

en
cy

Figure 2.1: Notational latency vs. offered load graph

2.2. PERFORMANCE MEASURES 13

Θ

Offered Load α

A
cc

ep
te

d
T

hr
ou

gh
pu

t
α’

Figure 2.2: Accepted throughput vs. offered load

Figure 2.2, which shows a plot of accepted traffic,
�, as a function of offered load,

, describes network performance after the saturation point, when
 � �. We report

the minimum accepted traffic over all source-destination pairs to reflect the throughput

achieved for the specified traffic matrix �. Under heavy load, the source-destination pairs

with less contention deliver more packets than other pairs. In effect, these pairs get ahead of

the other pairs. However, the amount of the desired destination matrix, �, that is delivered

is governed by the slowest pair (the one with the least accepted throughput).

To illustrate the need to compute
� as the minimum across all source-destination pairs

instead of the average accepted load, consider the � node ring network routing three flows

as shown in Figure 2.3. There are three source nodes — �, � and � — sending packets to

destination nodes �, � and � respectively. All source nodes inject the same load,
, into

the network. As we increase the injected load for each node from zero up to the saturation

point,
 ���, none of the links in the network are saturated. Until this point, the average

accepted load,
�, and the minimum accepted load,
�, across the flows are both the same,

i.e.
�
�
. Suppose we now increase
 to 1.0. Link � � � becomes saturated

and allocates half of its capacity to each of the two flows � � � and � � �. However,

link � � � offers its full capacity to flow � � �. The accepted loads for nodes �, � and

14 CHAPTER 2. PRELIMINARIES

� are therefore ���, ��� and ��� respectively. Hence,
� ��� ���� while
� ���.

The minimum number,
�, reflects the amount of the original traffic matrix, �, that is being

delivered. The extra traffic on � � � represents additional traffic that is not part of the

specified destination matrix.

0 1 2 3
4567

Figure 2.3: Minimally routed pattern �� �, �� �, �� �

Returning to Figure 2.2, at offered loads less than the saturation point, all traffic is deliv-

ered so
��
	
. Beyond the saturation point, accepted traffic is flat for a stable routing

algorithm, i.e.
��
	 � for
 � �. For unstable algorithms, throughput degrades be-

yond saturation. This occurs for some non-minimal algorithms wherein, due to congestion,

average path length increases with offered traffic. Instability may also occur when global

fairness is not maintained, and hence the throughput of the slowest source-destination pair

is reduced after saturation because more of a critical shared resource is being granted to a

faster source-destination pair.

2.3 Performance bounds

Before we examine routing algorithms with high worst-case throughput, it is instructive to

set an upper bound on the worst-case throughput of any network and prove that there is an

algorithm that achieves this bound.

Theorem 1. The worst-case throughput is no greater than half the network capacity.

Proof. Consider a network of � nodes with bisection bandwidth, �. For simplicity, as-

sume � is even. There are ��� nodes on either side of the bisection. With UR traffic, each

node sends half its traffic across the channels in the bisection. Hence, the maximum traffic

each node can send for UR (network capacity) is ����	 ���� .

Next, consider the traffic pattern where each node sends all its traffic across the bisec-

tion. We call this traffic pattern diameter traffic (DIA). The maximum traffic each node can

2.4. TORUS NETWORKS 15

send for DIA without saturating the bisection is ��� . Hence, for any routing algorithm,

��, ����� ���	 ��� ��� of capacity. It follows that ������	 	 ���.

Previous work has attempted to address the issue of providing high worst-case per-

formance. As briefly discussed in Chapter 1, Valiant’s randomized algorithm (VAL) is a

two-phase randomized routing algorithm. In the first phase, packets are routed from the

source to a randomly chosen intermediate node using minimal routing. The second phase

routes minimally from the intermediate node to the destination. We now prove that VAL

gives optimal worst-case performance on regular networks. However, this is at the expense

of completely destroying locality, and hence giving very poor performance on local traffic.

Theorem 2. VAL gives optimal worst-case throughput but performs identically on every

admissible traffic matrix on regular topologies.

Proof. Each phase of VAL is equivalent to minimally routing UR traffic across the bisec-

tion. If each node injects
, then the load on the bisection is �
 (�
�� due to each of the

� phases occurring simultaneously). Since VAL balances this load equally over all chan-

nels of the bisection, the maximum
 required to saturate the bandwidth is ��� (��� of

capacity). Moreover, the analysis is identical for every traffic giving �����	 ���.

In the next three chapters, we propose load-balanced oblivious and adaptive routing

algorithms on a popular topology called torus networks. Before we present our algorithms,

we introduce torus networks and discuss previous work done in routing on such networks.

2.4 Torus networks

In Chapter 1, we had briefly introduced a ring network. Torus networks can be thought of

as rings of rings in multiple dimensions. Formally, torus networks are referred to as �-ary

�-cube networks (see Chapter � of [12]). A �-ary �-cube is simply a ring (�-dimensional

torus) of � nodes. In general, an �-dimensional, radix-� torus, or �-ary �-cube, consists

of � �� nodes arranged in an �-dimensional cube with � nodes along each dimension.

Each of these � nodes serves simultaneously as an input terminal, output terminal, and

16 CHAPTER 2. PRELIMINARIES

a switching node of the network. Channels connect nodes whose addresses differ by
�

in one dimension modulo � giving a total of ��� channels in the network. Figure 2.4

shows a �-ary �-cube or a �� � torus network. In general, an arbitrary �-ary �-cube can be

constructed by adding dimensions iteratively. As illustrated in Figure 2.5, a �-ary �-cube

can be formed by combining � �-ary (�� �)-cubes. From this figure, it is easy to see that

if channel bandwidth in each direction is �, the bisection bandwidth of a �-ary �-cube is

� ������.

2,2

2,11,10,1

0,2 1,2

1,00,0 2,0

3,2

3,1

3,0

2,30,3 1,3 3,3

Figure 2.4: A �-ary �-cube (�� � torus) network

k-ary
(n-1)-cube

kn-1

channels

k-ary
(n-1)-cube

... k-ary
(n-1)-cube

Figure 2.5: Constructing a �-ary �-cube from � �-ary ��� �	-cubes

Torus networks span a range of networks from rings (� �) to hypercubes (� �).

These networks are attractive for several reasons. Their regular physical arrangement is

well suited to packaging constraints. At low dimensions, tori have uniformly short wires

allowing high-speed operation without repeaters. Since logically minimal paths in tori

are almost always physically minimal as well, such networks can exploit physical locality

2.5. PREVIOUS WORK ON ROUTING ON TORUS NETWORKS 17

between communicating nodes. Moreover, tori are regular (all nodes have the same de-

gree), offer high path diversity, and are also edge-symmetric, which helps to improve load

balance across the channels. For these reasons, interconnection networks based on �-ary

�-cube topologies are widely used as switch and router fabrics [8], for processor-memory

interconnect [37], and for I/O interconnect [34].

2.5 Previous work on routing on torus networks

Several routing algorithms, both oblivious and adaptive, have been proposed in literature

for torus networks. Table 2.1 presents a brief description of five previously published algo-

rithms that we shall compare our load-balanced algorithms with.

Table 2.1: Previous routing algorithms for torus networks.

���� ������	
���

DOR Dimension-order routing: deterministically route along a fixed
minimal path, routing completely in the most significant un-
matched dimension before moving on to the next dimension
[45].

VAL Valiant’s algorithm: route to a random node, � (phase 1), any-
where in the network, then to the destination (phase 2) [50].

ROMM Two-phase ROMM: route to a random node, �, in the minimal
quadrant, then to destination [31].

MIN AD Minimal Adaptive (or the �-channels algorithm): always route
in the minimal quadrant, routing adaptively within it [16].

CHAOS The CHAOS routing algorithm [25].

The first three rows of the table describe oblivious algorithms — DOR, VAL, and

ROMM. Dimension-order routing (DOR), sometimes called e-cube routing, was first re-

ported by Sullivan and Bashkow [45]. In DOR, each packet first traverses the dimensions

one at a time, arriving at the correct coordinate in each dimension before proceeding to

the next. Because of its simplicity, it has been used in a large number of interconnection

networks [11, 37]. The poor performance of DOR on adversarial traffic patterns motivated

much work on adaptive routing.

18 CHAPTER 2. PRELIMINARIES

Valiant first described how to use randomization to provide guaranteed throughput for

an arbitrary traffic pattern [50]. As discussed before, his method, VAL, perfectly balances

load by routing to a randomly selected intermediate node (phase �) before proceeding to

the destination (phase �). DOR is used during both phases. While effective in giving high

guaranteed performance on worst-case patterns, this algorithm destroys locality — giving

poor performance on local or even average traffic.

In order to preserve locality while gaining the advantages of randomization, Nesson and

Johnson suggested ROMM [31] — Randomized, Oblivious, Multi-phase Minimal routing.

Like VAL, ROMM routes each packet via an intermediate node chosen randomly from the

minimal quadrant1, ensuring that the resulting path is strictly minimal. While [31] reports

good results on a few permutations, we demonstrate in Chapter 3 that ROMM actually has

lower worst-case throughput than DOR. The problem is that with minimal routing, it is

impossible to achieve good load balance on adversarial patterns.

The last two rows of Table 2.1 describe two adaptive algorithms — MIN AD and

CHAOS. In order to address the issue of providing high worst-case performance while pre-

serving locality, Minimal adaptive routing algorithms (MIN AD) [16, 27] route minimally

to preserve locality but adaptively within quadrants to avoid local congestion. However,

since they are minimal, they cannot avoid sub-optimal throughput on traffic that causes

global load imbalance.

Non-minimal adaptive routing algorithms attempt to avoid throughput degradation on

adversarial traffic patterns by incorporating non-minimal paths. However, the decision to

misroute a packet is local and does not ameliorate the global imbalance created by ad-

versarial traffic. For example, in Chaotic routing [3] (CHAOS), packets always choose

a minimal direction, if available. Otherwise, they are momentarily buffered in a shared

queue and eventually misrouted in a non-minimal direction (further from their destination).

However, the decision to misroute does not incorporate any concept of global load balance

and therefore, CHAOS, like MIN AD, suffers from low throughput on adversarial traffic

patterns.

1A quadrant consists of all paths from a given source node that travel in a single direction in each di-
mension. For example, in a 2-D torus, the ����� quadrant consists of all paths that travel in the �� and ��
directions.

2.6. TRAFFIC PATTERNS 19

2.6 Traffic patterns

Throughout this thesis, we shall evaluate routing algorithms on a suite of benign and ad-

versarial traffic patterns. The patterns for �-ary �-cubes are shown in Table 2.2. The first

two patterns are benign in the sense that they naturally balance load and hence give good

throughput with simple routing algorithms. The next three patterns are adversarial patterns

that cause load imbalance. These patterns have been used in the past [49, 25, 12, 16, 31] to

stress and evaluate routing algorithms. Finally, the worst-case pattern is the traffic permu-

tation (selected over all possible permutations) that gives the lowest throughput. In general,

the worst-case pattern may be different for different routing algorithms.

Table 2.2: Traffic patterns for evaluation of routing algorithms on �-ary �-cubes

���� ������	
���

NN Nearest Neighbor: each node sends to one of its four
neighbors with probability 0.25 each.

UR Uniform Random: each node sends to a randomly
selected node.

BC Bit Complement: ��� �	 sends to ������� �����	.
TP Transpose: ��� �	 sends to ��� �	.

TOR Tornado: ��� �	 sends to �� � �
�
� �� �	

WC Worst-case: the permutation that gives the lowest
throughput by achieving the maximum load on a sin-
gle link (See Appendix A.1.3).

In the following three chapters, we propose oblivious and adaptive load-balanced rout-

ing algorithms for torus networks. These algorithms load balance traffic across the channels

of the topology to yield high throughput on adversarial traffic patterns while simultaneously

exploiting the locality of benign traffic patterns. They also gracefully handle momentary

overloads to provide stability post saturation.

Chapter 3

Oblivious Load Balancing

In this chapter, we focus on oblivious routing algorithms. As mentioned before, oblivious

algorithms select a path from a source to a destination using only the identity of the source

and destination nodes. In other words, the routing decision is made “oblivious” of the state

of the network. Oblivious algorithms may use randomization to choose between possible

paths. They may also be categorized as minimal or non-minimal, depending on the length

of the routes. In the following discussion, we propose randomized, non-minimal, oblivious

routing algorithms — RLB and RLBth — for torus networks, and evaluate their perfor-

mance compared to other oblivious routing algorithms. Before we do that, we present

some motivation for our choice of non-minimal algorithms.

3.1 Balancing a �-Dimensional ring: RLB and RLBth

In Chapter 1, we saw how a minimal routing algorithm (MIN) degrades the throughput of

an � node ring to ��� bits/s. The capacity of any �-ary �-cube is ���� ����. Hence,

for an � node ring (� �), ����������		 ���� of capacity. In general, the performance

of MIN degrades asymptotically to ��� of capacity for any dimensional torus network,

implying a very poor worst-case performance:

Theorem 3. The worst-case throughput for MIN is at most ��� of capacity, for tori with

large radix �.

20

3.1. BALANCING A �-DIMENSIONAL RING: RLB AND RLBTH 21

Proof. We consider the tornado pattern, ���	, on a �-ary �-cube. In this traffic, every

source sends a packet to a destination that is one less than half-way across the ring in the

first dimension. For instance, in a �-ary �-cube, every source (�, �) sends to (� � ��� � �,

�)1. Then, with an injection load of
 bits/s from each node, the load on the clockwise links

is
����� �	 (the load on the � node ring was �
 in Figure 1.5). Hence, the throughput is

����������		 ������� �	 (bits/s). Expressed as a fraction of capacity, the throughput

is �
�
�
���

� ���� for large values of �. It follows that ��������	 	 ����.

The reason MIN gives such poor performance in the worst case is that a hard traffic

pattern can cause severe load imbalance in the links of the network. To balance load over

all links, a routing algorithm must send some traffic along non-minimal paths for adversar-

ial traffic. Consider the tornado traffic pattern on the � node ring, but with a non-minimal

routing algorithm that sends ��� of all messages in the short direction around the ring —

three hops clockwise — and the remaining ��� of all messages in the long, counterclock-

wise direction (see Figure 3.1). Each link in the clockwise direction carries �
�� load from

3 nodes for a total load of ��
��. Similarly, each link in the counterclockwise direction

carries �
�� from � nodes and hence, also carries a total load of ��
��. Thus, the traffic

is perfectly balanced — each link has identical load. As a result of this load balance, the

per-node throughput is increased by ��� to � ����� ���� of capacity compared to

that of a minimal scheme. Since this scheme routes non-minimally based on the locality of

the destination, we call it Randomized Local Balanced routing (RLB) [43].

0 1 2 3
4567

Figure 3.1: Non-minimally routing tornado traffic based on locality. The dashed lines
contribute a link load of �

�
while the solid lines contribute a link load of �

�
. All links equally

loaded with load = ��
�

.

1All operations on node ids are done mod �.

22 CHAPTER 3. OBLIVIOUS LOAD BALANCING

With RLB routing, if a source node, �, sends traffic to destination node, �, then the

distance in the short direction around the loop is � ������ � ��� � � �� � ��	, and the

direction of the short path is � �� if the short path is clockwise, and � �� if the short

path is counterclockwise. To exactly balance the load due to symmetric traffic, we send

each packet in the short direction, �, with probability 	
��

�

and in the long direction,

��, with probability �	

�

. This loads (���) channels in the long direction with load

 �	 and � channels in the short direction with load 	 for a total load of
���
�
�

in each

direction.

With nearest-neighbor traffic (each node � sends half of its traffic to � � � and half

to � � �), for example, � �, giving 	 ���
�

. Thus, for � �, ��� of the traffic

traverses a single link and ��� traverses seven links. On average, each packet traverses

���� ���� channels — evenly distributed in the two directions — and hence, throughput

is � ������� ����� ���� times capacity.

This simple comparison in one dimension shows the capability of RLB to give good

performance on an adversarial traffic pattern without sacrificing all the locality in benign

traffic. It achieves a throughput of ���� on tornado traffic, a vast improvement over the ����

of a minimal algorithm, and it achieves ���� on nearest neighbor traffic, not as good as the

� of a minimal algorithm, but much better than the ��� of fully random routing (VAL). In

fact, we can prove that for a �-dimensional torus, RLB, like VAL, gives optimal worst-case

performance while performing much more efficiently on benign traffic:

Theorem 4. RLB gives optimal worst-case throughput on a ring.

Proof. Since the proof requires some background on how to construct the worst-case traffic

for an oblivious routing algorithm, we present it in Appendix A.1.2.

In order to improve RLB’s performance on local traffic like nearest neighbor, we can

modify the probability function of picking the short or long paths so that for very local

traffic, RLB always routes minimally. Specifically, if � ! �
�

(the average hops in a � node

ring), then the message must be routed minimally. Hence, 	 � and P�	 � if � ! �
�
,

else 	 is the same as that in RLB. We call this modified version RLB threshold or RLBth.

With this modification, RLBth achieves a throughput of � on nearest neighbor traffic while

retaining a throughput of ���� on tornado traffic pattern.

3.2. RLB ROUTING ON HIGHER DIMENSIONAL TORI 23

3.2 RLB routing on higher dimensional tori

In multiple dimensions RLB works, as in the one dimensional case, by balancing load

across multiple paths while favoring shorter paths. Unlike the one dimensional case, how-

ever, where there are just two possible paths for each packet — one short and one long,

there are many possible paths for a packet in a multi-dimensional network. RLB exploits

this path diversity to balance load.

To extend RLB to multiple dimensions, we start by independently choosing a direction

for each dimension just as we did for the one-dimensional case above. Choosing the di-

rections selects the quadrant in which a packet will be routed in a manner that balances

load among the quadrants. To distribute traffic over a large number of paths within each

quadrant, we route first from the source node, �, to a randomly selected intermediate node,

�, within the selected quadrant, and then from � to the destination, �. For each of these two

phases we route in dimension order, traversing along one dimension before starting on the

next dimension, but randomly selecting the order in which the dimensions are traversed.

We select the quadrant to route in by choosing a direction for each of the � dimensions

in a �-ary �-cube. Suppose the source node is � ��� ��� � � � � ��� and the destination node

is � ��� ��� � � � � ���, where �� is the coordinate of node � in dimension �. We compute

a distance vector � ������ � � � ���� where �� ������� � ���� � � ��� � ���	. From

the distance vector, we compute a minimal direction vector � ��� ��� � � � � ���, where for

each dimension �, we choose �� to be�� if the short direction is clockwise (increasing node

index) and �� if the short direction is counterclockwise (decreasing node index). Finally

we compute an RLB direction vector �� where for each dimension, �, we choose ��� ��

with probability 	�
��
�

�
and ��� ��� with probability �� 	�

�

�
.

For example, suppose we are routing from � ��� �	 to � ��� �	 in an �-ary �-cube

network (�� � �-D torus). The distance vector is � ��� �	, the minimal direction vector

is � ������	, and the probability vector is ������ �����	. We have four choices for

��, ������	� ������	� ������	� and ������	 which we choose with probabilities �����,

�����, �����, and ����� respectively. Each of these four directions describes a quadrant of

the �-D torus as shown in Figure 3.2. The weighting of directions routes more traffic in the

minimal quadrant �, �� ������	 and less in quadrant � which takes the long path in both

24 CHAPTER 3. OBLIVIOUS LOAD BALANCING

dimensions �� ������	. Moreover, this weighting of directions will exactly balance the

load for any traffic pattern in which node � ��� �	 sends to node � �� � ��� � ���	

— a �-D generalization of tornado traffic.

Once we have selected the quadrant we need to select a path within the quadrant in a

manner that balances the load across the quadrant’s channels. There are a large number of

unique paths across a quadrant which is given by:

�
����
��

� ����
�� ��

��

�

However, we do not need to randomly select among all of these paths. To balance the

load across the channels, it suffices to randomly select an intermediate node, �, within the

quadrant and then to route first from � to � and then from � to �. We then pick a random

order of dimensions, ", for our route where "� is the step during which the ��� dimension is

traversed. We select this random ordering independently for both phases of routing. This is

similar to the two-phase approach taken by a completely randomized algorithm. However,

in this case the randomization is restricted to the selected quadrant.

It is important that the packet not backtrack during the second phase of the route, during

which it is sent from � to �. If minimal routing were employed for the second phase, this

could happen since the short path from � to � in one or more dimensions may not be

in the direction specified by ��. To avoid backtracking, which unevenly distributes the

load, we restrict the routing to travel in the directions specified by � � during both routing

phases: from � to � and from � to �. These directions are fixed based on the quadrant the

intermediate node q lies in as shown in Figure 3.2.

We need to randomly order the traversal of the dimensions to avoid load imbalance be-

tween quadrant links, in particular the links out of the source node and into the destination.

Figure 3.3 shows how traversing dimensions in a fixed order leads to a large imbalance

between certain links. If one dimension (say �) is always traversed before the other (say

�), all the links are not evenly balanced. In the figure, if � is in local quadrant �, then the

downward link (�� �) - (�� �) will only be used if � is one of nodes (�� �), (�� �), or (�� �)

while the right-going link (�� �) - (�� �) is used if � is any of the other nodes in the local

quadrant. This, increases the likelihood of using the � dimension link over the � dimension

3.2. RLB ROUTING ON HIGHER DIMENSIONAL TORI 25

1

2 4

3

+

+

Figure 3.2: Probability distribution of the location of the intermediate node in RLB. All
nodes in a similarly shaded region (quadrant) have equal probability of being picked.

26 CHAPTER 3. OBLIVIOUS LOAD BALANCING

link thereby unnecessarily overloading it.

...

...

...

...

2,2

2,11,10,1

0,2 1,2

1,00,0 2,0

3,2

3,1

3,0

2,30,3 1,3 3,3

............
s

d

q

Figure 3.3: Traversing dimensions in fixed order causes load imbalance

Suppose in our example above, routing from (0,0) to (2,3) in an �-ary �-cube, we select

the quadrant �� ������	. Thus, we are going in the negative direction in � and the

positive direction in �. We then randomly select �� from
�� �� �� �� �� �� and �� from
�� �� ��.

Suppose this selection yields intermediate point � ��� �	. Finally, we randomly select an

order " ��� �	 for the ��� phase and also " ��� �	 for the ��� phase (note that the

two orderings could have been different) implying that we will route in � first and then

in � in both phases. Putting our choice of direction, intermediate node, and dimension

order together gives the final route as shown in Figure 3.4. Note that if backtracking were

permitted, a minimal router would choose the �� direction after the first step since its only

three hops in the �� direction from � to � and five hops in the �� direction.

Figure 3.5 shows how backtracking is avoided if directions are fixed for both the phases.

The dotted path shows the path taken if Dimension Order Routing (traverse � dimension

greedily, i.e., choosing the shortest path in that dimension and then traverse � dimension

greedily) is followed in each phase when going from s to q to d. Fixing the direction sets

based on the quadrant q is in, avoids the undesirable backtracking, as shown by the bold

path.

3.2. RLB ROUTING ON HIGHER DIMENSIONAL TORI 27

Figure 3.4: An example of routing using RLB

Backtracking

Figure 3.5: Avoiding backtracking in the RLB scheme. When the directions are fixed for
both phases, routing is done along the bold path instead of the dotted path.

28 CHAPTER 3. OBLIVIOUS LOAD BALANCING

3.2.1 RLB threshold (RLBth) on higher dimensional tori

As in the one dimension case, RLBth works the same as RLB even for higher dimensions

with a modification in the probability function for choosing the quadrants. Specifically, if

�� !
�
�
, then 	� � and �	� �, else 	�

��
�

�
and �	�

�

�
. The threshold

value of �
�

comes from the fact that it is the average hop distance for a � node ring in each

dimension.

3.3 Performance Evaluation

3.3.1 Experimental setup

Measurements in this section have been made on a cycle-accurate network simulator for

a �-ary �-cube network that models the pipeline of each router as described in [32]. Any

contention is resolved using age-based arbitration, always giving priority to a packet with

an older time-stamp since injection. All latency numbers presented are measured since the

time of birth of the packets and include the time spent by the packets in the source queues.

We further assume that the network uses ideal flow control with each node having buffers

of infinite length. Using this idealized model of flow control allows us to isolate the effect

of the routing algorithm from flow control issues. The RLB algorithms can be applied to

other flow control methods such as virtual channel flow control. The saturation throughput,

�, is always normalized to the capacity of the network.

All simulations were instrumented to measure steady-state performance with a high de-

gree of confidence. The simulator was warmed up under load without taking measurements

until none of the queue sizes changed by more than �� over a period of ��� cycles. Once

the simulator was warmed up, a sample of injected packets was labeled for measurement.

