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Abstract

As Internet traffic continues to double every year, the demands placed on the IP routers that

deliver this traffic also increase. Traditional IP router architectures cannot scale to meet

these demands, forcing architects to explore alternative designs. This thesis explores one

alternative, the distributed router fabric. Distributed router fabrics are rooted in the inter-

connection networks used in supercomputers and their idea is simple: design the largest ef-

ficient router possible and then replicate and interconnect these routers to scale the fabric’s

switching capacity. This approach adopts the engineering advantages of interconnection

networks, but also presents several challenges that are the focus of this thesis.

An important property of any IP router is the switching bandwidth it can provide to

incoming traffic. As we show, this guaranteed line rate can be found for an arbitrary dis-

tributed fabric by solving a series of maximum-cost flow problems, significantly improving

the characterization provided by previous approaches. Building on this result, we also show

that maximizing the line-rate guarantee of a particular distributed fabric can be achieved by

designing its routing algorithm. The optimal routing algorithm design problem can be cast

as a convex program and, as a result, globally optimal routing algorithms can be efficiently

determined for any fabric.

Once a packet’s route through the fabric is determined, a flow-control method delivers

that packet from source to destination. We show that existing fixed-size flits, or flow-

control units, necessitate large control overheads and introduce variable-size flits to solve

this problem. By carefully constraining amount of variation in our flit size, the hardware

implementation is kept simple while overhead is greatly reduced. Long packets can also

reduce the efficiency of flow control and we show that splitting these long packets into

many shorter packets and then reassembling them provides higher fabric throughput.
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Chapter 1

Introduction

1.1 The form and function of IP routers

Internet protocol (IP) routers are one of the key building blocks of today’s Internet — they

are responsible for delivering the IP packets upon which the world-wide web, electronic

mail, and many other applications are based. This thesis, in particular, focuses oncore IP

routers. These are the routers with the highest switching capacities (1 Tb/s or more) and

are typically located in the central offices of Internet service providers. While there are

complex economic and sociological arguments to be made about the future growth of the

Internet, our work is based on the fact that recent trends indicate the bandwidth demand

placed on the Internet is approximately doubling every year [49]. This, in turn, drives the

need for a corresponding growth in router capacity.

There are many possible ways to define the capacity of a router, but today’s IP routers

are designed to provideline-rate service. The idea of line-rate service is that the router

itself never becomes a bottleneck to the flow of packets through the Internet. Rather, the

only limiter of the rate of packet delivery is the bandwidth of the channels connecting these

routers. Viewed in another way, IP routers are designed to be robust under a wide variety

of conditions. If a large fraction of traffic shifts from one destination to another, perhaps

as the result of an important news event, then the IP router should continue to deliver those

packets up to the full rate of the newly popular output channel.

Line-rate service, by itself, could be considered the vanilla flavor of a much richer set

1



2 CHAPTER 1. INTRODUCTION

of possible services. There are many additional quality of service (QoS) features that are

provided by and have been proposed for IP routers. Traffic could be split into multiple

classes, some with a higher priority than others or, some traffic, such as real-time video

streams, may require latencies guarantees, to mention a few examples. However, the main

focus of this thesis is on providing line-rate service. As we will see, this can still be a

challenging goal. Also, this is not to say that additional QoS features are not important or

challenging to implement and we revisit this topic in Section 5.1.

Given a particular set of services, a designer is then faced with task of implementing

an IP router. The progression of packets through a typical router can be broken into three

broad stages: packet processing, packet storage, and packet switching (Figure 1.1).1 Both

processing and packet storage take place on line cards and the lines cards can be thought of

as the “brains” of the IP router. Common processing tasks include route lookup (output port

determination), statistics gathering, and packet classification and filtering. Once processing

is complete, the packet is stored in a line card’s memory until it is forwarded for switching.

The switching phase of the router is responsible for simply delivering packets from their

input port to their output port — the “brawn” of the router. While the capacity of the line

cards is proportional to the line rate, the capacity of the router’s switch, often called the

router’sfabric, must grow with the line rate times the number of router ports.

The rapid scaling of line rates combined with the demand for higher port counts on

routers has fueled a shift away from traditional, centralized fabric organizations. For exam-

ple, the crossbar fabric (Figure 1.2[a]) has been popular in core routers, but its centralized

control becomes a liability as the router’s total switching bandwidth approaches 1 Tb/s [43].

One alternative fabric that solves the centralized control problem of the crossbar is the load-

balanced architecture shown in Figure 1.2(b). Many researchers have explored an approach

in this vein, including Keslassy’s load-balanced router [39], which is based on the ideas of

Chang et al. [17], and Iyer and McKeown’s parallel packet switch [36]. These approaches

are closely related to Clos’s network [21] and the ideas of channel slicing and inverse mul-

tiplexing. A similar organization appears in Cisco’s CRS-1 [20], which provides a total

capacity of up to 46 Tb/s.2

1Routers may duplicate or reorder these phases based on their particular architecture, but the basic func-
tionalities are common to most IP routers.