This sample size was chosen to ensure that measurements are accurate to within �� with

��� confidence. The simulation was run until all labeled packets reached their destina-

tions. We have simulated two topologies, an �-ary �-cube and a ��-ary �-cube, but present

only the results for the �-ary �-cube topology. The results obtained for the ��-ary �-cube

topology follow the same trends and are presented in Appendix C.

3.3. PERFORMANCE EVALUATION 29

3.3.2 Latency-load curves for RLB

The latency-load curve for each traffic pattern of Table 2.2 (except NN) applied to an �-

ary �-cube network using RLB is shown in Figure 3.62. Each curve starts at the �-axis at

the zero load latency for that traffic pattern which is determined entirely by the number of

hops required for the average packet and the packet length. As offered traffic is increased,

latency increases because of queueing due to contention for channels. Ultimately, a point

is reached where the latency increases without bound. The point where this occurs is the

saturation throughput for the traffic pattern, the maximum bandwidth that can be input to

each node of the network in steady state. The numerical values of this saturation throughput

for each traffic pattern are given in Table 3.1.

0

10

20

30

40

50

60

70

80

90

100

110

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v
e
r
a
g
e

D
e
l
a
y

p
e
r

p
a
c
k
e
t

(
t
i
m
e

s
t
e
p
s
)

Offered Load

"RLB_BC"
"RLB_UR"
"RLB_TP"

"RLB_TOR"
"RLB_WC"

Figure 3.6: RLB delay-load curves for various traffic patterns

2The NN curve is omitted to allow the throughput scale to be compressed improving clarity.

30 CHAPTER 3. OBLIVIOUS LOAD BALANCING

Table 3.1: Saturation throughput of RLB and its backtracking variation

��Æ� ��� ����
����

NN 2.33 2.9
UR 0.76 0.846
BC 0.421 0.421
TP 0.565 0.50

TOR 0.533 0.4
WC 0.313 0.27

3.3.3 Effect of backtracking

In describing RLB in Section 3.2, we qualitatively discussed the importance of avoiding

backtracking during the second phase of routing. Table 3.1 shows quantitatively how back-

tracking affects performance. The first column shows the saturation throughput of RLB

on each of the six traffic patterns — the asymptotes of the curves in Figure 3.6. The sec-

ond column shows throughput on each traffic pattern using a variation of RLB in which

backtracking is permitted. With this algorithm, after routing to intermediate node �, the

packet is routed over the shortest path to the destination, not necessarily going in the same

direction, as indicated by the dashed path in Figure 3.5.

The table shows that backtracking improves performance for the two benign cases but

gives lower performance on tornado and worst-case traffic. The improvement on benign

traffic occurs because RLB with backtracking is closer to minimal routing — it traverses

fewer hops than RLB without backtracking. The penalty paid for this is poorer performance

on traffic patterns like TOR that require non-minimal routing to balance load. We discuss

some other variations on RLB in Section 3.4.

3.3.4 Throughput on specific traffic patterns

We now compare the performance of RLB with that of the three oblivious routing algo-

rithms of Table 2.1. Table 3.2 shows the saturation throughput of each oblivious algorithm

3.3. PERFORMANCE EVALUATION 31

on each traffic pattern3. The minimal algorithms, DOR and ROMM, offer the best perfor-

mance on benign traffic patterns but have very poor worst-case performance. VAL gives

the best worst-case performance but converts every traffic pattern to this worst case, giving

very poor performance on the benign patterns. RLB strikes a balance between these two

extremes, achieving a throughput of ����� on worst-case traffic (��� better than ROMM

and ��� better than DOR) while maintaining a throughput of ���� on NN (���� better

than VAL) and ���� on UR (��� better than VAL). RLBth improves the locality of RLB

— matching the throughput of minimal algorithms in the best case and improving the UR

throughput of RLB (��� better than VAL). In doing so, however, it marginally deteriorates

RLB’s worst case performance by ��.

Table 3.2: Comparison of saturation throughput of RLB, RLBth and three other routing
algorithms on an 8-ary 2-cube for six traffic patterns

��� ��� ��� ���� ��� ���
�

NN 4 0.5 4 2.33 4
UR 1 0.5 1 0.76 0.82
BC 0.50 0.5 0.4 0.421 0.41
TP 0.25 0.5 0.54 0.565 0.56

TOR 0.33 0.5 0.33 0.533 0.533
WC 0.25 0.5 0.208 0.313 0.30

Figure 3.7 shows the latency-throughput curve for each of the five algorithms on nearest-

neighbor (NN) traffic. RLBth, ROMM, and DOR share the same curve on this plot since

they all choose a minimal route on this traffic pattern. The VAL curve starts at a much

higher zero load latency because it destroys the locality in the pattern.

The latency-throughput curves for each algorithm on bit complement (BC) traffic are

shown in Figure 3.8. At almost all values of offered load, VAL has significantly higher

latency. However, VAL has a higher saturation throughput than RLB.

The worst case row of Table 3.2 reflects the lowest throughput for each algorithm over

all possible traffic patterns. The worst case throughput and traffic pattern (permutation)

for each routing algorithm is computed using the method described in Appendix A. Using

3The worst-case pattern is different for each algorithm (See Appendix A).

32 CHAPTER 3. OBLIVIOUS LOAD BALANCING

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
v
e
r
a
g
e

D
e
l
a
y

p
e
r

p
a
c
k
e
t

(
t
i
m
e

s
t
e
p
s
)

Offered Load

"VAL"
"RLB_NN"

"DOR-ROMM-RLBth_NN"

Figure 3.7: Performance of different algorithms on NN (Nearest neighbor) traffic

0

20

40

60

80

100

120

140

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
v
e
r
a
g
e

D
e
l
a
y

p
e
r

p
a
c
k
e
t

(
t
i
m
e

s
t
e
p
s
)

Offered Load

"VAL"
"RLBth_BC"

"RLB_BC"
"ROMM_BC"
"DOR_BC"

Figure 3.8: Performance of different algorithms on BC (Bit Complement) traffic

3.3. PERFORMANCE EVALUATION 33

worst-case permutations for this evaluation is more accurate than picking some arbitrary

adversarial traffic pattern (like BC, TP, or TOR) since the worst-case pattern for an algo-

rithm is often quite subtle.

3.3.5 Throughput on random permutations

One might ask how often permutations as bad as the adversarial patterns in Table 3.2 occur

in practice. To address this question, we compare the throughput of RLB and RLBth with

VAL, ROMM, and DOR on ��� randomly selected permutations4. Since simulating ���

permutations on a cycle-accurate simulator is not feasible, we analytically compute the

throughput for each permutation using the technique presented in Appendix A.1.1.

Histograms of the saturation throughput across the permutations are shown in Fig-

ure 3.9. RLB has a smooth bell-shaped histogram centered at ���� throughput. RLBth’s his-

togram (not shown) is almost identical to that of RLB but centered at �����. VAL achieves

the same throughput on all traffic permutations. Hence, its histogram is a delta function at

���. The histogram for ROMM is noisier and has an average saturation throughput of �����

— ��� lower than RLB’s throughput. DOR’s histogram has three spikes at ����, ����

and ��� corresponding to a worst case link load of �, � and � in any permutation. DOR’s

average saturation throughput is �����, ��� lower compared to RLBth. The average satu-

ration throughput values are summarized in Table 3.3. RLB algorithms have higher average

throughput on random permutations than VAL, ROMM, or DOR.

Table 3.3: Average Saturation Throughput for 10� random traffic permutations

������
�� �������
������	�

RLBth 0.512
RLB 0.510
VAL 0.500

ROMM 0.453
DOR 0.314

4These ��� permutations are selected from the� � 	
�� possible permutations on a
�-node �-ary �-cube.

34 CHAPTER 3. OBLIVIOUS LOAD BALANCING

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

7

8

9

10
RLB

%
ag

e
of

 1
 m

ill
io

n
pe

rm
ut

at
io

ns

Saturation Throughput
0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

90

100

Saturation Throughput

%
ag

e
of

 1
 m

ill
io

n
pe

rm
ut

at
io

ns

VAL

(a) (b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

7

8

9

10
2 Phase ROMM

%
ag

e
of

 1
 m

ill
io

n
pe

rm
ut

at
io

ns

Saturation Throughput
0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

90

100
DOR

Saturation Throughput

%
ag

e
of

 1
 m

ill
io

n
pe

rm
ut

at
io

ns

(c) (d)

Figure 3.9: Histograms for the saturation throughput for 10� random permutations. (a)
RLB, (b) VAL, (c) ROMM, (d) DOR.

3.3. PERFORMANCE EVALUATION 35

3.3.6 Latency

RLB gives a lower packet latency than fully randomized routing (VAL). To quantify this

latency reduction, we computed latency histograms between representative pairs of source

and destination in a network loaded with uniform random traffic for RLB, RLBth, VAL,

ROMM, and DOR.

The latency, � , incurred by a packet is the sum of two components, � � �	, where

� is the hop count and 	 is the queueing delay. The average value of � is constant with

load while that of 	 rises as the offered load is increased. For a minimal algorithm, �

is equivalent to the Manhattan distance, �, from source to destination. For non-minimal

algorithms, � � �.

In an �-ary �-cube, the Manhattan distance between a source and a destination node can

range from � to �. In our experiments, we chose to measure the latency incurred by packets

from a source to � different destination nodes:

� � (�� �) to � (�� �): path length of � representing very local traffic.

� � (�� �) to � (�� �): path length of � representing semi-local traffic.

� � (�� �) to � (�� �): path length of � representing non-local traffic.

The histograms for semi-local paths (packets from � to �) are presented in Figure 3.10.

The histograms are computed by measuring the latency of ��� packets for each of these

three pairs. For all experiments, offered load was held constant at ���. The experiment was

repeated for each of the five routing algorithms. The histogram for DOR is almost identical

to that of ROMM and is not presented.

DOR and ROMM have a distribution that starts at � and drops off exponentially —

reflecting the distribution of queueing wait times. This gives an average latency of ����

and ����, respectively. Since both these algorithms always route minimally, their � value

is � and therefore, 	 values are ���� and ����, respectively.

RLBth has a distribution that is the superposition of two exponentially decaying dis-

tributions: one with a � of � that corresponds to picking quadrant � of Figure 3.2 and a

second distribution with lower magnitude starting at � � that corresponds to picking

36 CHAPTER 3. OBLIVIOUS LOAD BALANCING

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80
ROMM

%
ag

e
of

 to
ta

l p
ac

ke
ts

 fr
om

 A
 to

 C

Time Steps to route from A to C
0 5 10 15 20 25

0

5

10

15

20

25

30

35

40

45

50

Time Steps to route from A to C

%
ag

e
of

 to
ta

l p
ac

ke
ts

 fr
om

 A
 to

 C

RLBth

(a) (b)

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50

%
ag

e
of

 to
ta

l p
ac

ke
ts

 fr
om

 A
 to

 C

Time Steps to route from A to C

RLB

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40
VAL

%
ag

e
of

 to
ta

l p
ac

ke
ts

 fr
om

 A
 to

 C

Time Steps to route from A to C

(c) (d)

Figure 3.10: Histograms for 10� packets routed from node A(0,0) to node C(1,3). (a)
ROMM, (b) RLBth, (c) RLB, (d) VAL. The network is subjected to UR pattern at 0.2 load.

3.4. TAXONOMY OF LOCALITY-PRESERVING ALGORITHMS 37

quadrant �. The bar at � � appears higher than the bar at � � because it includes both

the packets with � � and 	 � and packets with � � and 	 �. The average � for

RLBth is ����, giving an average 	 of ����.

The distribution for RLB includes the two exponentially decaying distributions of RLBth

corresponding to � � and � � and adds to this two additional distributions corre-

sponding to � �� and � �� corresponding to quadrants � and � of Figure 3.2. The

probability of picking quadrants � and � is low, yielding low magnitudes for the distribu-

tions starting at �� and ��. The average � for RLB is ���, giving an average 	 of ����.

VAL has a very high latency with a broad distribution centered at � ����. This

broad peak is the superposition of exponentially decaying distributions starting at all even

numbers from � to ��. The average � component of this delay is 8 since each of the two

phases is a route involving a fixed node and a completely random node (� steps away on

average). The average 	 is ����.

The results for all the three representative paths are summarized in Table 3.4. VAL

performs the worst out of all the algorithms. It has the same high � and 	 latency for

all paths. DOR and ROMM being minimal algorithms, do the best at this low load of ���.

They win because their � latency is minimal and at a low load their 	 latency is not too

high. RLB algorithms perform much better than VAL — in both � and 	 values. RLB

is on average ��� times, ��� times and ��� times faster than VAL on local, semi-local and

non-local paths, respectively. RLBth does even better by quickly delivering the very local

messages — being ���� times, ���� times and ���� times faster than VAL on the same three

paths as above.

3.4 Taxonomy of locality-preserving algorithms

RLB performs three randomizations to achieve its high degree of load balance: (�) it ran-

domly chooses a quadrant, and hence a direction vector for routing, (�) it randomly chooses

an order in which to traverse the dimensions, and (�) it randomly chooses an intermediate

way-point node in the selected quadrant. We can generate eight non-backtracking, locality-

preserving randomized routing algorithms by disabling one or more of these randomiza-

tions.

38 CHAPTER 3. OBLIVIOUS LOAD BALANCING

Table 3.4: Average total, hop and queueing latency (in time steps) for ��� packets for �
sets of representative traffic paths at ��� load. � � �, � � � and � � � represent local,
semi-local and non-local paths, respectively. � is node (�,�), � is (�,�), � is (�,�), and �
is (�,�). All other nodes send packets in a uniformly random manner at the same load.

���� �� ��� ��� �� ��� ��� �� ��� ���

DOR 2.3 2 0.3 4.28 4 0.28 8.24 8 0.24
ROMM 2.34 2 0.34 4.43 4 0.43 8.42 8 0.42
RLBth 2.68 2 0.68 5.56 4.75 0.81 8.81 8 0.42
RLB 4.31 3.5 0.81 6.48 5.5 0.98 8.92 8 0.92
VAL 9.78 8 1.78 9.78 8 1.78 9.78 8 1.78

In this taxonomy of routing algorithms, each algorithm is characterized by a �-bit vec-

tor. If the first bit is set, the quadrant is chosen randomly (weighted to favor locality).

Otherwise, the minimal quadrant is always used. If this bit is clear the routing algorithm

will be minimal. The dimensions are traversed in a random order, if the second bit is set

and in a fixed order (� first, then �, etc...) if this bit is clear. Finally, the third bit, if set,

causes the packet to be routed first to a random way-point in the selected quadrant and then

to proceed to the destination without reversing direction in any dimension. For example a

vector of ��� corresponds to RLB — all randomizations enabled and a vector of ��� corre-

sponds to DOR — no randomization. By examining the points between these two extremes

we can quantify the contribution to load balance of each of the three randomizations.

Table 3.5 describes the eight algorithms and gives their performance on our six traffic

patterns. All four minimal algorithms have the same high performance on the benign traffic

patterns (NN and UR) since they never misroute. The first randomization we consider is the

order of dimensions. Vector ��� gives us dimension order routing with random dimension

order — e.g., in �-D we go �-first half the time and �-first half the time. This randomization

eases the bottleneck on TP traffic, doubling performance on this pattern, but does not affect

worst-case performance. So we can see that randomizing dimension order alone does not

improve worst-case performance.

Next, let us consider the effect of a random way-point in isolation. Vector ��� gives us

ROMM, in which we route to a random way-point in the minimal quadrant and then on to

3.4. TAXONOMY OF LOCALITY-PRESERVING ALGORITHMS 39

the destination. This randomization, while it improves performance on TP traffic, actually

reduces worst-case throughput and throughput on BC traffic. This is because the choice

of a random way-point concentrates traffic in the center of a region for these patterns.

Combining random directions with a random way-point (vector ���) improves throughput

for TP. However, it does not affect performance on the other patterns. Thus, routing to a

random way-point alone actually makes things worse, not better.

Table 3.5: Taxonomy of locality preserving randomized algorithms. Saturation throughput
values are presented for an �-ary �-cube topology.

���
�� ������	
��� �� �� �� �� !�

��� DOR-F: dimension-order
routing

4 1 0.5 0.25 0.33 0.25

��� DOR-R: with random-
ized dimension order

4 1 0.5 0.5 0.33 0.25

��� ROMM-F: fixed dimen-
sion order — route first
to a random node � in
the minimal quadrant and
then to the destination

4 1 0.4 0.438 0.33 0.208

��� ROMM-R: random di-
mension order — like
001 but the order in
which dimensions are tra-
versed is randomly se-
lected for both phases.

4 1 0.4 0.54 0.33 0.208

��� RDR-F: randomly select
a quadrant (weighted for
locality) and then route
in this quadrant using a
fixed dimension order

2.28 0.762 0.5 0.286 0.533 0.286

��� RDR-R: with random di-
mension order

2.286 0.762 0.5 0.571 0.533 0.286

��� RLB-F: with fixed di-
mension order

2.286 0.762 0.421 0.49 0.533 0.310

��� RLB-R 2.33 0.76 0.421 0.565 0.533 0.313

40 CHAPTER 3. OBLIVIOUS LOAD BALANCING

Finally, we will consider the non-minimal algorithms. Vector ��� corresponds to ran-

dom direction routing (RDR) in which we randomly select directions in each dimension, in

effect selecting a quadrant, and then use dimension-order routing within that quadrant. As

described in Section 3.2, this selection is weighted to favor locality. Randomly selecting

the quadrant by itself gives us most of the benefits (and penalties) of RLB. We improve

worst-case performance by ��� compared to the best minimal scheme, and we get the best

performance of any non-minimal algorithm on BC. However, performance on TP suffers, it

is equal to worst-case, due to the fixed dimension order. Randomizing the dimension order,

vector ���, fixes the TP problem but does not affect the other numbers.

Routing first to a random way-point within a randomly-selected quadrant, vector ���,

slightly improves worst-case performance (��� better than minimal and �� better than

RDR). However using a random way-point makes performance on TP and BC worse.

Putting all three randomizations together, which yields RLB as described in Section 3.2,

gives slightly better worst-case, TP, and NN performance.

Overall, the results show that randomization of quadrant selection has the greatest im-

pact on worst-case performance. Non-minimal routing is essential to balance the load on

adversarial traffic patterns. Once quadrant selection is randomized, the next most important

randomization is selection of a random way-point. This exploits the considerable path di-

versity within the quadrant to further balance load. However, applying this randomization

by itself actually reduces worst-case throughput. The randomization of dimension order is

the least important of the three having little impact on worst-case throughput. However, if a

random way-point is not used, randomizing dimension order doubles throughput on traffic

patterns such as TP.

3.5 Discussion

3.5.1 The drawbacks of RLB

Having evaluated the performance of RLB on an �-ary �-cube, we realize that RLB suf-

fers from suboptimal performance in two aspects: (�) Unlike VAL, it does not perform

optimally in the worst-case and (�) Unlike MIN, it does not perform optimally on benign

3.5. DISCUSSION 41

Figure 3.11: Adversarial traffic for RLB

traffic.

The reason for RLB’s lower worst-case throughput is illustrated by constructing an

adversarial traffic permutation as shown in Figure 3.11. This traffic is very similar to the

worst-case traffic permutation derived in Appendix A. We use this traffic as it succinctly

demonstrates how RLB can yield a throughput under ���. The pattern first focuses on one

row of the network (outlined with a dashed box in the figure). In this row, each node sends

traffic exactly half-way across the ring in the row. Since the � coordinates are matched,

RLB routes all traffic along the same row, never routing outside the dashed box. As a result

the load on the bold grey link in that row is �
. This channel load can be increased further

by selecting source-destination pairs outside the boxed row, which further load the channel

in bold. By setting up a large number of these crossing patterns, as shown in Figure 3.11,

the channel load can be increased to significantly higher than �
, thereby reducing the

throughput much below ���.

Adaptively deciding the next dimension to traverse is an effective way of reducing the

congestion on the worst-case link described above. In the next two chapters, we shall

42 CHAPTER 3. OBLIVIOUS LOAD BALANCING

incorporate adaptivity in our load-balancing algorithms to alleviate both the sub-optimal

worst-case performance as well as the benign performance of RLB.

3.5.2 Deadlock and livelock

Deadlock is a situation that occurs when a cycle of packets are waiting for one another to

release resources, and hence are blocked indefinitely. Livelock is a condition whereby a

packet keeps circulating within the network without ever reaching its destination. Freedom

from such critical conditions must be guaranteed. All minimal algorithms such as DOR

and ROMM guarantee livelock freedom with fair arbitration since each channel traversed

by a packet reduces the distance to the destination. VAL is also deterministically livelock

free since it is minimal in each of its phases. RLB algorithms, while non-minimal, are also

inherently livelock free. Once a route has been selected for a packet, the packet mono-

tonically makes progress along the route, reducing the number of hops to the destination

at each step. Since there is no incremental misrouting, all packets reach their destinations

after a predetermined, bounded number of hops.

As stated in Section 3.3.1, we assume ideal flow control with unbounded buffers for

the results presented in this paper so deadlock due to channel or buffer dependency is not

an issue. The results here can be extended to virtual channel flow control as we shall

demonstrate in the next two chapters.

3.5.3 Packet reordering

The use of a randomized routing algorithm can and will cause out-of-order delivery of

packets. While this may be acceptable for multiprocessor systems with a relaxed memory

coherence model, memory systems with strict coherence and Internet routers require in-

order delivery.

Several methods can be used to guarantee in order delivery of packets where needed.

One approach is to ensure that packets that must remain ordered (e.g., memory requests

to the same address or packets that belong to the same flow) follow the same route. This

can be accomplished, for example, by using a packet group identifier (e.g., the memory

address or the flow identifier) to select the quadrant, the intermediate node and the order of

3.6. SUMMARY 43

traversing the dimensions for the route. Packet order can also be guaranteed by reordering

packets at the destination node using the well known sliding window protocol [46].

3.6 Summary

Randomized Local Balance (RLB) is a non-minimal oblivious algorithm that balances load

by randomizing three aspects of the route: the selection of the routing quadrant, the order

of dimensions traversed, and the selection of an intermediate way-point node. RLB weights

the selection of the routing quadrant to preserve locality. The probability of misrouting in

a given dimension is proportional to the distance to be traversed in that dimension. This

exactly balances traffic for symmetric traffic patterns like tornado traffic. RLBth is identical

to RLB except that it routes minimally in a dimension if the distance in that dimension is

less than a threshold value (�
�
).

RLB strikes a balance between randomizing routes to achieve high guaranteed perfor-

mance on worst-case traffic and preserving locality to maintain good performance on av-

erage or neighbor traffic. On worst-case traffic, RLB outperforms all minimal algorithms,

achieving ��� more throughput than dimension-order routing and ��� more throughput

than ROMM, a minimal oblivious algorithm. Unlike the �-D case, RLB does not give op-

timal worst-case guarantees in higher dimensional tori. In an �-ary �-cube, for instance,

the worst-case throughput of RLB is ��� lower than the throughput of a fully randomized

routing algorithm. This degradation in worst-case throughput is balanced by a substantial

increase in throughput on local traffic. RLB (RLBth) outperforms VAL by ��� (�) on NN

traffic and ���� (����) on UR traffic. RLBth improves the locality of RLB, matching the

performance of minimal algorithms on NN traffic, at the expense of a �� degradation in

worst-case throughput. Both RLB and RLBth give higher saturation throughput on aver-

age for ��� random traffic permutations. Moreover, RLB and RLBth provide much lower

latency, upto ���� times less, than VAL.

By selectively disabling the three sources of randomization in RLB, we are able to

identify the relative importance of each source. Our results show that the advantages of

RLB are primarily due to the weighted random selection of the routing quadrant. Routing

a fraction of the traffic the long way around each dimension effectively balances load for

44 CHAPTER 3. OBLIVIOUS LOAD BALANCING

many worst-case patterns. By itself, randomly choosing dimension order has little effect on

worst-case performance and by itself, picking a random intermediate node actually reduces

worst-case throughput.

In the next chapter, we incorporate adaptive decisions in RLB routing to alleviate its

sub-optimal worst-case performance.

Chapter 4

GOAL Load Balancing

In the previous chapter, we showed how an adversary can load a link for an oblivious load-

balancing algorithm resulting in sub-optimal worst-case performance. In order to improve

the worst-case performance, we incorporate adaptivity into the RLB algorithm, i.e., we

permit routing decisions to be made based on the congestion in the network. However,

such decisions need to be made based solely on local congestion information. In order for

such local decisions to be effective, we incorporate a realistic flow control in our routing

scheme in which buffers are no longer infinite. This means that when buffers are full, they

backpressure the preceding buffers thus, propagating congestion information. Combining

the global load balance of RLB and the local balance of adaptive methods, we get Globally

Oblivious Adaptive Locally (GOAL) [41].

GOAL, like RLB, obliviously chooses the direction of travel in each dimension weight-

ing the short direction more heavily than the long direction in a manner that globally bal-

ances channel load while preserving some locality. Once the directions are selected, the

packet is adaptively routed to the destination in the resulting quadrant. This adaptive rout-

ing avoids the local imbalance created by adversarial patterns. For instance, in the adver-

sarial pattern shown in Figure 3.11, if routing were done adaptively within the quadrants,

packets would be routed away from the congested link shown in bold grey, thereby increas-

ing the throughput to ���.

We next formally define GOAL and evaluate its performance on various metrics.

45

46 CHAPTER 4. GOAL LOAD BALANCING

4.1 GOAL

GOAL is equivalent to RLB in �-dimension. In higher dimensional tori, GOAL routes a

packet from a source node, � ��� � � � � ���, to the destination node, � ��� � � � � ���, by

obliviously choosing the direction to travel in each of the � dimensions to exactly balance

channel load (as is done by the RLB algorithm). Once the quadrant is selected, the packet

is routed adaptively within the quadrant from � to �. A dimension � is termed productive if

the coordinate of the current node �� differs from ��. Hence, it is productive to move in that

dimension since the packet is not already at the destination coordinate. At each hop, the

router advances the packet in the productive dimension that has the shortest output queue.

2,2

2,11,10,1

0,2 1,2

1,00,0 2,0

3,2

3,1

3,0

2,30,3 1,3 3,3

............

...

...

...

...

Figure 4.1: Example route from S (0,0) to D (2,3) through the minimal quadrant (+1,+1)

Revisiting our example of routing from � ��� �	 to � ��� �	 in an �-ary �-cube net-

work (Chapter 3.2). Suppose GOAL obliviously chooses the minimal quadrant �, ������	.

One possible route of the packet is shown in Figure 4.1. On the first hop, the productive

dimension vector is # ��� �	, i.e., both the � and � dimensions are productive. Suppose

the queue in the � dimension is shorter so the packet proceeds to node (�� �). At (�� �), # is

still (�� �) so the packet can still be routed in either � or �. At this point, suppose the queue

in the � dimension is shorter, so the packet advances to node (�� �). At (�� �), # is still (�� �)

and this time the route is in � to (�� �). At this point, the packet has reached the destination

4.1. GOAL 47

coordinate in � so # ��� �	. Since the only productive dimension is �, the remaining hops

are made in the � dimension regardless of queue length.

4.1.1 Virtual channels and deadlock

Since we use finite buffers, we incorporate virtual channel flow control [9] to avoid dead-

lock in the network. Our implementation of GOAL employs � virtual channels (VCs) per

unidirectional physical channel (PC) to achieve deadlock freedom in the network. This is

an extension of the scheme proposed in the �-channels algorithm [16] applied to the non-

minimal GOAL algorithm. There are two types of virtual channels per PC, � and non-�.

Packets move through the �-channels only when traversing the most significant productive

dimension. The non-� channels are fully adaptive and can be used at any time. In order

to make the �-channel subnetwork free from deadlock, we have two �-channels per PC -

�� and ��. �� (��) is used if the packet has (has not) crossed a wrap-around edge in the

current dimension. With these constraints, it can be proved that the channel dependency

graph, CDG1, for the �-channels associated with GOAL is acyclic. Moreover, no �-channel

can ever participate in a deadlock cycle. Hence, every packet that has not reached its des-

tination always has a �-channel in the set of virtual channels it can possibly use to make

forward progress towards its destination. Therefore, if VCs are assigned fairly, deadlock

can never arise. The formal proof is presented in Appendix B.

4.1.2 Livelock

Minimal algorithms, such as MIN AD, guarantee livelock freedom with fair arbitration

since each channel traversed by a packet reduces the distance to the destination. The

CHAOS scheme uses randomization to misroute from a shared queue of packets in each

node during congestion. This randomization only ensures that the algorithm is probabilis-

tically livelock free. GOAL, like RLB, while non-minimal, provides deterministic freedom

from livelock. Once a route has been selected for a packet, the packet monotonically makes

1The CDG for a network, �, and a routing algorithm, �, is a directed graph, 	�
���. The vertices of 	
are the channels of �. The edges of 	 are the pairs of channels (� �, ��) such that there is a direct dependency
from �� to �� . For a detailed explanation of channel dependency graphs, see Chapter of [13].

48 CHAPTER 4. GOAL LOAD BALANCING

progress along the route, reducing the number of hops to the destination at each step. Since

there is no incremental misrouting, all packets reach their destinations after a predeter-

mined, bounded number of hops.

4.2 Performance evaluation

In this section, we compare the performance of GOAL with the algorithms described in

Table 2.1. Since we have incorporated virtual channel flow control, we reevaluate the

oblivious algorithms from the previous chapter with realistic flow control to present a fair

picture. The deadlock avoidance mechanism for each algorithm is summarized in Table 4.1.

Each packet is again assumed to be one flit long. The total buffer resources are held constant

across all algorithms, i.e., the product of the number of VCs and the VC channel buffer

depth is kept constant. For the CHAOS algorithm (which does not use VCs), we increase

the number of buffers in the shared queue of each node. The rest of the experimental set up

is similar to the one in Chapter 3.

Table 4.1: Deadlock avoidance schemes for the different routing algorithms

���� ���"���� ����"��� ���������

DOR Uses � VCs — VC� (VC�) is used if the packet has (has not)
crossed a wrap-around edge in the current dimension [45].

VAL Uses � subnetworks (for each phase) of � VCs each [50].
ROMM Uses the same scheme as VAL.
RLB Uses the same scheme as GOAL.
CHAOS Uses deflection routing [25].
MIN AD Uses � VCs. A “non-star” VC is provided to ensure full adaptiv-

ity. Two “star” VCs ensure a deadlock free network just like in
DOR [16].

GOAL Uses 3 VCs.

4.2. PERFORMANCE EVALUATION 49

4.2.1 Throughput on specific patterns

Figures 4.2 and 4.3 show the saturation throughput for each algorithm on each traffic pat-

tern of Table 2.2. The two benign traffic patterns are shown in Figure 4.2 while the four

adversarial patterns are shown in Figure 4.3 with an expanded vertical scale. The figures

show that GOAL achieves performance at least as good as VAL on the adversarial pat-

terns while offering significantly more performance on the benign patterns — ��� higher

throughput on random traffic and ���� the throughput on nearest-neighbor. However, the

throughput of GOAL does not match the performance of minimal algorithms on the local

patterns. This is the price of oblivious load balancing.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

VAL DOR ROMM RLB CHAOS MIN AD GOAL

S
at

u
ra

ti
o

n
T

h
ro

u
g

h
p

u
t

NN UR

Figure 4.2: Comparison of saturation throughput of seven algorithms on an �-ary �-cube
for two benign traffic patterns.

The figures also show that the minimal algorithms, DOR, ROMM and MIN AD, offer

high performance on benign traffic patterns but have very poor worst-case performance.

Because the misrouting in CHAOS is local in nature, its performance is comparable to that

of MIN AD, a minimal algorithm.

The exact worst-case throughput for the oblivious algorithms — DOR, ROMM, VAL

and RLB — is shown in Figure 4.3. Since there is no known method to evaluate the worst

case pattern for adaptive algorithms, the worst case graphs shown for CHAOS, MIN AD

and GOAL show the lowest throughput over all traffic patterns we have simulated. We

know from Theorem 3 that MIN AD saturates at � ���� on TOR for � �. CHAOS

50 CHAPTER 4. GOAL LOAD BALANCING

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

VAL DOR ROMM RLB CHAOS MIN AD GOAL

S
at

u
ra

ti
o

n
T

h
ro

u
g

h
p

u
t

BC TP TOR WC

Figure 4.3: Comparison of saturation throughput of seven algorithms on an �-ary �-cube
for four adversarial traffic patterns

does not perform appreciably better on TOR traffic saturating at � ����. The worst case

pattern for GOAL that we know of is the DIA traffic pattern discussed in Theorem 1 on

which it saturates at ���.

The latency-load curves for the benign UR pattern for all the algorithms are shown in

Figure 4.4. On this benign pattern the minimal algorithms give the best performance, VAL

gives the worst performance, and GOAL falls midway between the two. CHAOS, MIN

AD, and DOR all offer minimal zero-load latency and unit throughput because they always

take the shortest path. Because GOAL occasionally routes the long way around, its latency

is increased and its throughput is reduced compared to the minimal algorithms. However,

it offers substantially better performance than VAL, while yielding the same performance

as VAL on worst-case traffic.

Figure 4.5 shows the latency-load curves for each algorithm on the adversarial TOR

pattern for each of the algorithms. Here the balanced algorithms RLB and GOAL offer the

best performance because they efficiently balance load across the two directions in the �

dimension. VAL does nearly as well but has more than twice the zero load latency as the

balanced algorithms because of its two-phase nature and because it takes gratuitous hops

in the � dimension. The minimal algorithms — DOR, MIN AD, and ROMM — perform

poorly (��� lower throughput than GOAL) on TOR because they route all of the traffic in

4.2. PERFORMANCE EVALUATION 51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

Normalized Offered Load (α)

A
ve

ra
ge

 D
el

ay
 p

er
 p

ac
ke

t (
cy

cl
es

)

Uniform Random Traffic

VAL

RLB

GOAL

ROMM

DOR

MIN AD

CHAOS

Figure 4.4: Performance of different algorithms on UR (Uniform Random) traffic

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

60

70

80

Normalized Offered Load (α)

A
ve

ra
ge

 D
el

ay
 p

er
 p

ac
ke

t (
cy

cl
es

)

Tornado Traffic

VAL

CHAOS

GOAL

RLB

ROMM

MIN AD

DOR

Figure 4.5: Performance of different algorithms on TOR (Tornado) traffic

52 CHAPTER 4. GOAL LOAD BALANCING

the shorter direction, leaving the channels in the other direction idle. While CHAOS is not a

minimal algorithm, its misrouting is local in nature and thus is not able to globally balance

load across directions. Thus, the performance of CHAOS closely matches the performance

of MIN AD on all adversarial patterns, including TOR.

4.2.2 Throughput on Random Permutations

As in Chapter 3, our next experiment is to measure the performance of each algorithm on

random permutations. Since no analytical method is known to compute the throughput of

adaptive algorithms, we simulate ���� permutations2 on our simulator for this experiment.

Histograms of saturation throughput over these permutations for six of the algorithms are

shown in Figure 4.6. No histogram is shown for VAL because its throughput is always ���

for all permutations. All the other routing algorithms have bell-shaped histograms. The

highest, average and worst throughput in this experiment for each of the algorithms are

presented in Figure 4.7.

The figures show that over the �� ��� permutations, GOAL is the only algorithm with

a worst-case throughput that matches or exceeds that of VAL. The minimal algorithms and

CHAOS do substantially worse. GOAL outperforms the best of these algorithms, MIN

AD, by ���. The figures also show that despite the fact that it obliviously routes a fraction

of traffic the long way around, GOAL has the highest average case throughput of all of

the algorithms, outperforming MIN AD by ��. This shows clearly that even for an av-

erage permutation, global load balance enhances performance and it is worth obliviously

misrouting to achieve this balance.

The figure also shows the importance of using adaptive routing to achieve local bal-

ance3. GOAL has ��� higher average throughput and ��� higher worst-case through-

put than RLB which also uses quadrant selection to achieve global balance but attempts

to obliviously achieve local balance. For the same reason, the unbalanced adaptive al-

gorithms MIN AD and CHAOS outperform the minimal oblivious algorithms, DOR and

ROMM. MIN AD slightly outperforms CHAOS in terms of both average and worst-case

throughput. This suggests that for most permutations, local misrouting is not advantageous.

2In Chapter 3, we had analytically computed the throughput for �� � permutations.
3This advantage of adaptive routing has also been noted in [3].

4.2. PERFORMANCE EVALUATION 53

The reason is that, with local misrouting, a packet may be misrouted several times, alter-

nating its path between both the � and � directions in a dimension. While techniques can

be employed to limit this excessive misrouting, such as in the BLAM algorithm [47], the

fundamental shortcoming of locally adaptive misrouting still exists — it incorporates no

concept of global load balance into its routing decisions.

4.2.3 Latency

The latency experiment from Chapter 3 is repeated with the algorithms of Table 2.1. The

results for all the three representative paths are presented in Figure 4.8. Under benign

traffic at low load, the three minimal algorithms, DOR, ROMM, and MIN AD, and CHAOS

(which behaves minimally at low load) give the lowest latency. All of these algorithms have

a minimal hop count, � �, and the queueing delay 	 is exponentially distributed with

means ranging from ���� cycles for MIN AD to ���� cycles for ROMM. This difference in

queueing delay further shows the advantage of adaptivity.

The balanced algorithms, RLB and GOAL, have higher latency (��� higher than min-

imal) than the minimal algorithms because they route a fraction of the traffic in the non-

minimal quadrants.

4.2.4 Stability

In this subsection, we evaluate the stability (throughput with offered traffic in excess of the

saturation throughput) of each routing algorithm. As described in Chapter 2, for a given

destination matrix, �, and rate of offered traffic,
, we measure the accepted traffic,
�, as

the minimum accepted load over all source-destination pairs sending packets.

Figure 4.9 shows
� (upper line), the average accepted throughput and
� (lower line),

the minimum accepted throughput vs.
 for the BC permutation on GOAL and CHAOS

routing algorithms. The figure shows that CHAOS is unstable on this adversarial traffic

pattern due to injection-queue starvation. Since CHAOS employs deflection routing to

avoid deadlock, it accepts traffic from the node (source queue) only if resources are avail-

able after serving the input channels and the shared queue. Thus, at high, non-uniform

loads, the source queues on nodes in high-traffic areas are starved indefinitely leading to a

54 CHAPTER 4. GOAL LOAD BALANCING

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

Saturation Throughput

%
ag

e
of

 1
00

0
pe

rm
ut

at
io

ns

DOR

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

Saturation Throughput

%
ag

e
of

 1
00

0
pe

rm
ut

at
io

ns

ROMM

(a) (b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

Saturation Throughput

%
ag

e
of

 1
00

0
pe

rm
ut

at
io

ns

RLB

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

Saturation Throughput

%
ag

e
of

 1
00

0
pe

rm
ut

at
io

ns

CHAOS

(c) (d)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

Saturation Throughput

%
ag

e
of

 1
00

0
pe

rm
ut

at
io

ns

MIN AD

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

Saturation Throughput

%
ag

e
of

 1
00

0
pe

rm
ut

at
io

ns

GOAL

(e) (f)

Figure 4.6: Histograms for the saturation throughput for 10� random permutations. (a)
DOR, (b) ROMM, (c) RLB, (d) CHAOS (e) MIN AD (f) GOAL.

4.2. PERFORMANCE EVALUATION 55

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

DOR ROMM RLB VAL CHAOS MIN AD GOAL

S
at

u
ra

ti
o

n
T

h
ro

u
g

h
p

u
t

Best Case Average Worst Case

Figure 4.7: Best-case, Average and Worst-case Saturation Throughput for 10� random traf-
fic permutations

0

2

4

6

8

10

12

VAL
DOR

ROM
M

RLB

CHAOS

M
IN

AD

GOAL

A
ve

ra
g

e
L

at
en

cy
(c

yc
le

s)

H (A-B) Q (A-B) H (A-C) Q (A-C) H (A-D) Q (A-D)

Figure 4.8: Average total — hop (�) and queueing () — latency for ��� packets for �
sets of representative traffic paths at ��� load

56 CHAPTER 4. GOAL LOAD BALANCING

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Offered Load (α)

A
cc

ep
te

d
T

hr
ou

gh
pu

t

GOAL throughput on BC

α*

α,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Offered Load (α)

A
cc

ep
te

d
T

hr
ou

gh
pu

t

CHAOS throughput on BC

α*

α,

(a) (b)

Figure 4.9: Accepted Throughput for BC traffic on (a) GOAL and (b) CHAOS

nearly zero
�. However, GOAL is stable with accepted traffic,
�, flat after saturation. The

other five algorithms are also stable post saturation with age-based arbitration as shown in

Figure 4.10.

It is worth noting that some algorithms presented in the literature such as those in Chap-

ter � of [13] show that the accepted throughput degrades after saturation. This is because

these schemes either use deadlock recovery techniques [1] or strict escape paths which

drain the packets that may be involved in a deadlock. Since deadlock occurs frequently

post saturation, the throughput of the network degrades to the bandwidth of the deadlock

free lanes or escape channels. The four oblivious algorithms — VAL, DOR, ROMM and

RLB — use deadlock avoidance, i.e., they achieve deadlock freedom by ensuring that the

channel dependency graph (see Chapter � of [13]) of all the virtual channels used is acyclic.

Hence, they are stable after saturation. MIN AD and GOAL use the �-channels as the dead-

lock free escape paths for packets that maybe involved in a deadlock in the fully adaptive

non-� channels. However, these escape paths are not strictly meant for packets involved

in a potential deadlock in the non-� channels, i.e. packets entering the �-channels can al-

ways go back to the non-� ones and vice versa. Thus, none of the adaptivity is lost and the

throughput is sustained post saturation.

4.2. PERFORMANCE EVALUATION 57

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Applied Load

A
cc

ep
te

d
N

et
w

or
k

T
hr

ou
gh

pu
t

DOR throughput on BC

Min
Avg

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Applied Load

A
cc

ep
te

d
N

et
w

or
k

T
hr

ou
gh

pu
t

VAL throughput on BC

Min
Avg

(a) (b)

0.1 0.15 0.2 0.25 0.3 0.35
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Applied Load

A
cc

ep
te

d
N

et
w

or
k

T
hr

ou
gh

pu
t

ROMM throughput on BC

Min
Avg

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Applied Load

A
cc

ep
te

d
N

et
w

or
k

T
hr

ou
gh

pu
t

RLB OB throughput on BC

Min
Avg

(c) (d)

Figure 4.10: Accepted Throughput for BC traffic on (a) DOR (b) VAL (c) ROMM (d)
Oblivious RLB algorithms — RLB & RLBth. The minimum throughput (Min or
 �) over
all source-destination pairs remains flat post-saturation just like the average throughput
(Avg or
�).

58 CHAPTER 4. GOAL LOAD BALANCING

4.2.5 Performance on Hot-Spot traffic

Occasionally a destination node in an interconnection network may become oversubscribed.

This may occur in a switch or router due to a transient misconfiguration of routing tables.

In a parallel computer such a hot spot occurs when several processors simultaneously ref-

erence data on the same node.

We evaluate the performance of five algorithms on hot-spot traffic by using a hot-spot

pattern similar to that used in [3]. We first select a background traffic pattern, bit com-

plement (BC), on which most of the algorithms give similar performance. On top of BC,

five nodes4 are selected which are five times more likely to be chosen as destinations than

the other nodes. In the resulting matrix, ��� , all rows sum to one, but the five columns

corresponding to the five hot-spot nodes sum to five. Since the three adaptive algorithms —

CHAOS, MIN AD and GOAL — and two oblivious algorithms — VAL and DOR — give

similar performance on ��� , we present results for these five on the resulting ��� traffic.

0.5 0.5 0.49 0.49 0.5

0.25

0.31

0.47 0.46 0.465

0

0.1

0.2

0.3

0.4

0.5

0.6

VAL DOR CHAOS MIN AD GOAL

S
at

u
ra

ti
o

n
 T

h
ro

u
g

h
p

u
t

BC HS

Figure 4.11: Saturation Throughput for the Hot-Spot traffic pattern and the background Bit
Complement pattern.

Figure 4.11 shows the performance of each routing algorithm on the hot-spot pattern

and the background BC pattern. The adaptive algorithms, CHAOS, MIN AD, and GOAL

have similar performance on hot-spot traffic. They clearly outperform the oblivious al-

gorithms because adaptivity is required to route around the congestion resulting from hot

4These five hot-spot nodes are chosen very close to each other to stress the adaptivity of the algorithms.

4.3. SUMMARY 59

nodes. VAL gives throughput lower than ��� on hot-spot traffic because the traffic matrix

is no longer admissible.

4.3 Summary

In this Chapter, we have introduced a load-balanced, non-minimal adaptive routing algo-

rithm for torus networks, GOAL, that achieves high throughput on adversarial traffic pat-

terns while preserving locality on benign patterns. GOAL matches or exceeds the through-

put of Valiant’s algorithm on adversarial patterns and exceeds the worst-case performance

of CHAOS, RLB, and minimal routing by more than ���. Like RLB, GOAL exploits

locality to give ���� the throughput of Valiant on local traffic and more than ��� lower

zero-load latency than Valiant on uniform traffic.

GOAL globally balances network load by obliviously choosing the direction of travel

in each dimension, in effect randomly picking a quadrant in which to transport the packet.

The random choice of directions is made using distance-based weights that exactly bal-

ance load in each dimension. Once the quadrant is selected, GOAL locally balances load

by routing adaptively within that quadrant. GOAL employs a new algorithm for deadlock

freedom based on an extension of the �-channels approach [16] (which is used for mini-

mal routing) to handle the non-minimal case. This provides deadlock freedom with just

three virtual channels per physical channel. Unlike CHAOS, GOAL is deterministically

livelock free since within the selected quadrant distance to the destination is monotonically

decreased with each hop.

We compare GOAL to the four oblivious algorithms from Chapter 3 — VAL, DOR,

ROMM, and RLB — and two state-of-the-art adaptive routing methods — CHAOS and

MIN AD — and present a comparison in terms of throughput, latency, stability, and hot-

spot performance. This evaluation includes throughput histograms on random permutations

and latency histograms for CHAOS and MIN AD that have not been previously reported.

GOAL provides the highest throughput of the seven algorithms on four adversarial patterns

and on the average and worst-case of �� ��� random permutations. The cost of this high

worst-case throughput is a degradation on local traffic. GOAL achieves only ��� and ���

of the throughput of minimal algorithms on nearest-neighbor traffic and uniform traffic,

60 CHAPTER 4. GOAL LOAD BALANCING

respectively. Due to oblivious misrouting, GOAL also has ��� higher latency on random

traffic than the minimal algorithms; however it has ��� lower latency than VAL. Finally,

we analyze network performance beyond saturation throughput and show for the first time

that due to fairness issues CHAOS is unstable in this regime for certain permutations.

Sub-optimal performance on benign traffic remains a thorn in the flesh for any kind of

oblivious misrouting. In the next chapter we explore how adaptive decisions to misroute

can alleviate this problem for GOAL.

Chapter 5

Globally Adaptive Load-balancing

We have demonstrated the superior performance on average of adaptive algorithms over

the oblivious ones. In this chapter, we focus on adaptive algorithms. We introduce two new

methods of globally adaptive load-balanced routing that we refer to as GAL [44] and CQR

[42]. Unlike previous adaptive routing algorithms that make routing decisions based on

local information, the globally adaptive load balanced algorithms sense congestion glob-

ally using either segmented injection queues or channel queues to decide the directions to

route in each dimension. They further load balance the network by routing in the selected

directions adaptively. The use of approximate global information enables GAL and CQR

to achieve the performance (latency and throughput) of minimal adaptive routing on be-

nign traffic patterns, while performing as well as the obliviously load-balanced GOAL on

adversarial traffic.

5.1 GAL: Globally Adaptive Load-balanced routing

In the previous chapters, we have seen that no adaptive algorithm discussed thus far yields

optimal throughput on both benign patterns (such as UR, NN) and adversarial patterns

(such as TOR). An ideal algorithm routes benign traffic minimally, and load balances ad-

versarial traffic across the channels of the network. In this section, we present a routing

algorithm, GAL, that, using approximate global information, changes its routing decision

from minimal to non-minimal. We first consider this algorithm for routing a benign traffic,

61

62 CHAPTER 5. GLOBALLY ADAPTIVE LOAD-BALANCING

NN, and an adversarial traffic, TOR, on an � node ring and then extend GAL to higher

dimensional torus networks.

5.1.1 GAL on a ring

In order to sense approximate global information on an � node ring, consider � sets of injec-

tion queues at each source — each set corresponding to a destination. Each set comprises

two queues — a minimal queue and a non-minimal one. When a packet is received from

the terminal node, it is enqueued in the minimal queue for the packet’s destination, if the

length of that queue is less than a threshold, � , otherwise it is enqueued in the shorter of

the two queues (Figure 5.1). With this scheme, NN is always routed minimally, i.e., the

threshold of the minimal queues is never reached and the throughput is optimal at � �.

When we route TOR using this scheme and increase the injected load, initially all the pack-

ets are routed minimally. However, when ���� load is accepted, the minimal direction gets

saturated and the threshold is surpassed. The algorithm now becomes non-minimal and

starts sending the rest of the traffic the long way around.

T

MinimalNon-minimal

Figure 5.1: A packet is injected into the non-minimal injection queue when the minimal
injection queue for its destination reaches a threshold.

As illustrated in Figure 5.2, this scheme routes TOR traffic minimally at low loads.

Only when the minimal channels become saturated at a load of ����, does the minimal

queue length exceed the threshold. At this point, some traffic is routed non-minimally. As

the load is increased, more traffic is routed non-minimally. At saturation, the load is exactly

5.1. GAL: GLOBALLY ADAPTIVE LOAD-BALANCED ROUTING 63

balanced with ��� of the traffic routing minimally and ��� non-minimally. Thus, by making

the global routing decision (minimal or non-minimal) using global congestion information

(sensed by the injection queues) this scheme is able to achieve optimal performance on

both benign (NN) and difficult (TOR) traffic patterns, something no previously published

routing algorithm has achieved.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

Offered Load

A
cc

ep
te

d
 S

te
ad

y
st

at
e

th
ro

u
g

h
p

u
t

Accepted Throughput (Minimal) Accepted throughput (Non-minimal)
Total Accepted Throughput

Figure 5.2: GAL on tornado traffic on an � node ring

5.1.2 GAL routing in higher dimensional torus networks

In a torus with � dimensions, we divide the sets of possible paths from a source � to a

destination � into �� quadrants, one for each combination of directions (one direction per

dimension). GAL provides a separate set of injection queues for each quadrant. Figure 5.3

shows the setup for each node for a �-D network. There is an infinite source queue that

models the network interface to the terminal node. There are $ �� sets, each set com-

prising � injection queues. When the injection unit receives a packet from the source queue,

the injection set is determined by its destination. Within that set, one injection queue (and

therefore the quadrant to route in) is selected as follows: the queue associated with the

quadrant having the smallest distance from the source to the destination whose occupancy

is less than a threshold, � , is chosen. If all the queues have surpassed their threshold, then

the shortest queue is selected. Once the quadrant is selected, the packet is routed adaptively

within that quadrant just as in GOAL.

As shown is Figure 5.3, our implementation of GAL, like GOAL, requires � virtual

64 CHAPTER 5. GLOBALLY ADAPTIVE LOAD-BALANCING

Router

Injection
Queues

1 2 3 4

Chan X+

Chan X-

Chan Y+

Chan Y-

VC0

VC1

VC2

Chan X+

Chan X-

Chan Y+

Chan Y-

Source
Chan

32 flit buffer/
VC

VC0
VC1

VC2

VC0
VC1

VC2

VC0
VC1

VC2

VC0
VC1

VC2

VC0
VC1

VC2

VC0
VC1

VC2

VC0
VC1

VC2

...

...

...

...

...

12
8

fl
it

s/
 Q

4 Qs/
Set

S
Set

s

Injection
Unit

...
Infinite
Src Q

Figure 5.3: GAL node for a �-D torus

channels (VCs) per unidirectional physical channel to achieve deadlock freedom in the

network. The argument presented in Appendix B also applies to GAL, proving that GAL is

free of deadlocks. Once a quadrant has been selected for a packet, the packet monotonically

makes progress in that quadrant, providing deterministic freedom from livelock.

5.2 Performance evaluation of GAL

We next compare the performance of GAL with the � adaptive algorithms, CHAOS, MIN

AD and GOAL, based on the six figures of merit we have used thus far.

All the assumptions regarding the node model for GAL stated in Section 5.1 hold for

the experimental setup. Figure 5.3 shows the experimental setup for a node for GAL. Each

node has an infinite source queue to model the network interface and there are $ ��

sets of injection queues for an � � � torus. Each set has � injection queues (with ��� flits

each) corresponding to each of the � quadrants. The router is output queued and queues

packets into one of the � (�� flit deep) VC buffers per physical output channel. Each packet

is assumed to be one flit long to separate the routing algorithm study from flow control

5.2. PERFORMANCE EVALUATION OF GAL 65

issues. The threshold value, � , for GAL is kept at � flits for each minimal injection queue.

The total buffer resources are held constant across all algorithms, i.e., the product of the

number of VCs and the VC channel buffer depth is kept constant.

5.2.1 Throughput on benign and hard traffic

We first compare the throughput of the four algorithms on the benign and adversarial traffic

patterns described in Table 2.2. The two benign traffic patterns are shown in Figure 5.4

while the four adversarial patterns are shown in Figure 5.5 with an expanded vertical

scale. The figures show that GAL is the only algorithm that gives best performance on

both these categories of traffic patterns. It becomes a GOAL-like load balancing algorithm

and matches the throughput of GOAL on adversarial traffic. At the same time it behaves

minimally on benign patterns and matches the performance of MIN AD on them.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

CHAOS MIN AD GOAL GAL

S
at

u
ra

ti
o

n
 T

h
ro

u
g

h
p

u
t

NN UR

Figure 5.4: Comparison of saturation throughput on benign traffic on an �-ary �-cube

5.2.2 Throughput on random permutations

In order to evaluate the performance of the algorithms for the average traffic pattern, we

measured the performance of each algorithm on �� ��� random permutations as we did in

the previous chapter.

66 CHAPTER 5. GLOBALLY ADAPTIVE LOAD-BALANCING

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CHAOS MIN AD GOAL GAL

S
at

u
ra

ti
o

n
 T

h
ro

u
g

h
p

u
t

BC TP TOR WC

Figure 5.5: Comparison of saturation throughput on adversarial traffic on an �-ary �-cube

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

5

10

15

20

25
GAL

Saturation Throughput

%
ag

e
of

 1
00

0
pe

rm
ut

at
io

ns

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

5

10

15

20

25

30

35

Saturation Throughput

%
ag

e
of

 1
00

0
pe

rm
ut

at
io

ns

IDEAL

(a) (b)

Figure 5.6: Histograms for the saturation throughput for 10� random permutations. (a)
GAL, (b) Ideal.

5.2. PERFORMANCE EVALUATION OF GAL 67

The histogram of saturation throughput over these permutations for GAL is shown in

Figure 5.6(a). The histogram in Figure 5.6(b) shows the ideal throughput for each of the

random permutations evaluated by solving a maximum concurrent flow problem over the

traffic patterns constrained by the capacity of every link as described in [38]. The best,

average and worst-case throughput in this experiment for each of the algorithms and the

ideal throughput values for the sampled permutations are presented in Figure 5.7.

0

0.2

0.4

0.6

0.8

1

1.2

CHAOS MIN AD GOAL GAL IDEAL

S
at

u
ra

ti
o

n
 T

h
ro

u
g

h
p

u
t

Best Throughput Avg Throughput Worst Throughput

Figure 5.7: Best-case, Average and Worst-case Saturation Throughput for 10� random traf-
fic permutations

The figure shows that over the �� ��� permutations, GAL has top performance in the

best, average and worst-case throughput — exceeding the worst-case throughput of GOAL

and achieving ��� of the ideal worst-case throughput for this sampling. GAL gives ���

average throughput compared to the ideal average throughput. Part of this gap is because

the ideal throughput is evaluated assuming ideal flow control while GAL uses a realistic

flow control mechanism.

5.2.3 Latency at low loads and hot-spot traffic

GAL performs optimally on the low-load latency experiment described in the previous two

chapters. As illustrated in Figure 5.8, at a low load of ��� for UR traffic, the non-minimal

algorithms, GAL and CHAOS, behave just like MIN AD and deliver packets with optimal

latency. In contrast, GOAL sacrifices some of the locality due to its oblivious misrouting.

68 CHAPTER 5. GLOBALLY ADAPTIVE LOAD-BALANCING

0

1

2

3

4

5

6

7

8

9

10

CHAOS MIN AD GOAL GAL

A
ve

ra
g

e
L

at
en

cy
 (

C
yc

le
s)

H (A-B) Q (A-B) H (A-C) Q (A-C) H (A-D) Q (A-D)

Figure 5.8: Average total — hop (�) and queuing () — latency for ��� packets for � sets
of representative traffic paths at ��� load

Figure 5.9 shows the performance of each routing algorithm on the hot-spot pattern and

the background BC pattern. CHAOS, MIN AD, and GOAL have similar performance on

hot-spot traffic. GAL once again performs the best among all the algorithms, outperforming

MIN AD by ����. This is because the minimality inherent in MIN AD forces it to route

some fraction through the clustered hot nodes. The globally load balancing GAL senses

this congestion and routes traffic that would otherwise have to go headlong through the hot

nodes with MIN AD, the long way around.

5.2.4 Stability

We have discussed the importance of stability of a routing algorithm in Chapter 4. An

algorithm is stable if the accepted throughput remains constant even as the offered load

is increased beyond the saturation point. Achieving stability can be challenging for non-

minimal, adaptive routing algorithms because it is difficult to differentiate between con-

gestion caused by load imbalance and congestion caused by saturation of a load balanced

network. In the former case, rerouting traffic, possibly non-minimally, can alleviate this

imbalance and increase throughput. However, in the load balanced, but saturated case,

rerouting traffic may introduce imbalance and decrease throughput. GAL solves this in-

stability problem by measuring changes in throughput and adjusting its queue thresholds.

5.2. PERFORMANCE EVALUATION OF GAL 69

0

0.1

0.2

0.3

0.4

0.5

0.6

CHAOS MIN AD GOAL GAL

S
at

u
ra

ti
o

n
 T

h
ro

u
g

h
p

u
t

Bit Complement Hot Spot

Figure 5.9: Saturation Throughput for the Hot-Spot traffic pattern and the background Bit
Complement pattern

Changing these thresholds allows control over the fraction of packets sent non-minimally,

which, in turn, is used to maintain stability. Before describing the mechanisms and rules

for these adjustments, we examine a simple example to demonstrate the necessity of con-

trolling the fraction of packets sent non-minimally.

Consider the case of routing UR traffic with GAL, but using a fixed queue threshold. For

an offered load beyond saturation, traffic will initially be routed minimally as the minimal

queues are empty. Since the network cannot sustain all the traffic, backpressure will cause

packets to back up into the minimal source queues. Although minimal routing perfectly

balances load for UR traffic, the occupancy of these queues will eventually exceed the

fixed threshold and some traffic will be routed non-minimally. At this point, throughput

will begin to drop as channel bandwidth is wasted by non-minimal packets (Figure 5.10).

If, instead, packets had not been routed non-minimally, throughput would have remained

stable.

To control the number of packets routed non-minimally, GAL dynamically varies each

threshold � between a minimum value ���� and a maximum value ���� set by the queue

depth. This is done independently for each queue set. Then, the threshold value limits

the fraction of packets routed non-minimally — increasing � decreases the likelihood that

a packet is placed in a non-minimal queue and, when � ����, all packets are routed

70 CHAPTER 5. GLOBALLY ADAPTIVE LOAD-BALANCING

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle #

A
cc

ep
te

d
T

hr
ou

gh
pu

t

GAL UNSTABLE

Figure 5.10: GAL with fixed threshold is unstable for UR traffic at ��� offered load

minimally. To ensure stability, � is incremented whenever a drop in throughput is observed.

Revisiting our stability example, for any � ! ����, some fraction of packets will be routed

non-minimally, reducing throughput and, thus, triggering an increase in � . This continues

until � ���� and stability is achieved. Because the traffic pattern may later change so

that non-minimal routing is again productive, � is decremented whenever throughput is

constant or increasing.

We approximate the throughput for each source-destination pair by instrumenting a

running total of the drained packets over a window of �� cycles, �, from all the injection

queues in the corresponding set at each source node. Then, the change in this drainage,

��, is computed over �� cycles:

��
�����
��

���� ��� �� ������ �

where �� is the number of departures from the queues in that set at time %. The estimated

5.2. PERFORMANCE EVALUATION OF GAL 71

throughput is then used to update the threshold each �� cycles:

����

��
������� � �� ����	 if��� ! ��

������ � �� ����	 if��� � ��

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle #

A
cc

ep
te

d
T

hr
ou

gh
pu

t

GAL STABLE

Figure 5.11: GAL is stable with threshold variation post saturation. UR traffic at ��� load
switches to TOR at ���� load on Cycle ���.

Figure 5.11 shows an example of threshold adjustment. The test setup is as follows: we

impose UR traffic at 1.1 injection load and then switch to TOR at ���� injection load on

cycle 600. The parameter values used are ���� �, ���� ���, �� �� and �� ��.

Both loads are post saturation, but the accepted throughput is stable. This is because when

�� becomes negative, the threshold is incremented. This keeps happening as more packets

are injected. Finally, when � ����, the algorithm routes the UR traffic strictly minimally

and the accepted throughput almost reaches the optimal value of ���. After cycle ���, the

traffic changes to TOR at ���� load. Still �� ! � and hence, � ����. Now GAL acts

like a minimal algorithm routing TOR traffic and so the accepted throughput drops much

below the optimal value of ����. After the lowest point, the throughput starts to level out

again (�� �) and hence, � is decremented. As a result, �� rises as traffic is sent non-

minimally. This continues until � ���� and the accepted throughput is stable for TOR

72 CHAPTER 5. GLOBALLY ADAPTIVE LOAD-BALANCING

traffic. Thus, GAL with the threshold adjustment scheme is stable for both benign and hard

traffic patterns.

5.3 Summary of GAL

To summarize this chapter thus far, we have introduced Globally Adaptive Load-balanced

Routing (GAL), a new algorithm for routing in �-ary �-cube networks that adapts globally

by sensing global congestion using queues at the source node. By sensing global con-

gestion, GAL adapts to route minimally when it can, and non-minimally only when the

minimal channels become congested. Previous adaptive algorithms are unable to adapt in

this manner. GAL also adapts locally, sensing channel congestion using channel queues.

At low loads and on benign traffic patterns, GAL routes all traffic minimally and

thus, matches the low latency and high throughput of minimal routing algorithms on such

friendly traffic. On adversarial traffic patterns, GAL routes minimally at low loads and then

switches to non-minimal routing as congestion is detected by the injection queues. At sat-

uration, GAL matches the throughput of optimally load-balanced oblivious routing. This

combines the best features of minimal algorithms (low latency at low load) and obliviously

load balanced algorithms (high saturation throughput).

While GAL performs better than any other known routing algorithm on a wide variety

of throughput and latency metrics, there are four serious issues with GAL. First, it has

very high latency once it starts routing traffic non-minimally. Second, it is slow to adapt

to changes in traffic. Third, it requires a complex method to achieve stability. Finally,

it is complex to implement. These issues are all related to GAL’s use of injection queue

length to infer global congestion. In the rest of this chapter, we introduce channel queue

routing (CQR - pronounced “seeker”) [42] which matches the ability of GAL to achieve

high throughput on both local and difficult patterns but overcomes the limitations of GAL.

CQR overcomes these limitations by using channel queues rather than injection queues

to estimate global congestion. CQR gives much lower latency than GAL at loads where

non-minimal routing is required. It adapts rapidly to changes in traffic, is unconditionally

stable, and is simple to implement.

5.4. MOTIVATION FOR CHANNEL QUEUE ROUTING (CQR) 73

5.4 Motivation for Channel Queue Routing (CQR)

For adversarial traffic patterns, the focus of an adaptive routing algorithm must change as

load is increased. At low loads, packets should be routed minimally in order to minimize

delays. As loads increase, minimizing delay requires shifting some packets to non-minimal

routes in order to balance channel load. In this section, we derive the optimal adaptive

routing algorithm for the tornado traffic pattern on the �-node ring network and compare it

to the performance of GAL. While GAL matches this optimal algorithm at both very low

loads and loads near saturation, it transitions too slowly from minimal to non-minimal at

intermediate loads, resulting in delays approximately ��� cycles more than optimal. This

behavior is representative of GAL on all adversarial patterns because it does not misroute

until the delays of the network are already large.

In order to understand how tornado traffic should be routed for optimal delay, we

present an approximate theoretical model from queueing theory.

5.4.1 A Model from queueing theory

Queueing networks have been studied extensively in literature. A popular way to study a

network of queues is to use the Jackson open queueing network model [18]. This model

assumes a product-form1 network in which each queue is an independent &�&�� queue.

However, it differs from the standard model by assuming that service times, instead of

being constant, are exponentially distributed with unit mean. Based on an idea first con-

sidered by Kleinrock [23], Mitzenmacher [29] observed that assuming each queue to be

an independent &���� queue is a good approximation. While the approximate model no

longer strictly remains a product-form network, the results prove accurate in practice.

For our queueing model, we assume each queue to be an independent &���� queue

with arrival rate
 and service rate �. The queueing delay of a packet in such a queue is

given by [2],

	�
	
�

����
	

1A network is product-form if in equilibrium distribution each queue appears as though it were an inde-
pendent process with Poisson arrivals.

74 CHAPTER 5. GLOBALLY ADAPTIVE LOAD-BALANCING

If a packet traverses a linear network of ' such queues, it incurs a queueing delay due

to ' queues and a hop delay of '. Its total delay is approximated by

(��
	 '�	�
	 � �	�

We shall use this approximate model in the rest of this discussion.

5.4.2 Routing tornado traffic for optimal delay

When routing TOR optimally, there are two classes of packets — those that are routed

minimally and those sent along the non-minimal path. Let the injection load for each node

be
 and the rates at which each node sends packets minimally and non-minimally be ��

and ��, respectively. Then, below saturation,

 �� � �� (5.1)

Packets sent minimally (non-minimally) must traverse � (�) &���� queues each with

an arrival rate of �
 (�
).2 Hence, the delay encountered by a packet sent minimally is

given by

�����	 (�����	
�

���� ���	
� � (5.2)

and the delay of a non-minimally routed packet is given by

�����	 (�����	
�

���� ���	
� �� (5.3)

Then the average delay is simply a weighted sum of these delays,

��
	
�

�������	 � �������	�� (5.4)

We now analyze the fraction of traffic sent minimally and non-minimally to minimize

delay as described in [2].

2At steady state and due to the symmetry of the network and the traffic pattern, we assume all nodes route
traffic identically.

5.4. MOTIVATION FOR CHANNEL QUEUE ROUTING (CQR) 75

Theorem 5. For tornado traffic on an � node ring, the optimal fraction, ��, of total traffic,

, sent minimally is given by

��

����
���

 ���
 	 ����

�
 � ����	�� ��� ���� !
 	 ����

���� ���
 � ����

Proof. For minimum delay, each node should send all traffic along the minimal path until

the incremental delay of routing minimally is greater than that of routing non-minimally.

The routing will be strictly minimal as long as

)���
	

)��
	
)����	

)��
(5.5)

Solving Equation 5.5, we get
 	 ����. Hence, the switch point from strictly minimal to

non-minimal occurs at
� ����.

Once each node starts to send traffic non-minimally (
 �
�), the optimal fraction of

load sent minimally (��) and non-minimally (��) will be such that the incremental delay

along either directions is the same:

)�����	

)��

)�����	

)��

� (5.6)

Solving Equations 5.6, 5.1 yields �� �
�
�	�� for
 �
�. Finally, after the network

saturates at
 ����, �� ���� and �� ���. The plots for the accepted throughput along

minimal and non-minimal paths are shown in Figure 5.12.

Substituting the values of �� and �� in Equations 5.2, 5.3, and 5.4, we get the average

minimal, non-minimal and overall delay of the packets according to our model. As shown

in Figure 5.13, the average delays along both paths are similar and give a low overall

average latency.

76 CHAPTER 5. GLOBALLY ADAPTIVE LOAD-BALANCING

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

Offered Load

A
cc

ep
te

d
 T

h
ro

u
g

h
p

u
t

Model Overall Model Minimal Model Non-minimal

Figure 5.12: The optimal fraction of traffic in the minimal and non-minimal paths for
tornado traffic on an � node ring

0

20

40

60

80

100

120

140

160

0 0.1 0.2 0.3 0.4 0.5 0.6

Offered Load

A
ve

ra
g

e
D

el
ay

 (
C

yc
le

s)

Model Minimal Model Non-minimal Model Overall

Figure 5.13: Optimal minimal, non-minimal and overall latency of the theoretical model
for tornado traffic on an � node ring

5.4. MOTIVATION FOR CHANNEL QUEUE ROUTING (CQR) 77

5.4.3 GAL’s latency on tornado traffic

GAL routes a packet minimally if the occupancy of the minimal injection queue associated

with the packet’s destination is below a threshold. Otherwise, the threshold is exceeded

and the packet is injected into the non-minimal injection queue and routed non-minimally.

1 2 3 4

5678

αs

αsαs

αs

αs αs

αs α
s

T

Figure 5.14: GAL on tornado traffic on an 8 node ring at the point when it switches from
minimal to non-minimal. Only 1 set of injection queues corresponding to the destination is
shown.

With this approach, GAL routes packets minimally until the capacity along the minimal

path is saturated. When this happens, the queues along the minimal path start to fill up and

the network backpressure implicitly transfers this information to the injection queues in the

source node. When the occupancy of the minimal injection queue surpasses a threshold,

� , packets are injected into the non-minimal injection queue and the routing switches from

strictly minimal to non-minimal. This switching does not happen until all the queues along

the minimal path are completely filled as shown in Figure 5.14. Hence, the load at which

this switch occurs is simply the saturation load for strictly minimal routing of the tornado

pattern and is given by
� ����. Figure 5.2 shows how GAL starts to send traffic non-

minimally only after the injection load,
 � ����. The accepted throughput at saturation is

still the optimal value of ����.

78 CHAPTER 5. GLOBALLY ADAPTIVE LOAD-BALANCING

However, the subtle point to note is that while GAL routing is throughput-optimal on

the tornado pattern, delay in the switching from strictly minimal to non-minimal incurs a

high price as far as the latency is concerned.

0

50

100

150

200

250

300

350

400

450

0 0.1 0.2 0.3 0.4 0.5 0.6

Offered Load

A
ve

ra
g

e
L

at
en

cy
 (

C
yc

le
s)

GAL Minimal GAL Non-minimal GAL overall

Figure 5.15: Latency-load plot for GAL on tornado traffic on an � node ring

Figure 5.15 shows the average minimal, non-minimal and overall packet delay for GAL.

Since GAL routes minimally all the way to the saturation point for the strictly minimal

routes, the latency incurred by the minimal packets after a load of ���� is very high. This

causes the average overall packet delay, which is a weighted average of the minimal and

non-minimal delays, to be of the order of ���s of cycles for an � node network much before

the network saturation point of ����.

5.4.4 Routing tornado traffic with CQR

We observe that the reason GAL performs so poorly on tornado traffic is that it waits

too long to switch its policy from strictly minimal to non-minimal. It does so because its

congestion sensing mechanism uses the occupancy of the injection queues which is not very

responsive to network congestion. CQR addresses this problem by sensing network load

imbalance using its channel queues while at the same time relying on the network’s implicit

backpressure to collect approximate global information from further parts of the network.

Consider the highlighted node � in Figure 5.16. For the tornado traffic pattern, the minimal

and non-minimal queues for this node are the clockwise and counterclockwise outgoing

5.4. MOTIVATION FOR CHANNEL QUEUE ROUTING (CQR) 79

queues, respectively. The instantaneous occupancy of both these queues are labeled as ��

and ���. If routed minimally (non-minimally), a packet will traverse � (�) queues, each

with occupancy �� (���). In order to keep the delay along both directions balanced, CQR

routes minimally as long as ��� 	 ����, else it routes non-minimally. Such a congestion

sensing scheme is more responsive than the one used in GAL and unlike GAL, the switch

occurs much before all the minimal queues are filled as shown in Figure 5.16. We call this

routing method Channel Queue Routing (CQR).

1 2 3 4

5678

αs

αs

α
s

αs

αs
α

s

αsαs

qm

qnm

Figure 5.16: CQR on tornado traffic on an � node ring at the point when it switches from
minimal to non-minimal

Figure 5.17 shows the fraction of traffic sent the minimal and non-minimal way as the

injected load increases. The switch point,
� ����, is very close to the one that we

derived in our model. Since the switch point for CQR on TOR is near-optimal, it gives

a much smaller average overall delay as shown in Figure 5.18. The latency-load curve is

very similar to the one we derived in Figure 5.13. It should be noted that the plots do not

exactly match the model that we described as the model itself is based on an approximation

and the queues are not strictly a network of independent &���� queues.

80 CHAPTER 5. GLOBALLY ADAPTIVE LOAD-BALANCING

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

Offered Load

A
cc

ep
te

d
 T

h
ro

u
g

h
p

u
t

CQR Minimal CQR Non-minimal CQR Overall

Figure 5.17: CQR throughput on tornado traffic on an � node ring

0

5

10

15

20

25

30

35

40

45

50

0 0.1 0.2 0.3 0.4 0.5 0.6

Offered Load

A
ve

ra
g

e
L

at
en

cy
 (

C
yc

le
s)

CQR Minimal CQR Non-Minimal CQR Overall

Figure 5.18: Latency-load plot for CQR on tornado traffic on an � node ring

5.5. CHANNEL QUEUE ROUTING 81

5.5 Channel Queue Routing

Like in GAL, CQR adaptively selects a quadrant to route in for each packet. Suppose

the source node is � ��� ��� � � � � ��� and the destination node is � ��� ��� � � � � ���,

where �� is the coordinate of node � in dimension �. We compute a minimal direction vec-

tor � ��� ��� � � � � ���, where for each dimension �, we choose �� to be �� if the short

direction is clockwise (increasing node index) and�� if the short direction is counterclock-

wise (decreasing node index). Choosing a quadrant to route in simply means choosing a

quadrant vector, 	�, where for each unmatched dimension � we could choose 	�� ��

(�� ���) if we want to route minimally (non-minimally) in that dimension. In order

to get approximate quadrant congestion information just like in the one dimension case,

each node records the instantaneous occupancies of its outgoing channel queues along both

directions (� and �) in each dimension. Then the congestion, 	� , for quadrant � is ap-

proximated by the length of the shortest outgoing queue for that quadrant. If the hop count

for 	� is �� , then ��	� is approximately the delay the packet will incur in 	� . To balance

delay over all quadrants, we must make the ��	�’s equal for all �. In order to achieve this,

CQR selects the quadrant � corresponding to the minimum ��	�.

For instance, Figure 5.19 shows a portion of an �-ary �-cube network. Source (�� �)

wants to route a packet to destination node (�� �). There are � choices of quadrants,

	����	, 	����	, 	����	, and 	����	 with hop counts �, �, �, and ��, respectively,

for this source-destination pair. The source node records the occupancy, ��, ��, ��, and ��

of each outgoing channel. The congestion of the minimal quadrant 	� is approximated by

������� ��	. Analogously, the congestion of quadrants 	�, 	�, and 	� are approximated

by ������� ��	, ������� ��	, and ������� ��	, respectively. CQR selects the quadrant � cor-

responding to the minimum hop count-congestion product, i.e., the quadrant corresponding

to the minimum of �	�, �	�, �	�, and ��	�.

Once the quadrant is selected, the packet is routed adaptively within that quadrant using

� VCs in the same way as is done in GOAL and GAL.

82 CHAPTER 5. GLOBALLY ADAPTIVE LOAD-BALANCING

2,2

2,11,10,1

0,2 1,2

1,00,0 2,0

3,2

3,1

3,0

2,30,3 1,3 3,3

............

...

...

...

...

qa

qb

qc

qd +

+

Figure 5.19: Quadrant selection from source (�� �) to destination (�� �) in CQR

5.6 CQR v.s. GAL: Steady-state performance

5.6.1 Summary of previous performance metrics

Table 5.1 shows that CQR is able to exactly match the performance (throughput, �, and

latency, �) of GAL across all the figures of merit described in the first part of this chap-

ter. ��� represents throughput on a benign traffic, UR, while ���� is throughput on the

adversarial TOR traffic. ���� is the average throughput for a sampling of ���� random

permutations, while ��� is the throughput on hot-spot traffic. Finally, ���� is the average

latency on UR traffic at ��� load.

CQR, unlike GAL (with fixed threshold), is stable post-saturation as it makes its rout-

ing decision using the channel queues instead of injection queues. Since congestion due to

post-saturation injection load remains in the source queues, CQR does not mix up the con-

gestion due to load imbalance and that due to injection load in excess of saturation. Thus,

the accepted throughput remains flat even after the offered load is in excess of saturation as

5.6. CQR V.S. GAL: STEADY-STATE PERFORMANCE 83

Table 5.1: Table summarizing the performance of CQR and GAL. The throughput is nor-
malized to network capacity and latency is presented in cycles.

GAL CQR

#�� 1.0 1.0
#��� 0.53 0.53
#�	
 0.73 0.73
#�� 0.49 0.49
�� 4.45 4.45

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle #

A
cc

ep
te

d
T

hr
ou

gh
pu

t

GAL UNSTABLE

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle #

A
cc

ep
te

d
T

hr
ou

gh
pu

t

CQR STABLE

(a) (b)

Figure 5.20: Performance of GAL and CQR on UR traffic at 1.1 offered load. (a) Through-
put decreases over time for GAL (with fixed threshold) as it is unstable post saturation (b)
CQR is stable post saturation.

84 CHAPTER 5. GLOBALLY ADAPTIVE LOAD-BALANCING

shown in Figure 5.20.

5.6.2 Latency at Intermediate Loads

The biggest improvement of CQR over GAL is that at intermediate loads, it delivers packets

with much lower latency than GAL for traffic patterns which require the algorithms to route

non-minimally for optimal throughput. This effect is more pronounced for injection loads

closer to saturation when the non-minimal paths have to be used to give higher system

throughput. Section 5.4 shows an example of CQR’s improvement over GAL giving up to

��� lower average delay than GAL on TOR in the injection load range of ����� ����.

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6

Load

L
at

en
cy

 (
C

yc
le

s)

GAL CQR

Figure 5.21: Latency profile of CQR and GAL for the 2D-tornado traffic

Figure 5.21 shows how the advantage of CQR over GAL extends to a two dimension

network — an �-ary �-cube. The traffic pattern is the �-dimension version of the tornado

traffic on a ring, i.e., source (�� �) sends to (� � ���� �� � � ���� �). GAL’s latency-load

plot rises up in steps which correspond to the points where a particular quadrant saturates

and GAL starts routing along the next non-minimal quadrant. There are only � such steps

for � non-minimal quadrants as quadrants � and � are identical in terms of the distance

from the source to the destination. In contrast, CQR has a very sharp latency profile giving

up to ��� lower average delay than GAL in the injection load range of ����� ����.

5.7. CQR V.S. GAL: DYNAMIC TRAFFIC RESPONSE 85

5.7 CQR v.s. GAL: Dynamic traffic response

Traditionally, most adaptive routing algorithms in interconnection networks have been eval-

uated with static traffic patterns and only their steady-state performance has been studied.

However, adaptive routing algorithms are characterized by both a steady-state and a tran-

sient response. In this section, we demonstrate how CQR’s routing mechanism gives much

better transient response than GAL.

5.7.1 Step Response

The first experiment we perform is to subject the network to a traffic pattern that requires

the algorithm to adapt from minimal to non-minimal routing — tornado traffic. The time

taken for the algorithm to adapt to congestion is both a function of the routing decision

mechanism and the per-channel flow control. In order to focus on the routing decision, we

keep the channel queues for each algorithm the same. We then impose the tornado traffic

pattern at a load of ���� at cycle � and measure the step response of GAL and CQR.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500 600 700 800

Cycle #

A
cc

ep
te

d
 T

h
ro

u
g

h
p

u
t

GAL CQR

Figure 5.22: Transient response of CQR and GOAL to the tornado traffic pattern at 0.45
load started at cycle 0

Figure 5.22 shows the step response of both algorithms averaged over ��� runs. The

response of GAL is much slower than CQR taking as much as �� the number of cycles

to reach peak throughput. This is because, in order to adapt to routing non-minimally,

86 CHAPTER 5. GLOBALLY ADAPTIVE LOAD-BALANCING

GAL must wait till the minimal injection queues fill up and surpass their threshold. How-

ever, since CQR senses load imbalance using channel queues, its step response is smooth

reaching peak throughput in just �� cycles.

5.7.2 Barrier Model

In the next transient experiment, we simulate the communication between the processors in

a multi-processor environment. In this model we assume that the nodes of a multi-processor

have a fixed amount of computation to perform between synchronization primitives called

barriers. Each processor waits until every processor has completed its communication.

This model assumes that all the packets are in the node’s source queue before starting,

instead of the usual Poisson-like injection process as used in the traffic patterns described

before. The number of cycles that each processor waits is then a function of how fast the

routing algorithm adapts to network congestion.

In order to stress the adaptivity of the two algorithms, we choose the destinations of

each packet according to the �D-tornado traffic pattern, i.e., each node ��� �	 sends to �� �
�
�
� �� � � �

�
� �	. The number of packets that a node has to communicate is called the

batch size. The latency measured is the number of cycles taken for all the processors to

completely route their batch of packets. We report this latency normalized to the batch

size.

Figure 5.23 shows the response of CQR and GAL as the batch size is swept from � to

��� packets (shown on logarithmic scale). For small batch sizes, the latency is the same for

both the algorithms as there is little congestion in the network. For extremely large batch

sizes, the latency is again the same, and is given by the reciprocal of the throughput of the

algorithm on the �D-tornado traffic (���� for both CQR and GAL). The interesting region

in the plot is when the batch size ranges from � to �� ��� packets. This region underscores

the importance of the more responsive congestion sensing mechanism in CQR which gives

as much as ���� performance improvement over GAL.

5.8. SUMMARY OF CQR 87

0

1

2

3

4

5

6

1 10 100 1000 10000

Batch size (Packets) per node

L
at

en
cy

 (
C

yc
le

s)
 (

n
o

rm
al

iz
ed

 t
o

 b
at

ch
 s

iz
e

p
er

 n
o

d
e)

CQR GAL

Figure 5.23: Dynamic response of CQR and GAL v.s. the batch size per node showing
CQR’s faster adaptivity

5.8 Summary of CQR

To summarize, CQR senses approximate global congestion and makes an adaptive global

routing decision using channel queue congestion to route minimally on local traffic, while

routing non-minimally to load balance difficult traffic patterns at high loads. CQR, like

GAL, matches the throughput of minimal algorithms on local patterns, and load-balanced

oblivious algorithms on difficult patterns — something that other algorithms, that do not

make a global adaptive decision, cannot achieve.

Channel Queue Routing overcomes a number of issues associated with GAL. Most im-

portantly, the latency for CQR at loads that require non-minimal routing is much lower than

for GAL. This is because it does not need to run the minimal traffic well into saturation,

with the resulting high latencies, before switching to non-minimal routing. CQR starts

sending packets along non-minimal routes as soon as the delays due to minimal and non-

minimal routing are matched — resulting in minimum latency. CQR also has a much faster

transient response than GAL. This is because the channel queue rapidly reflects global con-

gestion while the injection queue (used for sensing in GAL) requires that all of the queues

along the minimum paths fill up before sensing congestion. CQR is also unconditionally

stable while GAL requires a threshold adaptation mechanism to give stable performance.

Finally, CQR is very simple to implement compared to GAL.

88 CHAPTER 5. GLOBALLY ADAPTIVE LOAD-BALANCING

5.9 Summary of load-balanced routing on tori

In this and the previous two chapters, we have looked at various oblivious and adaptive

load-balanced routing algorithms on torus networks and compared their performance on

several metrics. Table 5.2 summarizes the performance of the different algorithms on these

metrics on an �-ary �-cube. All numbers for throughput, �, are presented in fraction of

network capacity, while numbers for latency, � , are presented in cycles. The numbers for

�� � are throughput values for the benign UR traffic. ��! represent the worst through-

put for each algorithm. ���� is the average throughput for a random sampling of traffic

permutations. �"# is the throughput on hot-spot traffic with BC traffic running in the back-

ground. �"# numbers are not presented for ROMM, RLB, and RLBth as they do not yield

��� throughput on the background BC traffic, unlike the other algorithms. The latency col-

umn ���� represents the average packet delay for UR traffic at a low injection load of ���,

while ���$ represents packet delay for TOR traffic at an intermediate injection load of ���.

Finally, each algorithm is either stable or unstable post-saturation. The worst performance

in any column is given a grade “F” and the other algorithms are graded relative to it.

Table 5.2: Report Card for all routing algorithms

Algo #��� #�� #�	
 #�� �� ��� Stab

VAL 0.5 (F) 0.5 (A) 0.5 (C) 0.25 (F) 10.5 (F) 20.5 (B) Yes (P)
DOR 1.0 (A) 0.25 (D) 0.31 (F) 0.31 (D) 4.5 (A) � (F) Yes (P)

ROMM 1.0 (A) 0.21 (F) 0.45 (D) - 4.5 (A) � (F) Yes (P)
RLB 0.76 (C) 0.31 (C) 0.51 (C) - 6.5 (C) 5.5 (A) Yes (P)

RLBth 0.82 (B) 0.30 (C) 0.51 (C) - 5.6 (B) 5.5 (A) Yes (P)

CHAOS 1.0 (A) 0.35 (B) 0.53 (C) 0.47 (A) 4.5 (A) � (F) No (F)
MIN AD 1.0 (A) 0.33 (C) 0.63 (B) 0.46 (A) 4.5 (A) � (F) Yes (P)
GOAL 0.76 (C) 0.5 (A) 0.68 (A) 0.47 (A) 5.45 (B) 5.5 (A) Yes (P)

GAL 1.0 (A) 0.5 (A) 0.73 (A) 0.49 (A) 4.45 (A) 120 (D) Yes (P�	
CQR 1.0 (A) 0.5 (A) 0.73 (A) 0.49 (A) 4.45 (A) 5.5 (A) Yes (P)

The first five rows of the table show oblivious algorithms. Minimal oblivious algorithms

(DOR and ROMM) perform optimally on benign traffic, but yield very poor worst-case and

5.9. SUMMARY OF LOAD-BALANCED ROUTING ON TORI 89

average-case throughput. Being minimal, they yield optimal latency at low loads for be-

nign traffic. VAL completely randomizes routing to give optimal worst-case performance.

However, it destroys all locality in benign traffic giving poor throughput and latency on

it. RLB and RLBth strike a balance between these two extremes. They load balance hard

traffic while preserving some locality in friendly traffic. In doing so, they do not get an

“F” grade in any of the performance metrics. All oblivious algorithms perform poorly on

hot-spot traffic and are stable post saturation. While RLB is optimal in the worst-case in

�-D, it gives sub-optimal throughput guarantees in higher dimensions.

The next three rows in the table show adaptive algorithms. We incorporate adaptivity

in RLB (GOAL) to alleviate its sub-optimal worst-case throughput on higher dimensions.

In doing so, GOAL, unlike the other adaptive algorithms (MIN AD and CHAOS), gets

“A”s in both worst and average throughput. However, since it misroutes obliviously, it

cannot achieve the optimal performance (latency and throughput) of the minimal adaptive

algorithms on benign traffic. Adaptive algorithms are able to easily route around hot-spots

in the network and so get “A”s in hot spot performance. Finally, we show that the CHAOS

algorithm in unstable because it leads to starvation for some source-destination pairs on

non-uniform traffic.

The last two rows show Globally Adaptive Load-balanced algorithms, GAL and CQR.

Both CQR and GAL are non-minimal, adaptive algorithms that combine the best features of

minimal algorithms on benign traffic and of load-balancing algorithms on adversarial traffic

patterns, getting “A”s in almost all performance metrics. Since GAL senses congestion

using injection queues, it gives very high latency at intermediate loads on traffic patterns

that require non-minimal routing for optimal throughput. Moreover, it needs a complex

mechanism to make it stable. CQR senses approximate global congestion using channel

queues and alleviates both these problems of GAL, emerging as the only algorithm with

best performance across the board.

In the next chapter, we look at extending the benefits of CQR and GAL to arbitrary

regular network topologies. We will generalize the concepts of minimal and non-minimal

quadrants to sets of routes in the arbitrary topology and develop methods based on channel

queues to sense congestion in these path sets.

Chapter 6

Universal Globally Adaptive

Load-Balancing

Building on the concepts of load-balanced routing on torus networks in the previous three

chapters, we now propose a universal load-balanced algorithm for arbitrary symmetric

topologies. We represent the topology by a directed graph *�+�,	, where + are the ver-

tices (nodes) and , are the edges (channels) in the network. Since the graph is symmetric,

the degree of each node is the same.

Minimal adaptive routing (MIN AD) routes packets from a source, �, to a destination,

�, along minimal paths, adaptively choosing at each hop, between the (possibly) many min-

imal paths, based on queue lengths. However, we have demonstrated that strictly minimal

routing suffers from sub-optimal worst-case throughput, at least in torus networks. In this

chapter, we prove that this statement extends to several other symmetric topologies as well.

We also proved in Chapter 3 that Valiant’s routing algorithm (VAL) gives optimal worst-

case throughput. However, it suffers from sub-optimal performance on benign traffic. This

claim holds for any symmetric topology (Theorem 2), and is not restricted to torus networks

alone.

In order to guarantee optimal worst-case and best-case performance on an arbitrary

symmetric topology, we propose an algorithm that routes minimally on benign traffic, and

starts to load balance like VAL when the traffic pattern is adversarial.

90

6.1. MOTIVATION 91

6.1 Motivation

To understand why both MIN AD and VAL cannot achieve optimal worst-case and best-

case performance, we consider an � � node toy network shown in Figure 6.1. The

capacity of this network is given by ���� �� bits/s. We consider routing a benign

traffic pattern and a permutation traffic pattern on this network.

For the benign pattern, we assume a friendly uniform random (UR) traffic, where every

node sends traffic to every possible destination, uniformly and at random. Routing UR op-

timally requires sending each packet minimally — along the direct channel connecting its

source to its destination. Thus, MIN AD performs optimally on UR, yielding a throughput,

� �� bits/s, or ���� of capacity.

For the permutation traffic, node � (�) wants to send all of its traffic to node � (�) and

vice versa. Minimally routing this permutation results in an uneven distribution of load

over the channels in the network. The black arrows in Figure 6.1 illustrate that only � links

are utilized by MIN AD leaving all the other channels idle. This yields a throughput of

� � bits/s, or ��� of capacity.

0

2

1

3

Figure 6.1: A � node toy network. We consider the permutation: �� �; �� �. The black
arrows show the paths along which MIN AD routes traffic.

VAL routes any permutation traffic optimally on this network. For our example, VAL

routes a packet from � to � through a randomly chosen intermediate node, � (Figure 6.2).

Since � can be � or �, VAL routes along a direct (� hop) path with probability ��� � ���

���. It also routes along two � hop paths with probability ��� each. Thus, at an injection

92 CHAPTER 6. UNIVERSAL GLOBALLY ADAPTIVE LOAD-BALANCING

load of
, all channels have a load of ���
, yielding a throughput, � �� bits/s (���

of capacity). The drawback of VAL is that it yields the same throughput on every traffic

pattern. Thus, for the best-case UR traffic, VAL’s throughput is only ��� of the optimal

throughput as achieved by MIN AD.

0

2

1

3

Figure 6.2: Optimally routing a permutation traffic pattern with VAL. The thick (� hop)
arrows signify a load of
��, while the thin (� hop) arrows contribute a link load of
��.

In order to perform optimally on both these cases, we exploit the fact that for minimal

routing on UR, all channels are equally loaded, while in the permutation traffic case, the

queues along the direct channels fill up, leaving the other queues completely empty. This

imbalance in the queue occupancies is an indication that the traffic pattern is adversarial

for minimal routing, and packets should be routed non-minimally to balance load. In order

to load-balance any adversarial traffic, we route packets like VAL, routing from � to � via

a randomly picked intermediate node, �. The paths from � � � and � � � are minimal

paths. We call this method Universal Globally Adaptive Load-balanced routing (UGAL).

At the source node of a packet, UGAL records the queue length, ��, for the outgoing

channel along the shortest path from � � �. It also picks a random intermediate destina-

tion, �, and records the queue length, ���, along the shortest path from � � �1. Denote

the hop count of path � � � as �� and that of � � � � � as ���. In order to bal-

ance load along both minimal and non-minimal paths, UGAL routes a packet minimally if

���� 	 ������, else it routes along the non-minimal path �� � � �.

Figure 6.3 shows that on UR traffic, UGAL routes minimally virtually all the time.

1For the case when 	 � or 	 �, �� 	 �.

6.1. MOTIVATION 93

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Offered Load

A
cc

ep
te

d
T

hr
ou

gh
pu

t

Minimal
Non-minimal
Total

Figure 6.3: UGAL throughput on a � node network for UR traffic

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

Offered Load

A
cc

ep
te

d
T

hr
ou

gh
pu

t

Minimal
Non-minimal
Total

Figure 6.4: UGAL throughput on a � node network for permutation traffic

94 CHAPTER 6. UNIVERSAL GLOBALLY ADAPTIVE LOAD-BALANCING

On permutation traffic, however, UGAL routes minimally at very low loads, but resorts to

routing non-minimally at moderate to high loads (Figure 6.4). Finally, near saturation, it

routes half the packets minimally and half the packets along the � hop non-minimal paths.

As a result of this adaptive decision to misroute, UGAL yields optimal throughput on both

UR and permutation traffic. Figure 6.5 shows the latency-load plots for both these traffic

patterns. UGAL saturates at ��� of capacity on permutation traffic and at ���� of capacity

on UR.

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

Offered Load (fraction of capacity)

La
te

nc
y

(c
yc

le
s)

UR
PERM

Figure 6.5: Latency-load plots for UGAL on a � node network for UR and permutation
traffic

6.2 UGAL on arbitrary symmetric topologies

UGAL can be easily extended to an arbitrary symmetric topology. Once a packet destined

for a destination, �, is received from the source queue at its source node, �, UGAL decides

whether to route it minimally or like VAL, based on the congestion of the channel queues.

Denote �� as the shortest output queue length among all shortest path channels, i.e., out-

going channels along shortest paths from �� �. UGAL then picks a random intermediate

destination node, �. Denote ��� as the shortest output queue length among all shortest path

channels from � � �. As in the toy example, ��� �� if � � or � �. Moreover, let

the hop count for the path �� � be ��, and that for �� � � � be ���. UGAL routes

6.2. UGAL ON ARBITRARY SYMMETRIC TOPOLOGIES 95

minimally if ���� 	 ������, else it routes from � to � via �, routing minimally and

adaptively in each of the two phases.

Intuitively, it is easy to understand why UGAL gives optimal worst-case throughput. In

the worst-case, all nodes start to route packets like VAL, yielding a throughput of ��� of

capacity. Thus UGAL degenerates into VAL to ensure its throughput is never below ���.

We now present a proof for the optimal worst-case performance of UGAL.

Theorem 6. UGAL gives optimal worst-case throughput,���� !��	 ��� of capacity.

Proof. We prove this result by contradiction. Suppose the throughput for UGAL on some

traffic pattern is �� ! ��� of capacity. It follows that at an injection load of
 ��,

some channel, �, in the network is saturated, i.e., traffic crosses � at a mean rate of � bits/s

(the capacity of �). Consider all the source-destination (�,�) pairs sending traffic across �.

There are two cases to consider:

Case 1: Each (�,�) pair routes its traffic like Valiant (VAL).

We know from Theorem 2 that if all nodes route traffic like VAL, channel � (or any

other channel) gets saturated iff the injected load is
 � ��� of capacity. In this case,

only the sources corresponding to the (�,�) pairs mentioned above route traffic like VAL

across �. No other node sends traffic across �. It follows that � cannot be saturated at an

injection load less than ��� of capacity. This is a contradiction.

Case 2: There is is at least one source-destination pair, (��,��), that routes traffic strictly

along shortest paths.

Figure 6.6 shows a schematic of the situation where (��,��) routes traffic strictly mini-

mally through the saturated channel �. Since � is saturated, and the buffers along the path

from �� � �� are finite, the output queue at �� will eventually back up and �� will start

routing its traffic to �� along non-minimal paths, which again is a contradiction.

Since both the cases lead to a contradiction, we get the desired result.

In the next section, we apply UGAL to three different �� node symmetric topologies —

a fully connected graph, a �-� torus, and a �-� cube connected cycle. We evaluate UGAL

on each of these topologies using a cycle accurate simulator written in C. The total buffer

resources are held constant across all topologies, i.e., the product of the number of VCs

and the VC channel buffer depth is kept constant.

96 CHAPTER 6. UNIVERSAL GLOBALLY ADAPTIVE LOAD-BALANCING

C

s1

s

s

d1

d

d

...

...

Figure 6.6: The congested channel, �, at saturation

6.3 Fully connected graph

A fully connected graph of� nodes,� , has a channel connecting every source-destination

pair. The bisection bandwidth of � is � � ���� bits/s. Therefore, the capacity of a

� �� node fully connected graph (��) is given by ���� �� ��� bits/s.

6.3.1 Deadlock avoidance

Implementing UGAL on � requires � Virtual Channels (VCs) per physical channel (PC)

to avoid deadlock. We use a deadlock avoidance scheme similar to the structured buffer

pool scheme of [36, 48]. A packet that has traversed - hops may be buffered in any VC �,

such that � 	 -. Since a packet can take at most � hops on � , � VCs ensure that there is

no cyclic dependency in the channel dependency graph (CDG), thereby avoiding deadlock.

6.3.2 Throughput on benign and hard traffic

The uniform random (UR) traffic is the best-case traffic pattern for this topology. An ad-

versarial traffic pattern for � , is any permutation (PERM) traffic, i.e., every source node

sends traffic to exactly one distinct destination node (except to itself). It is easy to see that

due to the fully connected nature of the graph, its performance on any permutation traffic

is identical.

We have already demonstrated in Section 6.1 that MIN AD performs optimally on UR.

6.3. FULLY CONNECTED GRAPH 97

On ��, MIN AD yields a throughput of � ��� bits/s, or ���� of capacity. However,

the performance of MIN AD degrades severely on PERM traffic (Appendix A.2). For a

general � , MIN AD yields a throughput of ��� ��� of capacity (����� of optimal

for � ��), for PERM traffic.

VAL routes PERM traffic optimally on��, yielding a throughput,� ��� bits/s (���

of capacity). However, it yields the same throughput on every traffic pattern. Thus, for the

best-case UR traffic, VAL’s throughput is only ��� of the optimal throughput as achieved

by MIN AD.

Figure 6.7 shows that UGAL achieves optimal throughput on both these traffic patterns.

Since UR naturally balances load over all links if routed minimally, the congestion of all

the output queues for any node is the same. Thus, no packet is routed like VAL for this

traffic pattern yielding optimal throughput of� ���� of capacity. For PERM traffic, the

queues along the direct paths start to back up while those along non-minimal paths remain

empty. Sensing, this unbalanced congestion, UGAL starts to route packets like VAL, once

again yielding an optimal throughput of � ��� of capacity.

0

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

Offered Load (fraction of capacity)

La
te

nc
y

(c
yc

le
s)

UR
PERM

Figure 6.7: Latency-load plots for UGAL on UR and PERM traffic on ��. UGAL satu-
rates at � for UR and at ��� for PERM.

Figure 6.8 summarizes the performance of MIN AD, VAL, and UGAL on the UR and

PERM traffic patterns. UGAL is the only algorithm that performs optimally on both the

best-case and the worst-case traffic.

98 CHAPTER 6. UNIVERSAL GLOBALLY ADAPTIVE LOAD-BALANCING

0

0.2

0.4

0.6

0.8

1

1.2

MIN AD VAL UGAL

T
hr

ou
gh

pu
t

PERM
UR

Figure 6.8: Throughput of MIN AD, VAL, and UGAL on UR and PERM traffic patterns
on ��

6.4 �-ary �-cube (torus)

For our second topology, we choose an �-ary �-cube, or an � � � torus network. We have

extensively studied routing algorithms specifically designed for such networks in Chap-

ters 3, 4, and 5. In this section, we apply the generic UGAL algorithm to a �� node torus,

and compare its performance with the �-channels algorithm [16] (MIN AD) and VAL.

As we did in the previous three chapters, we compare the throughput of the different al-

gorithms on benign traffic, adversarial traffic, and on a sampling of ���� random traffic

permutations.

6.4.1 Deadlock avoidance

Implementing UGAL on the torus requires three VCs per PC to avoid deadlock. We use

the same scheme used in the �-channels algorithm, which we also adapted for deadlock

avoidance in CQR, GAL, and GOAL.

6.4.2 Throughput on benign and hard traffic

We compare the throughput of the three algorithms on the benign and adversarial traffic

patterns described in Table 2.2. The two benign traffic patterns are shown in Figure 6.9,

6.4. -ARY � -CUBE (TORUS) 99

while the four adversarial patterns are shown in Figure 6.10 with an expanded vertical

scale. The figures show that UGAL is the only algorithm that gives best performance on

both the benign and the adversarial traffic. On benign patterns, UGAL routes minimally

and matches the performance of MIN AD. On adversarial traffic, UGAL load balances the

traffic and matches or exceeds the throughput of VAL on them. MIN AD’s performance

suffers on adversarial traffic as it cannot balance load over all the channels of the network.

The worst-case throughput reported for MIN AD is a bound on its exact worst-case derived

in Appendix A.2. In the worst-case, MIN AD degrades to a throughput of ������ of

optimal, while UGAL’s worst-case throughput (like VAL) is optimal. At the same time

UGAL’s throughput (like MIN AD) is optimal in the best-case, while VAL yields a poor

best-case throughput of ����� of optimal.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

MIN AD VAL UGAL

T
hr

ou
gh

pu
t

NN UR

Figure 6.9: Comparison of saturation throughput of three algorithms on an �� � torus for
two benign traffic patterns

6.4.3 Throughput on random permutations

In order to evaluate the performance of the algorithms for the average traffic permutation,

we measured the performance of each algorithm on �� ��� random permutations, as in the

previous two chapters.

The histograms of saturation throughput for MIN AD and UGAL are shown in Fig-

ure 6.11. No histogram is shown for VAL because its throughput is always ��� for all

100 CHAPTER 6. UNIVERSAL GLOBALLY ADAPTIVE LOAD-BALANCING

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

MIN AD VAL UGAL

T
hr

ou
gh

pu
t

BC
TP
TOR
WC

Figure 6.10: Comparison of saturation throughput of three algorithms on an �� � torus for
four adversarial traffic patterns

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

2

4

6

8

10

12

14

16

18

20

Saturation Throughput

%
ag

e
of

 1
00

0
pe

rm
ut

at
io

ns

MIN AD

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

2

4

6

8

10

12

14

16

18

20

Saturation Throughput

%
ag

e
of

 1
00

0
pe

rm
ut

at
io

ns

UGAL

(a) (b)

Figure 6.11: Histograms for the saturation throughput for 10� random permutations on an
�� � torus. (a) MIN AD, (b) UGAL.

6.5. CUBE CONNECTED CYCLES 101

permutations. The highest, average and worst throughput in this experiment for each of the

algorithms are presented in Figure 6.12.

The figures show that over the �� ��� permutations, UGAL’s worst-case throughput for

this sampling exceeds that of VAL. The minimal algorithm, MIN AD, has a sub-optimal

worst-case throughput. Since UGAL routes the benign permutations minimally and load

balances the hard permutations, its average throughput is the highest of the three algorithms

(��� more than VAL and ��� more than MIN AD).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MIN AD VAL UGAL

T
hr

ou
gh

pu
t

Best-case
Avg
Worst-case

Figure 6.12: Throughput of MIN AD, VAL, and UGAL in the best, average and worst-case
of ��� traffic permutations on an �� � torus

6.5 Cube Connected Cycles

Finally, we test UGAL on the Cube-Connected Cycles (CCC) topology. The CCC topology

was proposed by Preparata & Vuillemin in [35] as a topology for a general-purpose parallel

system. An �-dimensional CCC, CCC(�), is simply a hypercube of � dimensions, with

each node replaced by a ring of � nodes. Thus, for a CCC(�), there are a total of � ���

nodes, each with a degree of �. Figure 6.13 illustrates a schematic of a CCC(�). For clarity,

we have combined two unidirectional links into a single bidirectional link.

Minimal routing on the CCC is not as simple as in the previous two topologies. Melik-

setian and Chen [28] proposed an algorithm that computes the shortest path from a source

102 CHAPTER 6. UNIVERSAL GLOBALLY ADAPTIVE LOAD-BALANCING

2

14

0

1

3

5

4

10

9

7
6

8

1615

22

21

20

18
19

17

12

13

11

23

Figure 6.13: A Cube connected cycle, CCC(3)

to a destination in a CCC. Since the shortest path between a source to a destination need

not be unique, our implementation of MIN AD on CCC, routes a packet along one of the

shortest paths, adaptively deciding between the different paths at each hop. Consider the

example of routing from node �� to node �� in Figure 6.14. There are � possible shortest

paths, each � hops long. At each hop, a packet is routed along a channel that takes it � hop

closer to the destination. If there are two or more such outgoing channels, MIN AD routes

the packet along the channel with the shorter queue length. In our example, the packet in

node �� could be routed along channels ��� �, ��� �� or ��� ��. Suppose the length

of the output queue for channel ��� � was the shortest. The packet is therefore routed to

node �. At node �, the choices of channels are � � � or �� �. At this hop, the length of

the queue for channel � � � is shorter. Hence, the packet is routed to node �. Thereafter,

the packet follows a direct path along nodes �, �, and ��, before reaching its destination

node ��.

6.5.1 Deadlock avoidance

In our experiments, we have simulated a �� node CCC, CCC(�). As we did for the �

topology, we use the structured buffer pool technique to avoid deadlock in the CCC(�).

Since the maximum hop count for MIN AD, VAL, and UGAL on CCC(�) is �, ��, and ��,

6.5. CUBE CONNECTED CYCLES 103

2

0

1

3

5

4

10

9

7
6

8

1615

22

21

20

18
19

17

12

13

11

23

14

Figure 6.14: Example of MIN AD routing from source �� to destination �� on CCC(�)

respectively, we use � VCs per PC for MIN AD and �� VCs for both VAL and UGAL.

6.5.2 Throughput on benign and hard traffic

We now compare the throughput of MIN AD, VAL, and UGAL on the traffic patterns shown

in Table 6.1. The first two traffic patterns, NN and UR, are benign and the next three are

adversarial traffic permutations. The last traffic permutation, WC, is the worst-case traffic

permutation for each algorithm among all possible permutations. The WC permutation

for UGAL is the BC permutation, while any permutation is the worst-case for VAL. For

MIN AD, the worst-case pattern (derived in Appendix A.2) sets an upper bound on the

throughput that MIN AD can yield in the worst-case.

As in the case of the previous two topologies, UGAL and MIN AD perform optimally

on the benign patterns, yielding a throughput of � and � on NN and UR, respectively. VAL’s

throughput on NN (������ of optimal) and on UR (��� of optimal) is significantly lower

than MIN AD and UGAL.

For adversarial traffic, VAL yields a throughput of ��� of capacity for all patterns.

However, MIN AD cannot guarantee this worst-case throughput. As shown in Appendix A.2,

MIN AD’s throughput in the worst-case can be as low as ��� of capacity. UGAL balances

104 CHAPTER 6. UNIVERSAL GLOBALLY ADAPTIVE LOAD-BALANCING

Table 6.1: Traffic patterns for evaluation of routing algorithms on CCC(�). A node’s ad-
dress is represented in � bits for CCC(�).

���� ������	
���

NN Nearest Neighbor: each node sends to one of its three
neighbors with probability ��� each.

UR Uniform Random: each node sends to a randomly
selected node.

BC Bit Complement: Node (��,��,��,��,��,��) sends to
(���,���,���,���,���,���).

BR Bit Reversal: Node (��,��,��,��,��,��) sends to
(��,��,��,��,��,��).

TP Transpose: Node (��,��,��,��,��,��) sends to
(��,��,��,��,��,��).

WC Worst-case: The permutation that gives the lowest
throughput by achieving the maximum load on a sin-
gle link (See Appendix A.2).

0

0.5

1

1.5

2

2.5

3

3.5

MIN AD VAL UGAL

T
hr

ou
gh

pu
t

NN UR

Figure 6.15: Comparison of saturation throughput of three algorithms on CCC(�) for two
benign traffic patterns

6.5. CUBE CONNECTED CYCLES 105

each adversarial pattern most efficiently, yielding the highest throughput in each of the traf-

fic permutations. At the same time, UGAL matches the optimal worst-case throughput of

VAL.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

MIN AD VAL UGAL

T
hr

ou
gh

pu
t

BC BR TP WC

Figure 6.16: Comparison of saturation throughput of three algorithms on CCC(�) for four
adversarial traffic patterns

6.5.3 Throughput on random permutations

On the average permutation, UGAL again outperforms both MIN AD and VAL. The his-

tograms for throughput on ���� random traffic permutations are presented for MIN AD and

UGAL in Figure 6.17. Since VAL’s throughput is ��� for all permutations, its histogram is

not presented. The best-case, average and worst-case throughput for each of the algorithms

on this sampling is shown in Figure 6.18.

The figures illustrate how UGAL load-balances adversarial traffic patterns (resulting in

highest worst-case throughput), while at the same time not sacrificing the locality inherent

in benign traffic permutations, yielding ��� and ��� higher average throughput than MIN

AD and VAL, respectively.

106 CHAPTER 6. UNIVERSAL GLOBALLY ADAPTIVE LOAD-BALANCING

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

Saturation Throughput

%
ag

e
of

 1
00

0
pe

rm
ut

at
io

ns

MIN AD

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

Saturation Throughput

%
ag

e
of

 1
00

0
pe

rm
ut

at
io

ns

UGAL

(a) (b)

Figure 6.17: Histograms for the saturation throughput for 10� random permutations on
CCC(�). (a) MIN AD, (b) UGAL.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MIN AD VAL UGAL

T
hr

ou
gh

pu
t

Best-case
Avg
Worst-case

Figure 6.18: Throughput of MIN AD, VAL, and UGAL in the best, average and worst-case
of ��� traffic permutations on CCC(�)

6.6. SUMMARY 107

6.6 Summary

In this Chapter, we have presented Universal Globally Adaptive Load-balanced routing

(UGAL). UGAL is an adaptive routing algorithm that guarantees optimal worst-case per-

formance, without sacrificing any locality on benign (best-case) traffic. UGAL achieves

this property by adaptively deciding when to route packets minimally or non-minimally

based on the congestion of the channel queues. UGAL is universal because it can be ap-

plied to an arbitrary symmetric topology. We applied UGAL to three symmetric topologies

— fully connected graphs, torus networks, and cube connected cycles — and demonstrated

its effectiveness on each of them through extensive simulations.

Chapter 7

Delay and buffer bounds

Up to this point, we have extensively studied the performance of interconnection networks

on metrics such as throughput, average latency, and stability. In this chapter, we examine

other important metrics such as statistical guarantees on packet delay, buffer occupancy,

and packet reordering. We apply recent results in queueing theory to propose a method-

ology for bounding the buffer depth and packet delay in high radix, load-balanced inter-

connection networks [39]. We present a methodology for calculating such bounds for a

practical high radix network and through extensive simulations show its effectiveness for

both bursty and non-bursty injection traffic.

7.1 Background

High radix Interconnection networks are widely used in supercomputer networks (Mer-

rimac Streaming Supercomputer [10]) and for I/O interconnect (Infiniband Switch fab-

ric [34]). Most research for such interconnection networks focuses on analyzing the through-

put and average packet latency of the system. However, little work has been done towards

bounding the occupancy of the buffers in the network or the delay incurred by a packet.

The buffer occupancy and the delay distributions play a key role in the design and

performance of the network. Bounding the number of packets in a buffer in the network

is valuable for network administration and buffer resource allocation. A statistical bound

108

7.1. BACKGROUND 109

on the packet delay is essential for guaranteeing Quality of Service for delivery of pack-

ets. Moreover, the delay distribution is directly related to packet reordering through the

network.

Queueing theory [23] provides a huge body of useful results which apply to product-

form networks. Unfortunately, these results rely on unrealistic assumptions (the most unre-

alistic being independent exponentially distributed service times at each node as opposed

to deterministic service in a real system), and therefore, people are reluctant to make use of

them. The analysis of a network of deterministic service queues is a known hard problem.

The difficulty in analysis primarily arises from the fact that the traffic processes do not

retain their statistical properties as they traverse such a network of queues.

Given a myriad of sophisticated techniques developed for analyzing a single deter-

ministic service queue, there has been some recent work that attempts to decompose the

network based on large deviations techniques [51, 52]. Most of these results are applicable

in convergence regimes, such as in the case when there are several flows passing through

a queue, called the many sources asymptotic regime. Using the many-sources-aysmptotic,

Wischik [51, 52] shows that the distribution of a traffic flow is preserved by passage through

a queue with deterministic service, in the limit where the number of independent input flows

to that queue increases and the service rate and buffer size increase in proportion. More

recently, Eun & Shroff [15, 14] use similar convergence results to significantly simplify

the analysis of such a network. In particular, they show that, if internal nodes in a network

are capable of serving many flows, we can remove these nodes from consideration and the

queueing behavior of other network nodes remains largely the same.

In this chapter, we use the aforementioned convergence results to bound the queue

depth and packet delay in high radix interconnection networks. Our simulations show that

such convergence results start to kick in when the radix (degree) of the nodes is as small as

�� � ��. We also use our bounds to study the reordering of packets through the network

and to propose a routing mechanism with almost no flow control overhead.

110 CHAPTER 7. DELAY AND BUFFER BOUNDS

7.2 Many sources queueing regime

As discussed in Section 7.1, a recent result by Eun & Shroff [15, 14] shows how network

analysis can be simplified when the queues in the network carry several flows (called the

many sources regime). The authors prove that when an upstream queue serves a large num-

ber of traffic flows, the queue length of a downstream queue converges to the queue length

of a simplified single queueing system obtained by just removing the upstream queue.

NC

A(s,t)

A’(s,t)

D(s,t)

D’(s,t)

R(s,t)
QN(t)

Q1(t)

Figure 7.1: An upstream queue feeding some flows into a downstream queue

Consider the set up of two FIFO queues in Figure 7.1. Let there be � flows going into

the upstream queue. The subset of these flows that go on into the downstream queue have

a combined arrival process given by ���� %	 which is the total number of packets arriving

in the time interval ��� %	. The remaining set of flows have arrival process ����� %	. Let the

service capacity of the upstream queue be ��, i.e. the service per flow is � packets per

time step. The departing flows from the first queue going into the downstream queue have

a departure process given by ���� %	. The downstream queue can also receive more cross

traffic given by ���� %	. Let the queue depth of the downstream queue at time % be 	��%	

while that for the upstream queue be 	��%	. In order to find the Prob�	� � �	, we can

simplify the above scenario into just one queue.

Figure 7.2 shows a simplified scenario of Figure 7.1. In this figure, the effect of the

upstream queue on ���� %	 is ignored. Let the queue depth of the downstream queue for

this scenario be 	��%	. The authors of [14] prove that as � ��, Prob�	� � �	 converges

to Prob�	� � �	 and that the speed of this convergence is exponentially fast. Hence, with

a modest number of multiplexed sources, the convergence results start to hold.

At a first glance, it may seem that the flows traversing the upstream queue should be-

come “rate shaped”, making the departure process over a time interval %, ���� %	, smoother

than the corresponding arrival process ���� %	. However, on closer analysis, this need not

7.3. APPLICATION TO HIGH-RADIX FAT TREES 111

A(s,t)

R(s,t) Q2(t)

Figure 7.2: Simplified scenario of the set up of two queues

be the case. Consider an individual flow, �, traversing the upstream queue and going to the

downstream queue. Its arrival process is ����� %	 and departure is ����� %	. Now the arrival

and departure processes are related as: ����� %	 ����� %	�	
�
� ��	�	

�
� �%	, where 	�

� ��	

and 	�
� �%	 are the backlog of flow � in the upstream queue at times � and %, respectively.

Due to fluctuations in the queue depth and the interaction among the � flows in the up-

stream queue, 	�
� ��	 can be larger than 	�

� �%	, making the departure process for that flow

larger than the arrival process.

7.3 Application to high-radix fat trees

In the rest of this chapter, we shall apply the many sources regime results to analyzing buffer

depth in a popular high radix topology — Clos [7] or fat tree networks [26]. The high radix

switch queues are an appropriate application for the many sources asymptotic results. As

the radix (and the number of sources) increases, the statistical properties of the flows get

preserved as they traverse the network. Our simulations show that the convergence results

hold for a radix as small as ��� ��.

Throughout the discussion, we assume that the traffic pattern is admissible, i.e., no des-

tination is oversubscribed. In order to prevent inadmissible traffic, an end-to-end reserva-

tion scheme for admission control can be used which does not admit a flow if the destination

is oversubscribed.

In our experimental set up, we have simulated a specific kind of fat tree — a �-ary

�-tree network [33]. A �-ary �-tree network has � levels of internal switches and a total

of �� leaf nodes that can communicate with each other using these switches. There are

����� internal switches which have �� incoming ports and �� outgoing ports. The internal

switches have buffers inside where packets are stored and serviced to their appropriate

output port. Figure 7.3 shows a diagram for a �-ary �-tree.

112 CHAPTER 7. DELAY AND BUFFER BOUNDS

Figure 7.3: A �-ary �-tree

Switch (Sw)

... Nodek-1Node0

A0

...

A1 Ak-1

k k k

Sw0 Sw1 Swk-1

Level A network

B0

...

B1 Bk-1

K2 K2 K2

Sw0 Sw1 Swk.k-1

Level B network

Figure 7.4: The �-ary �-tree used in our smulations

7.4. RESULTS 113

In our simulations, we concentrate on high radix trees with � � ��. Figure 7.4 shows

a hierarchical schematic for a �-ary �-tree. There are two levels of hierarchy denoted by

levels � and � and three levels of switches since � �. Depending on �, each entity of

level � may be thought of as a board (or a backplane comprising several boards), while

each entity of level � may be thought of as a backplane (or cabinet). The wiring between

levels is abstracted out for simplicity.

Load balancing on such a fat tree is easily accomplished using Random Root Routing

(RRR) in which each packet is routed to a randomly chosen root switch and then down to

the desired destination, traversing a total of ���� internal switches (hops) for every packet.

A more sophisticated approach — called Random Common Ancestor Routing (RCAR) —

is to route up to a (randomly chosen) common ancestor of the source and destination leaf

node and then down to the destination node. In our analysis, we focus on RRR as it enables

us to treat all traffic patterns as two phases of uniformly random traffic, thus making the

analysis more tractable. The analysis for RRR is also a conservative analysis for RCAR as

the latter has strictly fewer packets using the resources in the upper levels of the network.

7.4 Results

We first study the impact of the radix on the buffer occupancy distribution in the queues

at each hop of the fat tree network. Our approach is to first increase the radix � in a �-

ary �-tree network while keeping the per channel bandwidth constant. We then plot the

Complementary Cumulative Distribution Functions (CCDFs) of the queue occupancy at

each of the � hops of the network. We perform this experiment for non-bursty Bernoulli and

bursty injection traffic. For both these injection processes, the many sources convergence

results start to manifest themselves at reasonably small values of �. Using these values of

�, we can analytically calculate the exact CCDF from queueing theory for each of the �

queues, thus giving us buffer depth bounds. We then use the per-hop buffer depth bound

to approximate the end-to-end delay of a packet through the network by convolving the

per-hop distributions obtained. This approximation gives very accurate results especially

at high injection loads.

114 CHAPTER 7. DELAY AND BUFFER BOUNDS

7.4.1 Increasing the radix �

In the very first experiment, we inject packets at each source according to a non-bursty

Bernoulli iid process. Each source injects a packet with a probability # at every time step.

We increase the radix k of each switch and measure the queue depth at each of the � hops of

a �-ary �-tree network. Figure 7.5 shows that the CCDFs of the queues are quite divergent

for a low radix (� �) but tend to converge1 to almost identical plots as � is increased

to ��. This is because, for a high enough radix, the statistical properties of the flows are

preserved as they traverse the network. Hence, for the non-bursty injection process, a radix

of �� is a reasonable working parameter to use the convergence results.

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16 18

n

P
 [

D
ep

th
 >

=
n

]

Q1 Q2 Q3 Q4 Q5

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16

n

P
 [

D
ep

th
 >

=
n

]

Q1 Q2 Q3 Q4 Q5

(a) (b)

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16

n

P
 [

D
ep

th
 >

=
n

]

Q1 Q2 Q3 Q4 Q5

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16

n

P
 [

D
ep

th
 >

=
n

]

Q1 Q2 Q3 Q4 Q5

(c) (d)

Figure 7.5: Queue depth at each hop of a �-ary �-tree for (a) k=2 (b) k=4 (c) k=8 and (d)
k=16

1We assume “convergence” if for a probability of ����, the queue occupancy for each hop is within �
of the analytically derived value (explained in the next subsection) with ��� confidence.

7.4. RESULTS 115

7.4.2 Analytically obtaining the CCDF

We now describe our analytical approach for obtaining the CCDFs of the queue depths

at each hop. For the ��-ary �-tree case with non-bursty injection, it suffices to obtain the

CCDF for the first hop as the other hops behave almost identically.

Let � be the random variable that represents the total traffic at each time step to the

queue at the first hop.

�
��
��

.� (7.1)

where .�� .�� � � �.� are IID Bernoulli random variables corresponding to the � sources

such that if #� is the probability that the source � will send a packet along this queue, then

.�

	
� "�#$ %��&�&�'�#(%�

� "�#$ %��&�&�'�#()� �� %�
(7.2)

From Equations 7.1,7.2 we get

,
��
��
��

#�

Let the service capacity of the queue be � � packet per time step. If the queue is stable

i.e., ,
�� ! �, we can find the Probability Generating Function (PGF)2 of the queue size

	�/	 using the formula derived in [24]:

	�/	 �	 �	
�/ � �	��/	

�/ � ��/		
(7.3)

In our case

��/	
��
��

��� � #�/	 and �	 �	 �� ,
�� (7.4)

The derivation for �	 �	 is shown in Appendix D. Moreover, #� # for all � since

2The PGF, G, of a random variable, � , is given by ���� 	 ����� 	
�
�

��� �����
�, where � is the

probability mass function for � .

116 CHAPTER 7. DELAY AND BUFFER BOUNDS

all sources inject traffic with the same probability. Using Equation 7.3, we can find out the

queue size distribution as follows:

 �	 �	
�

�*

��

�/�
	�/	

�
��

(7.5)

Equation 7.5 can then be used to derive the CCDF for the queue depth at each hop of

the ��-ary �-tree network.

Figure 7.6 shows the analytically evaluated queue depth with the error margins derived

as in [14] against the measured values obtained in the previous subsection. The queues at

each hop are at a utilization of ��� i.e., ,
���� ���. The model matches almost exactly

with the simulations. While the observed values were obtained through simulations run

for � days, the theoretical CCDF could be derived in a matter of minutes using the Maple

software [6] for solving Equation 7.5. The advantage is that we could quickly derive the

buffer depth required for which the overflow probability would be of the order of �����,

something that was not tractable by simulations alone.

1E-16
1E-15
1E-14
1E-13
1E-12
1E-11
1E-10
1E-09
1E-08
1E-07
1E-06
1E-05

0.0001
0.001

0.01
0.1

1

0 5 10 15 20 25 30 35 40

n

P
 [

D
ep

th
 >

=
n

]

Q1 Q2 Q3 Q4 Q5 Theory

Figure 7.6: Analytically derived queue depth against the measured queue depth at each hop
for a ��-ary �-tree at ��� load

7.4. RESULTS 117

7.4.3 Approximating the delay CCDF

Having found the buffer depth distributions at each hop, our next aim is to approximate the

end-to-end delay of packets traversing the network. The latency, � , incurred by a packet is

the sum of two components, � � ��, where � is the hop count and � is the queueing

delay. For the ��-ary �-tree case, � �. The random variable � is the queueing delay

incurred due to buffering at each of the hops in the network. The per-hop delay in each

queue is directly related to the occupancy of the queue and its service capacity. In order to

find the distribution of �, we make the simplifying assumption that the per hop delays at

each hop are independent of each other. This assumption has been shown to give accurate

results in practice, especially as the load is increased [53]. This is because, as the buffer

load increases, the output of a queue (which is the input to the downstream queue) gets less

correlated with the input process.

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100 120

n

P
 [D

el
ay

>
=

n]

Theory Load = 0.2 Sim Load = 0.2 Theory Load = 0.6

Sim Load = 0.6 Theory Load = 0.8 Sim Load = 0.8

Figure 7.7: End-to-end packet delay (theoretical and measured) for a ��-ary �-tree at dif-
ferent injected loads

Using this independence assumption, we can find the distribution of � by simply con-

volving the per-hop delay distributions calculated before. Convolving the distributions is

equivalent to simply taking the product of their PGFs. For the case when the service is �

packet per time step, � is given by

118 CHAPTER 7. DELAY AND BUFFER BOUNDS

��/	
��
��

	��/	 (7.6)

Finally, adding a constant � to � gives us the end-to-end delay distribution.

Figure 7.7 compares the analytical delay CCDF with the measured values for injection

loads of ���, ��� and ���. As expected, the analytical and observed plots are a close match

for the highest load of ���. They also are reasonably good approximations for the lower

loads.

7.4.4 Bursty Flows

The radix at which convergence holds depends on the size of the network and the nature of

the injection sources. In this subsection, we use bursty sources for injection into the net-

work instead of the non-bursty Bernoulli sources that we have used thus far. The injection

process is now based on a simple Markov ON/OFF process which produces packet bursts

that are geometrically distributed with average burst length of � packets. We repeat the

same set of experiments as in the Bernoulli injection case.

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50

n

P
 [D

ep
th

>
=

n]

Q1 Q2 Q3 Q4 Q5

Figure 7.8: Queue depth at each hop of a ��-ary �-tree for bursty traffic and ��� load

As we increase the radix �, keeping the load fixed at ��� and the per channel bandwidth

constant, we once again observe a convergence in the CCDFs of queue lengths at different

hops. For the bursty case, the CCDFs for � �� do not converge as well as in the Bernoulli

7.5. DISCUSSION 119

case (Figure 7.8). A higher value of � �� (Figure 7.9) shows convergence sufficient for

the above analysis to give good results.

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30 35

n

P
 [D

ep
th

>
=

n]

Q1 Q2 Q3 Q4 Q5

Figure 7.9: Queue depth at each hop of a ��-ary �-tree for bursty traffic and 0.6 load

The analytical derivation of the queue depth for such a correlated, bursty injection pro-

cess is mathematically involved and is beyond the scope of this thesis. The interested reader

is referred to [22] for more details. In order to evaluate the end-to-end delay CCDF for the

bursty case, we use the measured distribution for the queue delay at the first queue and con-

volve it five times to get the delay distribution. As seen in Figure 7.10, the CCDF obtained

by the convolution is very close to the measured delay CCDF for � ��.

7.5 Discussion

7.5.1 Using buffer bounds to disable flow control

An interesting fallout from deriving buffer depth bounds is that we can use them to make

the flow control of the packets trivial. In practice, the packets traversing the network need

to be allocated resources before they can actually use them. This process of allocation of

network resources is called flow control. The most commonly used flow control mechanism

for allocating buffers to packets is the credit-based flow control [12] (Chapter ��). In order

not to drop packets, a packet in the upstream node must not leave for the downstream node

120 CHAPTER 7. DELAY AND BUFFER BOUNDS

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30

n

P
 [D

el
ay

>
=

n]

Theory Load = 0.6 Sim Load = 0.6

Figure 7.10: End-to-end packet delay for a ��-ary �-tree for bursty traffic at an injected
load of 0.6

until it gets a credit signifying there is enough buffer space available there. If we were to

send a packet to the downstream node ignoring this flow control information, the packet

would be dropped if there was no space in the downstream node. However, we can set our

buffer depths to a reasonable size and make sure that for admissible traffic, the probability

of a drop due to buffer overflow is substantially lower than the probability of a drop due to

a hard error. In order to do this, we must either police the injection process or provide a

modest internal speedup to the network.

Take, for instance, the non-bursty injection process on a ��-ary �-tree. We have suc-

cessfully computed the buffer depth requirement for a particular injection load of ��� that

has a very low probability of exceeding (of the order �����). Repeating our calculations

for different loads, we can study how the buffer depth requirements grow as the load is

increased, while keeping the probability of overflow constant at �����.

Figure 7.11 shows that as the injected load reaches the saturation value of �, the buffers

start to grow without bound. However, at slightly less than this saturation value, say ���,

a buffer size of ��� packets is required to ensure that the drop probability without flow

control is less than �����. Hence, either by policing the injection to make sure that the

injection rate stays below ��� or by providing a small internal speedup of ����� ����, we

can eliminate the flow control overhead from the routing process. A similar analysis can

be carried out for other injection processes.

7.5. DISCUSSION 121

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Load

B
uf

fe
r

de
pt

h
n

su
ch

 th
at

 P
 [D

ep
th

 >
=

 n
] <

 =
 1

0^
-1

5

Figure 7.11: Buffer depth requirement at various injection loads

7.5.2 Bounding the reordering of packets

While load balancing algorithms such as RRR and RCAR increase the throughput of the

network, they also reorder the packets traveling from a particular source, �, to a particular

destination, �. This happens because packets are sent over different paths with potentially

different delays from � to �. For instance, Figure 7.12 shows packets sent over � different

paths. The black packet is the next packet expected by � but it is delayed in the congested

path �. To deliver packets in sequence to �, the other packets (which were injected later

than the black packet but reached earlier) must be stored and reordered in a Reorder Buffer

(ROB) using the well known sliding window protocol [46].

At each destination, there must be a ROB corresponding to each source. Choosing

the size of each ROB is critical to the throughput of the network. Typically, when the

ROB becomes full, packets are dropped and an end-to-end retry protocol retransmits the

dropped packets. Note that the ROB cannot block packets in the network as this may lead

to a deadlock — the packet that the ROB awaits in order to drain gets blocked by the ROB.

It is therefore essential to evaluate a ROB size such that the probability of it getting full is

significantly low.

Unlike the case of the switch buffers discussed thus far, the ROB occupancy varies

with traffic patterns. Consider a permutation traffic pattern (PERM) and a non-permutation

traffic such as Uniform Random (UR). In PERM, � sends packets to a fixed destination,

122 CHAPTER 7. DELAY AND BUFFER BOUNDS

s
d

ROB

P1 P2 P3

Figure 7.12: Reordering of packets sent over � different paths

while in UR, � sends to a randomly chosen destination. Since reordering occurs for source-

destination pairs, permutation patterns use only one ROB at each destination sending more

traffic to each ROB than a non-permutation traffic such as UR. Consequently, the ROB

occupancy for any permutation is bigger than that for a non-permutation traffic for the

same injection load. For this reason, we focus on the PERM traffic pattern for our ROB

size calculations.

Let us denote the CCDF for the delay that we evaluated in Section 7.4.3 by ��, i.e.,

��
�012� � ��. Let the load on the network be a fraction 1 of its capacity. Let 		

be the occupancy of each reorder buffer. Then, for our canonical example of non-bursty

Bernoulli arrivals, we can theoretically bound 		 as follows:

Theorem 7. For non-bursty Bernoulli arrivals, if 3�
�012� �� �� �����, then

		 � �� 	
��
��

3� 0
������������� (7.7)

where 4� '����$�	 and $� 1
����
��

�����	

7.5. DISCUSSION 123

Proof. In order to find
		 � ��, we must find the probability of the event that while the

ROB is waiting for the next in-sequence packet (call it �), � or more packets injected after

� arrive at the ROB. Without loss of generality, let � be injected by the source at time

�. Once � arrives at the ROB after some delay, �, the buffer starts to drain. We need to

count the number of packets that are generated and reach the ROB through paths different

from that of � in the interval ��� ��. The probability that this number exceeds � for all � is

equivalent to
		 � ��.

0 di

τ < d-i

Delay = d

Figure 7.13: Time-line for deriving ROB occupancy

Figure 7.13 shows the time-line for packet �. For each discrete time step, �, in the

interval ��� ��, define an indicator variable, ��, such that �� � if a packet is generated at

time � and also reaches the ROB with a delay less than � � � 3. Since the load is 1 and the

delay CCDF is ��, we have

��

��
�� "�#$ %��&�&�'�#('���+%��	

� 01�0

Then, if � �� delay is given by a random variable �� ,

 �		 � �	
��
��

 ��� �	 �		 � ���� �	 (7.8)

Now, ��� �	 3� ������� and for a fixed �� �, 		
��

�� ��. Thus, to

find a bound on �		 � �	, we need to bound the probability that the sum of the Bernoulli

variables �� exceeds �. We use a Chernoff bounding technique similar to the one used in

[30].

3For simplicity, we ignore the probability that the packet will follow the same path as
 as the number of
paths to the destination is large.

124 CHAPTER 7. DELAY AND BUFFER BOUNDS

For a fixed �� �, and any 4� � �,

 �		 � �	 �0��
��

��� �� � 0���	 	

��
��,
0

�����

0���

The RHS of the above inequality can be simplified to
��

�����������������������

����
. Finally,

using the fact that � � � ! 0�, we can simplify the inequality to

 �		 � ���� �	 	 0��
����������� (7.9)

where $� 1
����

�� �����	.

To get the tightest bound, we must minimize the exponent in the RHS of Equation 7.9.

Solving, we get 4� '����$�	. Substituting in Equation 7.8, we get the desired result.

1E-16
1E-15
1E-14
1E-13
1E-12
1E-11
1E-10
1E-09
1E-08
1E-07
1E-06
1E-05

0.0001
0.001

0.01
0.1

1

0 5 10 15 20 25

n

P
 [

R
O

B
 s

iz
e

>=
 n

]

Simulation Load = 0.8 Bound Load = 0.8

Figure 7.14: Bounding the Reorder Buffer Occupancy

Using the delay distribution derived previously, we can evaluate Equation 7.7 to get

a bound on the ROB occupancy. Figure 7.14 compares the theoretical bound with the

simulated ROB occupancy for an injection load of ���. The probability of overflow for a

ROB of size �� packets is less than �����. Repeating our calculations for different loads

enables us to study how the ROB size requirement grows with load for the same overflow

probability.

7.6. SUMMARY 125

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

load

R
O

B
 d

ep
th

, d
, s

u
ch

 t
h

at
 P

 [
D

ep
th

 >
 d

]
<

 1
0^

-1
5

Figure 7.15: ROB size requirements at various injection loads

Figure 7.15 shows the required ROB size with increasing injection load. As in the

case of the switch buffers, the ROB size also grows without bound as the load reaches the

saturation value. At a load of ��� or less, we require at most �� packet sized ROBs for

packets to be reliably reordered and delivered to their destination. A similar calculation

can be carried out for bursty injection.

7.6 Summary

In this chapter, we have used recent convergence results in queueing theory to propose a

methodology for bounding the buffer depth and packet delay in high radix interconnection

networks. We have presented extensive simulations for both non-bursty and bursty injection

traffic and shown that the convergence results start to hold for radix values as small as

��. Using the delay distributions, we study packet reordering in the network and estimate

bounds for the reorder buffer size in the network. Finally, we use the bounds to propose a

routing mechanism with negligible flow-control overhead by either policing the network at

the source or introducing a small internal speedup in the network.

Chapter 8

Conclusion and future work

The design of an interconnection network has three aspects — the topology, the routing

algorithm used, and the flow control mechanism employed. The topology is chosen to

exploit the characteristics of the available packaging technology to meet the bandwidth,

latency, and scalability [17] requirements of the application, at a minimum cost. Once the

topology of the network is fixed, so are the bounds on its performance. For instance, the

topology determines the maximum throughput (in bits/s) and zero-load latency (in hops) of

the network. This thesis has demonstrated the significance of the routing algorithm used

in the network towards achieving these performance bounds. Central to this thesis is the

idea of load-balancing the network channels. A naive algorithm that does not distribute

load evenly over all channels, stands to suffer from sub-optimal worst-case performance.

However, unnecessary load-balancing is overkill. Spreading traffic over all channels when

there is no uneven distribution of traffic, leads to sub-optimal best-case and average-case

performance. This thesis explores routing algorithms that strive to achieve high worst-case

efficiency without sacrificing performance in the average or best-case.

Chapter 3 examined oblivious routing algorithms and proposed two algorithms that

give high worst-case throughput while sacrificing modest performance in the best-case.

However, exploiting the oblivious nature of the routing algorithm, an adversary could load

a link in the network, resulting in sub-optimal worst-case performance. Chapter 4 intro-

duced adaptivity to counter such an adversary. However, since the decision to misroute

126

8.1. FUTURE DIRECTIONS 127

was still oblivious, the best-case performance remained sub-optimal. Chapter 5 then intro-

duced globally adaptive load-balanced (GAL) routing which, unlike any previous routing

algorithm, performed optimally in the worst-case and the best-case. Building on these con-

cepts, Chapter 6 extended GAL to an arbitrary symmetric topology. Finally, Chapter 7

examined and analyzed other important performance metrics such as delay and buffer oc-

cupancy guarantees in load-balanced, high-radix interconnection networks.

8.1 Future directions

The study of load-balanced routing has opened several problems for future research in

interconnection networks. While the problem of finding the exact worst-case traffic pat-

tern has been solved for oblivious routing [49], evaluating the worst-case throughput for

an adaptive algorithm remains an open question. In Chapter 6, we proposed an adaptive

algorithm with optimal throughput guarantees. Moreover, in Appendix A, we present an

efficient algorithm to bound the worst-case throughput for a class of adaptive algorithms

— minimal adaptive routing. However, to our knowledge, there is no known analytical

technique that generates the worst-case pattern for any given adaptive routing algorithm.

Adaptive routing algorithms, whether global (like UGAL) or local (like MIN AD), be-

cause they adapt to changes in network traffic, are characterized by both a steady-state and

a transient response. In contrast, oblivious algorithms (like VAL and RLB) are entirely

characterized by their steady-state response. The transient response of an adaptive algo-

rithm depends not only on the routing algorithm, but also on the details of per-channel flow

control. In particular, short per-node queues that give stiff backpressure provide more rapid

response to traffic transients. Fully characterizing the transient response of adaptive routing

is another interesting open question.

In Chapter 7, we use the bounds we derive to propose a routing mechanism with neg-

ligible flow-control overhead by introducing a small internal speedup in the network. The

advantages of disabling flow control are manifold. Significant bandwidth is saved which

is otherwise used up by flow control credits. Moreover, practical flow control methods

like credit based flow control can require substantial buffer space to maintain full through-

put on a single virtual channel. We are currently doing a study to quantify the overhead

128 CHAPTER 8. CONCLUSION AND FUTURE WORK

cost of flow control in interconnection networks. Moreover, the methodology described in

this chapter is applicable only to oblivious routing algorithms. Developing a technique for

bounding delay and buffer depth for adaptive routing is another interesting topic for future

study.

Finally, UGAL’s use of channel queues to sense global congestion has applications

beyond selecting the quadrant in which to route each packet. This measure of global con-

gestion could, for example, be used to drive a data or thread migration policy. Also, in cases

when a packet can be delivered to any one of a set of destinations (e.g., the packet can be

sent to any server that provides a particular service), the measure of global congestion can

be used to decide which server to select.

Appendix A

Finding the worst-case throughput

A.1 Oblivious routing

The problem of finding the worst-case throughput for any oblivious routing algorithm,

�, on a graph *�+�,	 was solved by Towles & Dally in [49]. In an oblivious routing

algorithm, a source node, �, routes a fixed fraction of its traffic to a destination node, �,

across any given edge (channel), 0. Building on this property, Towles & Dally show that

the problem of finding the worst-case traffic pattern can be cast as a maximum-weight

matching of a bipartite graph constructed for each channel in the graph. We now describe

this method in some detail.

A.1.1 Worst-case traffic for oblivious routing

Algorithm 1 shows the steps for finding the worst-case traffic pattern for � on *�+�,	.

Since each source-destination pair sends a fixed fraction of its traffic across an edge, 0, the

traffic across 0 is simply a linear sum of the contributions from different source-destination

pairs. In order to maximize the load on 0, it is sufficient to find a (possibly partial) permu-

tation of such pairs, that maximizes the traffic sent across 0. For this purpose, we construct

a channel load graph (step �(2)), *�, for 0 from *. *� is a bipartite graph with two sets

of vertices, $ and � (�$� ��� �+ �). An edge from � � $ to � � � in *� is assigned

129

130 APPENDIX A. FINDING THE WORST-CASE THROUGHPUT

a weight, Æ��� �	, equal to the fraction of traffic � sends to � across edge 0 in * for algo-

rithm �. A maximum weight matching, &�, is then evaluated (step �(�)) for *�, which

corresponds to the worst-case traffic pattern for 0. We repeat the process over all channels1

and return the &� with the largest weight as our final traffic pattern. Denote the weight of

this matching as 5. Now, if every source injects traffic at a rate
 bits/s, the load on the

worst-case edge is 5
 bits/s. Assuming a channel bandwidth of � bits/s, it follows that the

worst-case throughput is ��5 bits/s.

Algorithm 1 Finding the worst-case traffic for oblivious routing algorithm, R, on *�+�,	

1. For all edges, 0 � ,,

(a) *� � ,��-#�./# /$���0' '��1 2��%$�!� 0	.

(b) &� � 3��1 �����.� "0�2$# ��#/$��2�! 	.

2. Return the matching with the biggest size. Return &���� -�#��4���� ��� �& �4 �.

A variant of Algorithm 1 can be used to analytically compute the throughput of � on

a specific traffic pattern, �. For this purpose, we slightly modify our construction of graph

*�. Given � and �, the channel load graph, *�, for edge 0 is constructed as follows: an

edge from � � $ to � � � in *� is assigned a weight, Æ��� �	, equal to the portion of the

total traffic � wishes to send to � in �, that is routed across edge 0 in * by algorithm �.

The load on 0 due to � is just the sum, 6�, of the weight of all the edges in *�. Finally

the maximum load, 6���, over all 6�’s, is used to evaluate the throughput, � ��6���

bits/s.

A.1.2 RLB is worst-case optimal on a ring (Theorem 4)

Proof. In order to prove that the worst-case throughput for RLB is ��� on a ring, we first run

Algorithm 1 on an �-node ring (Figure A.1) and then on a generic �-node ring. For any �-

node ring, the capacity is given by ���� ���� bits/s. Since the graph is symmetric, we

consider the channel load graph for any one edge, (�� �), as illustrated in Figure A.2. To

1For symmetric graphs, we need to consider any one channel in the network.

A.1. OBLIVIOUS ROUTING 131

find the maximum weight matching, we use the algorithm presented in [19]. The matching

returned is shown in Figure A.2 in black arrows. The weight of this matching is 5

�� � � � � � �	�� �, resulting in a worst-case throughput of ��� ���, or ��� of

capacity.

10 2 3 4 5 6 7

Figure A.1: We consider edge (�� �) of an �-node ring

 1/8

 4/8

 3/8

 2/8

 2/8

 4/8

 5/8

 1/8

 6/8

 4/8

 3/8

2/8

 1

/8

 6/8

 5/8

 4/8

3/8

2/8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

0 0

 1/8

 3/8

 5/8

 7/8

Figure A.2: The channel load graph for edge (� � �) for RLB on an �-node ring. The
maximum weight matching is shown in black arrows.

In general, for a �-node ring2, the weight of the maximum weight matching is 5

��� � �	 � �� � �	 � � � �� �	�� ���. Therefore, ��� ���� or ��� of capacity.

A.1.3 Worst-case permutations for different oblivious algorithms

Applying algorithm 1 on an �-ary �-cube, we enumerate the worst case permutations for

each of the five oblivious algorithms we studied in Chapter 3:

2For simplicity, we assume � is even.

132 APPENDIX A. FINDING THE WORST-CASE THROUGHPUT

� Dimension Order: The transpose traffic permutation — ��� �	 sends to ��� �	 — is the

worst-case pattern for this scheme. This skewed loading pattern overloads the last

right-going link of the ��� row, resulting in a throughput of ���� of capacity.

� Valiant: Any traffic permutation is the worst-case pattern.

� ROMM : The worst-case permutation yields a saturation load of ����� of capacity.

Figure A.3 shows the destination of each source node ��� �	 in the worst case permu-

tation.

0 (0,3) (0,0) (7,5) (7,0) (7,6) (4,1) (0,1) (0,2)

(6,3) (0,5) (0,6) (0,7) (1,0) (5,1) (6,1) (6,2)

(7,3) (6,0) (5,4) (5,2) (4,6) (7,7) (7,1) (7,2)

(7,4) (1,5) (1,6) (1,7) (2,0) (6,7) (6,6) (6,5)

(0,4) (4,7) (4,2) (5,0) (2,4) (5,7) (5,6) (5,5)

(1,4) (2,5) (2,6) (2,7) (3,0) (5,3) (4,5) (4,3)

(1,3) (4,4) (3,2) (3,3) (3,4) (6,4) (1,1) (1,2)

(2,3) (3,5) (3,6) (3,7) (4,0) (3,1) (2,1) (2,2)

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Figure A.3: Worst case traffic permutation for 2 phase ROMM. Element
�� �� of the matrix
gives the destination node for the source node ��� �	.

� RLB: Figure A.4 shows the worst case permutation which yields a throughput of

����� of capacity.

� RLBth: The worst case permutation for RLBth is very similar to that for RLB and is

not presented.

A.2 Bounding the worst-case throughput of MIN AD rout-

ing

In the previous section, we described an efficient method to determine the worst-case traffic

pattern for any oblivious routing algorithm. The reason this method is restricted to oblivi-

ous routing is that an oblivious algorithm sends a predetermined fraction of traffic from a

A.2. BOUNDING THE WORST-CASE THROUGHPUT OF MIN AD ROUTING 133

0 (0.1) (0,0) (4,1) (3,1) (1,1) (7,1) (0,2) (0,3)

(0,4) (5,0) (6,6) (2,6) (5,1) (6,1) (7,2) (7,3)

(7,4) (6,0) (3,7) (4,4) (4,2) (5,2) (6,2) (6,3)

(7,5) (7,6) (7,7) (5,5) (3,5) (5,4) (5,3) (6,4)

(0,7) (7,0) (5,6) (4,5) (4,6) (2,7) (6,5) (2,5)

(0,6) (6,7) (4,7) (1,6) (4,0) (3,4) (2,4) (1,5)

(1,4) (5,7) (1,7) (2,0) (4,3) (3,3) (2,2) (2,3)

(0,5) (1,0) (3,6) (3,0) (3,2) (2,1) (1,2) (1,3)

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Figure A.4: Worst case traffic permutation for RLB. Element
�� �� of the matrix gives the
destination node for the source node ��� �	

source node, �, to a destination node, �, across a given channel, �. An adaptive algorithm

can dynamically decide how much of the traffic goes along �, depending on the state of the

network. For this reason, finding the worst-case traffic for adaptive algorithms continues to

remain an open question.

A.2.1 An algorithm for bounding the worst-case throughput of mini-

mal routing

In this section, we present a method to bound the worst-case throughput for any minimal

routing algorithm. Since the routing algorithm only needs to be minimal and not oblivious,

the bound also holds for minimal adaptive routing algorithms. Before we proceed, we

define the terms Necessary Shortest Path (NSP) edge and Necessary Shortest Path Edge

(NSPE) graph.

A directed edge, 0, of a graph, *�+�,	, is an NSP edge for the source-destination pair

(�� �), if 211 shortest paths from � to � include 0. It is easy to see that 0 will be an NSP edge

if the shortest distance from � to � in *�+�,	 is strictly less than the shortest distance from

� to � in *�+�, � 0	.

An NSPE graph, 5*�, is a bipartite graph for the edge 0 constructed from the graph

*�+�,	. It has two sets of vertices — the source set, S, and the destination set, �. Both

$ and � have cardinality �+ �. For each pair (�� �), such that � � $ and � � �, there is an

134 APPENDIX A. FINDING THE WORST-CASE THROUGHPUT

edge from � to � in 5*�, if 0 is an NSP edge from � to � in *�+�,	. Intuitively, the NSPE

graph attempts to construct an adversarial traffic pattern that exploits the fact that routes are

restricted to minimal paths alone. If the minimal paths necessarily pass through an edge, 0,

even an adaptive (but minimal) algorithm cannot route around that edge.

Algorithm 2 Finding an adversarial traffic for minimal routing on *�+�,	

1. For all edges, 0 � ,,

(a) 5*� � ,��-#�./# 6789 !��%$�!� 0	.

(b) &� � 3��1 �����.���#/$��2� 5! 	.

2. Return the matching with the biggest size. Return &���� -�#��4���� ��� �& �4 �.

Algorithm 2 describes the steps involved in finding a bound on throughput for any

minimal routing on graph*�+�,	. For every edge (channel), step �(2) constructs an NSPE

graph, 5*�, corresponding to 0. Once 5*� is constructed, step �(�) constructs a maximum

size matching, &�, for 5*�. A maximum matching for the NSPE graph corresponds to a

(possibly partial) traffic permutation where every source-destination pair sends all traffic

across edge 0. The process is repeated for every edge and finally the matching with the

maximum size is returned in step �. Denote the weight of this matching as �& �. Now, if

every source node injects traffic at a rate
 bits/s and the channel bandwidth is � bits/s,

the maximum injection rate (throughput) is ���& � bits/s. This is an upper bound on the

worst-case throughput of the specific minimal (oblivious or adaptive) routing algorithm.

The run-time complexity of Algorithm 2 is 7�,+ ��+ � ,			. For each edge, 0, step

�(a) constructs the corresponding NSPE graph, 5*�. This requires checking for each source-

destination pair in *, if 0 is an NSP edge. There are + � source-destination (�� �) pairs in

* and checking if an edge is an NSP edge requires running a breadth-first-search (BFS)

algorithm twice from �, which takes 7�+ � ,	 time. Hence, the total time required for

step �(a) is 7�+ ��+ � ,		. Once 5*� is constructed, step �(b) constructs a maximum size

matching, &�, for 5*�, which takes 7�+ �	 time. The process is repeated for every edge

and finally step � returns the matching with the maximum size, giving a total run time

complexity of 7�,+ ��+ � ,		. If the graph is symmetric, it is sufficient to consider just

A.2. BOUNDING THE WORST-CASE THROUGHPUT OF MIN AD ROUTING 135

one edge in *, reducing the complexity to 7�+ ��+ � ,		.

A.2.2 Experiments on different topologies

Having described the algorithm to bound the worst-case throughput, we now demonstrate

how minimal routing can give sub-optimal worst-case performance on three different ��

node topologies as described in Chapter 6. We know from Theorem 1 that the optimal

worst-case throughput can be at most ��� the network capacity. Using Algorithm 2, we

shall discover traffic patterns on which minimal routing performs significantly worse than

optimal. Since all the networks are symmetric, we need to construct the NSPE graph for

just one edge in each network for the algorithm.

Fully connected graph

We first consider a fully connected graph of � �� nodes. The bisection bandwidth of

this network is � � ���� bits/s. Therefore, the capacity is given by ���� �� ���

bits/s. The NSPE graph for any edge (8� 9) for this graph is a trivial bipartite graph with

just � edge from 8 to 9. Hence, the matching size is also �. It follows that the worst-

case throughput bound for any minimal routing is ���& � � bits/s (���� of capacity),

only ����� of the optimal worst-case throughput of ���. In general, for an � node fully-

connected graph, any permutation traffic yields a throughput of ��� of capacity. While the

adversarial traffic for this topology is trivial and can be obtained by inspection, the traffic

patterns obtained for the next two topologies are much more subtle.

�-ary �-cube (torus) network

The next topology we consider is an �-ary �-cube (� � � torus) network. The capacity of

this network is ���� � bits/s. Again, due to symmetry, we construct the NSPE graph for a

single channel. Without loss of generality, let this edge be (�� �) as shown in Figure A.5.

The NSPE graph is shown in Figure A.6. The figure also shows the corresponding

maximum matching (arrows shown in black) for this graph. The size of the matching is

� (throughput, � ���� (������ of optimal)). As illustrated in Figure A.7, the partial

136 APPENDIX A. FINDING THE WORST-CASE THROUGHPUT

16

8

0

24

20

12

4

28

18

10

2

19

11

3

26 27

17

9

1

25

22

14

6

23

15

7

30 31

21

13

5

29

48

40

32

56

52

44

36

60

50

42

34

51

43

35

58 59

49

41

33

57

54

46

38

55

47

39

62 63

53

45

37

61

Figure A.5: Constructing an adversarial pattern for minimal routing on an �� � torus. We
construct the NSPE graph for edge �� �.

A.2. BOUNDING THE WORST-CASE THROUGHPUT OF MIN AD ROUTING 137

permutation obtained from the matching loads the link (� � �) with � flows, and is a

subset of the tornado traffic permutation described in Table 2.2.

1

... ...

1

0 0

3 3

2 2

5 5

4 4

7 7

6 6

63 63

Figure A.6: The NSPE graph for edge (�� �) and its maximum matching (matched arrows
are shown in black)

8

0

12

4

10

2

11

3

9

1

14

6

15

7

13

5

............

Figure A.7: The adversarial traffic pattern returned by the matching for edge �� �

Cube Connected Cycles

We finally consider a �� node cube connected cycle (CCC) topology. On this network, our

algorithm returns a very subtle traffic pattern, on which any minimal routing algorithm can

yield a throughput of ��� of capacity (��� of optimal).

138 APPENDIX A. FINDING THE WORST-CASE THROUGHPUT

34

50

32

33

35 36

39

38

37

45

44
47

41
40

42

43

53

55

52

61

63
60

59

58

56
57

54

48

51

49

46

62

2

18

0

1

3 4

7

6

5

13

12
15

9
8

10

11

21

23

20

29

31
28

27

26

24
25

22

16

19

17

14

30

Figure A.8: Constructing an adversarial pattern for minimal routing on a �� node cube
connected cycle. We construct the NSPE graph for edge �� �.

The network is shown in Figure A.8. To avoid unnecessary clutter, we omit the edges

going from � cube to the other. We also combine the edges in two directions into a single

bidirectional edge. The bisection bandwidth, � ���. Since for the �� node CCC, � �,

the capacity is given by ���� �����	���� ���� bits/s. We focus on the edge (�� �)

in the network and construct its NSPE graph. The matching returned by the algorithm has

a size of ��, implying that the worst-case throughput for any minimal algorithm is at most

���� bits/s (��� of capacity). The exact traffic pattern is shown in Figure A.9.

A.2. BOUNDING THE WORST-CASE THROUGHPUT OF MIN AD ROUTING 139

34

50

32

33

35 36

39

38

37

45

44
47

41
40

42

43

53

55

52

61

63
60

59

58

56
57

54

48

51

49

46

62

2

18

0

1

3 4

7

6

5

13

12
15

9
8

10

11

21

23

20

29

31
28

27

26

24
25

22

16

19

17

14

30

Figure A.9: An adversarial pattern for which the throughput of any minimal algorithm is
��� of capacity

Appendix B

GOAL is deadlock-free

We first prove a lemma that will be useful in proving that GOAL is deadlock-free. Lemma 1

proves that the Channel Dependency Graph (CDG*) for the *-channel network associated

with GOAL is acyclic. Theorem 8 then proves that no *-channel can participate in a dead-

lock cycle, proving that GOAL is deadlock-free.

The CDG* for GOAL is a directed graph, ����,	. The vertices of � are the *-

channels of the network and the edges of � are the pairs of *-channels (��� , �
�

�) such that

there is a direct dependency from ��� to ��� . Each *-channel can be uniquely identified by

the �-tuple (node, id, dimension, direction) indicating the node whose outgoing channel it

is, the id of the *-channel (� or �), the dimension of the *-channel, and its orientation in

that dimension (� or �). Denote node� as the ��� coordinate of node. We now prove that

CDG* for GOAL is acyclic.

Lemma 1. The *-channel dependency graph (CDG*) for GOAL is acyclic.

Proof. We first prove that a cycle cannot involve *-channels belonging to the same di-

mension. Consider dependencies existing between *-channels ('� �� ���) and (�� �� ���)

belonging to a given dimension, �. If a packet, #, enters ('� �� ���), it means that � is

the most significant dimension it has to correct, and that # has not yet traversed the wrap-

around edge in dimension �. Moreover, the chosen direction to correct � is �. The key

observation here is that GOAL ensures that the direction along which a dimension is cor-

rected is fixed, i.e., a packet cannot traverse in the� direction along �, once it has traversed

140

141

in the � direction along �, or vice versa. If # enters (�� �� ���) afterwards, it follows that

# has still not taken the wrap-around edge along � yet. Hence, if �� 	 '�, # would have

had to move in the � direction along �, which is not allowed by GOAL. Thus, � � � '�.

Consequently, no cycles can exist in CDG* involving the � (or �) *�-channels in dimen-

sion �. Analogously, no cycles can exist in CDG* involving the � (or �) *�-channels in

dimension �. Moreover, GOAL ensures that the *-channels along the � (�) direction do

not have any dependencies on those along the � (�) direction in dimension �. Further,

it also ensures that there are no cyclic dependencies between the *� and *� channels in �.

Therefore, if there is a cycle in CDG*, it cannot involve *-channels corresponding to the

same dimension.

We next prove that a cycle cannot involve *-channels belonging to different dimensions.

Consider a dependency from a *-channel ('� ��� 8� ���) to a *-channel (�� ���� 9� ����),

where 8 � 9. If # enters ('� ��� 8� ���), it follows that 8 is the most significant dimen-

sion that needs to be corrected. The next key observation is that GOAL does not traverse

along a dimension, �, once � is corrected. It follows that when # enters (�� ���� 9� ����),

then 9 ! 8. Therefore, there cannot be any cycle involving *-channels corresponding to

different dimensions, proving the result.

Theorem 8. GOAL is deadlock-free.

Proof. Suppose that no *-channel ever participates in a deadlock cycle. Then, any packet,

#, always has a *-channel in its available set of virtual channels, since CDG* is acyclic

(Lemma 1). Hence, no deadlock can arise, given that VCs are assigned fairly and packets

are of finite length.

Thus, it suffices to show that no *-channel can ever participate in a deadlock cycle. The

proof by induction given in lemma ��� of [16] can be applied here verbatim for the GOAL

algorithm and is not repeated in this appendix.

Appendix C

Results for ��-ary �-cube network

The following table presents data for a ��-ary �-cube topology for the different algorithms

described in this thesis.

Table C.1: Throughput numbers for a ��-ary �-cube

Algo #�� #�� #�� #�� #��� #�� #�	

VAL 0.5 0.5 0.5 0.5 0.5 0.5 0.5
DOR 1.0 4.0 0.5 0.25 0.33 0.25 0.31

ROMM 1.0 4.0 0.4 0.54 0.33 0.21 0.45
RLB 0.76 2.33 0.42 0.56 0.53 0.31 0.51

RLBth 0.82 4.0 0.41 0.56 0.53 0.3 0.51

CHAOS 1.0 4.0 0.49 0.56 0.30 0.3 0.53
MIN AD 1.0 4.0 0.49 0.63 0.29 0.29 0.63
GOAL 0.76 2.33 0.50 0.78 0.53 0.5 0.68

GAL 1.0 4.0 0.50 0.78 0.53 0.5 0.73
CQR 1.0 4.0 0.50 0.78 0.53 0.5 0.73

142

Appendix D

Probability of a queue being empty

In order to find �	 �	 for the set up described in Chapter 7.4.2, let us construct the time

series equation for the queue depth, 	. If 	� is the depth of the buffer at the end of time

slot �, then the occupancy in the next step will increase by the number of arrivals at slot

� � � and decrease by � (�) if the queue is non-empty (empty) at time �. Mathematically,

this means

	��� 	� ���� � ���� (D.1)

where �� is a shifted discrete step function

��

��
�� � �� �� � � �

� � 	 �
(D.2)

Let us take expectations on both sides of Equation D.1. Since, at steady state, we can

drop the subscripts we have

,�		 ,�		� ,���	 � ,��	 (D.3)

Now, from Equation D.2, it is obvious that ,���	
	 � ��. Substituting in (D.3), we

get

	 �� �� ,��	

143

Bibliography

[1] K. V. Anjan and Timothy Mark Pinkston. Disha: a deadlock recovery scheme for

fully adaptive routing. In Proc. of the International Parallel Processing Symposium,

pages 537–543, Santa Barbara, CA, April 1995.

[2] D. Bertsekas and R. Gallager. Data Networks: Second Edition. Prentice-Hall, 1992.

[3] Kevin Bolding, Melanie L. Fulgham, and Lawrence Snyder. The case for chaotic

adaptive routing. IEEE Trans. on Computers, 46(12):1281–1291, 1997.

[4] Cheng-Shang Chang, Duan-Shin Lee, and Yi-Shean Jou. Load balanced birkhoff-von

neumann switches, part 1: one-stage buffering. Computer Communications, 25:611–

622, 2002.

[5] Cheng-Shang Chang, Duan-Shin Lee, and Ching-Ming Lien. Load balanced birkhoff-

von neumann switches, part 2: multi-stage buffering. Computer Communications,

25:623–634, 2002.

[6] B.W. Char, K.O. Geddes, B.Leong G.H. Gonnet, M.B. Monagan, and S.M. Watt.

Maple V Language Reference Manual. Springer-Verlag New York, Inc., 1991.

[7] C. Clos. Bell system technical journal. The Bell System technical Journal, 32(2):406–

424, March 1953.

[8] W. J. Dally, P. P. Carvey, and L. R. Dennison. The Avici terabit switch/router. In Proc.

of Hot Interconnects, pages 41–50, August 1998.

[9] William J. Dally. Virtual-channel flow control. In Proc. of the International Sympo-

sium on Computer Architecture, pages 60–68, May 1990.

144

BIBLIOGRAPHY 145

[10] William J. Dally, Patrick Hanrahan, Mattan Erez, Timothy J. Knight, Francois

Labonte, Jung-Ho Ahn, Nuwan Jayasena, Ujval J. Kapasi, Abhishek Das, Jayanth

Gummaraju, and Ian Buck. Merrimac: Supercomputing with streams. In Proceed-

ings of SuperComputing, Phoenix, Arizona, November 2003.

[11] William J. Dally and Charles L. Seitz. The torus routing chip. Distributed Computing,

1(4):187–196, 1986.

[12] William J. Dally and Brian Towles. Principles and practices of interconnection net-

works. Morgan Kaufmann, San Francisco, CA, 2004.

[13] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks An Engineering Ap-

proach. IEEE Press, 1997.

[14] Do Young Eun and Ness B. Shroff. Simplification of network analysis in large-

bandwidth systems. In Proc. of IEEE INFOCOM, San Francisco, California, April

2003.

[15] Do Young Eun and Ness B. Shroff. Network decomposition in the many-sources

regime. Advances in Applied Probability, 36(3):893–918, September 2004.

[16] L. Gravano, G. Pifarre, G. Pifarre, P. Berman, and J. Sanz. Adaptive deadlock- and

livelock-free routing with all minimal paths in torus networks. IEEE Trans. on Paral-

lel and Distributed Systems, 5(12):1233–1252, Dec. 1994.

[17] Amit K. Gupta, William J. Dally, Arjun Singh, and Brian Towles. Scalable opto-

electronic network (SOEnet). In Proc. of Hot Interconnects, pages 71–76, Stanford,

CA, August 2002.

[18] J. Jackson. Jobshop-like queueing systems. Management Science, 10(1):131–142,

1963.

[19] D. S. Johnson and C. C. McGeoch. Network flows and matching: first dimacs imple-

mentation challenge. Series in DIMACS, 12, 1993.

146 BIBLIOGRAPHY

[20] Isaac Keslassy. The Load-Balanced Router. Ph.D. Dissertation, Stanford University,

June 2004.

[21] Isaac Keslassy, Cheng-Shang Chang, Nick McKeown, and Duan-Shin Lee. Optimal

load-balancing. In Proc. of IEEE INFOCOM, Miami, Florida, 2005.

[22] Han S. Kim and Ness B. Shroff. Loss probability calculations and asymptotic analysis

for finite buffer multiplexers. IEEE/ACM Trans. on Networking, 9(6):755–768, 2001.

[23] L. Kleinrock. Queueing Systems: Volume II. John Wiley, 1975.

[24] Leonard Kleinrock. Queueing Systems – Volume 1: Theory., pages 191–194, Eqn

5.85. Wiley, New York, 1975.

[25] S. Konstantinidou and L. Snyder. The Chaos Router: A practical application of ran-

domization in network routing. Proc. of the Symposium on Parallel Algorithms and

Architectures, pages 21–30, 1990.

[26] C. Leiserson. Fat-trees: Universal networks for hardware efficient supercomputing.

IEEE Trans. on Computers, C-34(10):892–901, October 1985.

[27] D. Linder and J. Harden. An adaptive and fault tolerant wormhole routing strategy

for k-ary n-cubes. ACM Trans. on Computer Systems, 40(1):2–12, Jan 1991.

[28] D. S. Meliksetian and C. Y. R. Chen. Optimal routing algorithm and the diame-

ter of the cube-connected cycles. IEEE Trans. on Parallel and Distributed Systems,

4(10):1172–1178, 1993.

[29] M. Mitzenmacher. Bounds on the greedy routing algorithm for array networks. In

Proc. of the Symposium on Parallel Algorithms and Architectures, pages 346–353,

Cape May, New Jersey, June 1994.

[30] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Univ.

Press, 1995.

BIBLIOGRAPHY 147

[31] T. Nesson and S. L. Johnsson. ROMM routing on mesh and torus networks. In Proc.

of the Symposium on Parallel Algorithms and Architectures, pages 275–287, Santa

Barbara, CA, 1995.

[32] Li-Shiuan Peh and William J. Dally. A delay model for router micro-architectures.

IEEE Micro, 21(1):26–34, 2001.

[33] Fabrizio Petrini and Marco Vanneschi. �-ary �-trees: High performance networks

for massively parallel architectures. In Proc. of the International Parallel Processing

Symposium, pages 87–93, Geneva, Switzerland, April 1997.

[34] Greg Pfister. High Performance Mass Storage and Parallel I/O, chapter An Intro-

duction to the InfiniBand Architecture, Chapter 42, pages 617–632. IEEE Press and

Wiley Press, 2001.

[35] Franco P. Preparata and Jean Vuillemin. The cube-connected cycles: a versatile net-

work for parallel computation. Communications of the ACM, 24(5):300–309, 1981.

[36] E. Raubold and J. Haenle. A method of deadlock-free resource allocation and flow

control in packet networks. In Proc. of the International Conference on Computer

Communication, pages 483–487, Toronto, Canada, August 1976.

[37] Steven L. Scott and Gregory M. Thorson. The Cray T3E network: Adaptive routing in

a high performance 3D torus. In Proc. of Hot Interconnects, pages 147–156, August

1996.

[38] Farhad Shahrokhi and D. W. Matula. The maximum concurrent flow problem. Journal

of the ACM, 37(2):318–334, April 1990.

[39] Arjun Singh and William J. Dally. Buffer and delay bounds in high radix intercon-

nection networks. Computer Architecture Letters, 3, December 2004.

[40] Arjun Singh and William J. Dally. Universal globally adaptive load-

balanced routing. In Concurrent VLSI Architecture (CVA) Technical Report,

(ftp://cva.stanford.edu/pub/publications/ugal.pdf), January 2005.

148 BIBLIOGRAPHY

[41] Arjun Singh, William J. Dally, Amit K. Gupta, and Brian Towles. GOAL: A load-

balanced adaptive routing algorithm for torus networks. In Proc. of the International

Symposium on Computer Architecture, pages 194–205, San Diego, CA, June 2003.

[42] Arjun Singh, William J. Dally, Amit K. Gupta, and Brian Towles. Adaptive channel

queue routing on k-ary n-cubes. In Proc. of the Symposium on Parallel Algorithms

and Architectures, pages 11–19, June 2004.

[43] Arjun Singh, William J. Dally, Brian Towles, and Amit K. Gupta. Locality-preserving

randomized oblivious routing on torus networks. In Proc. of the Symposium on Par-

allel Algorithms and Architectures, pages 9–19, Winnipeg, Manitoba, Canada, Aug.

2002.

[44] Arjun Singh, William J. Dally, Brian Towles, and Amit K. Gupta. Globally adaptive

load-balanced routing on tori. Computer Architecture Letters, 3, March 2004.

[45] H. Sullivan and T. R. Bashkow. A large scale, homogeneous, fully distributed parallel

machine, I. In Proc. of the International Symposium on Computer Architecture, pages

105–117, 1977.

[46] A. S. Tanenbaum. Computer networks. Prentice Hall, Upper Saddle River, NJ, third

edition, 1996.

[47] M. S. Thottethodi, A. R. Lebeck, and S. S. Mukherjee. BLAM: A high-performance

routing algorithm for virtual cut-through networks. In Proc. of the International Par-

allel and Distributed Processing Symposium, Nice, France, April 2003.

[48] Sam Toueg and Jeffrey D. Ullman. Deadlock-free packet switching networks. In

Proc. of the ACM Symposium on the Theory of Computing, pages 89–98, Atlanta,

Georgia, United States, 1979.

[49] Brian Towles and William J. Dally. Worst-case traffic for oblivious routing functions.

In Proc. of the Symposium on Parallel Algorithms and Architectures, pages 1–8, Win-

nipeg, Manitoba, Canada, August 2002.

BIBLIOGRAPHY 149

[50] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In

Proc. of the ACM Symposium on the Theory of Computing, pages 263–277, Milwau-

kee, MN, 1981.

[51] Damon J. Wischik. The output of a switch, or, effective bandwidths for networks.

Queueing Systems - Theory and Applications, 32(4):383–396, 1999.

[52] Damon J. Wischik. Sample path large deviations for queues with many inputs. Annals

of Applied Probability, 11(2):379–404, May 2001.

[53] D. Yates, J. Kurose, D. Towsley, and M. Hluchy. On per-session end-to-end delay

distributions and the call admission problem for real-time applications with qos re-

quirement. Journal on High Speed Networks, 3(4):429–458, 1994.

[54] Rui Zhang-Shen and Nick McKeown. Designing a predictable internet backbone

network. In Proc. of HotNets, San Diego, CA, November 2004.