2IP router manufacturers often present the total capacity of a router as the input plus output bandwidth.
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Optical fiber

Path of a packet

Line card 1

P M

Fabric

Line card N
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Figure 1.1: The basic organization of an input-queued IP router. The path of a typical
packet is shown as a dotted line. Packets arrive from long-haul optical fibers are processed
(P) and then stored in memories (M) before being forwarded to the fabric. The fabric is
then responsible for deliver the packets to their destination ports.

(a)

Line card 1

Line card N

Control

Line card 1

Line card N

(b)

Figure 1.2: A (a) crossbar and (b) load-balanced router fabric. As shown, the fabric of the
load-balanced organization is split in two stages — one before the line cards and one after.



4 CHAPTER 1. INTRODUCTION

These alternatives to the crossbar are certainly more scalable and alleviate the problems

associated with centralized control. However, their design philosophy is still centralized —

the architectures are all designed around a particular topology and the movement of packets

is synchronized and intimately tied to that topology. The drawback of this philosophy

is that it sacrifices flexibility: flexibility in the topology of the fabric and flexibility in

the movement and timing of packets through the fabric. This ultimately leads to a more

expensive router. Instead, we explore a solution built around flexibility — a distributed

router fabric.

1.2 Distributed router fabrics

Distributed router fabrics are rooted in the interconnection networks traditionally found in

supercomputers and, notably, this approach has been adopted in the Avici TSR [23]. The

idea is simple: design the largestefficientrouter possible and then replicate and interconnect

these “building block” routers to scale the fabric’s switching capacity. The fabric itself

is a network within the IP router. Figure 1.3 shows a small example of this idea. An

important point is that these building block orfabric routerscan be simpler than even

the simplest IP router. The complex line cards and their long-haul fiber interfaces, large

buffers, and processing capabilities are not replicated in the fabric routers. As shown,

the line card functionality remains at the periphery of the fabric. Also, each fabric router

operates asynchronously and with local control. Using hop-based flow control between the

fabric routers keeps their buffering requirements low, further simplifying their design. See

Dally and Towles [26] for more details on the design of typical interconnection networks.

With the flexibility of this approach comes more design decisions. First, how should

the fabric routers be interconnected? (What is the fabric’s topology?) The correct answer

is tied to the cost of the available packaging technologies. For example, long signals are

inherently more expensive to implement than short signals — the bandwidth electrical sig-

naling decreases with distance and even low-cost multimode optical signaling costs at least

20 times as much per unit bandwidth as electrical signaling. The least expensive solution

must trade off signal distance with the number of signals. Gupta et al. [32] explore this

Using this definition the CSR-1 has 92 Tb/s of capacity.
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Figure 1.3: A simple distribution router fabric using a ring topology.

tradeoff in general interconnection networks. A key advantage of distributed fabric is that

this exploration is possible because their operation is not tied to a particular topology.

Another design variable closely tied to topology is the size of the fabric routers. In

the context of interconnection networks, routers are generally designed to fit on a single

chip. This greatly simplifies their design as no control decision is subject to the bandwidth

limitations and latency penalty associated with crossing a chip boundary. However, this is

not the only possible design point for fabric routers as we explore in Section 5.2.

Once we have the fabric’s topology, and implicitly the size of its fabric routers, we are

faced with the key questions that are the focus of this thesis. First, for a particular fabric,

what are line-rate guarantees we can make? As we will see, the answer is intimately tied

to how packets are routed through the fabric itself. Moreover, we can specifically design

routing algorithms that maximize the guaranteed line rate. Second, how do we design a flow

control technique (scheduling packets in time) to maximize the efficiency of a distributed

fabric?

1.3 Contributions

This thesis includes several key contributions to the design of distributed router fabrics.

• The guaranteed line rate of a given distributed fabric can be efficiently found.By tak-

ing advantage of the linearity of oblivious routing algorithms, the problem of finding

the traffic pattern that determines the fabric’s line-rate guarantee can be solved as a

series of maximum-cost flow problems. This enables an efficient, polynomial-time
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approach for finding this guarantee for any distributed router fabric topology when

oblivious routing is used.

• Line-rate optimal oblivious routing algorithms can be efficiently designed.Building

on our result for finding the line-rate guarantee for a particular fabric and its rout-

ing algorithm, the design of worst-case optimal routing algorithms can be cast as a

convex optimization problem. Solutions to these optimization problems can be effi-

ciently found, enabling the automatic design of routing algorithms that achieve the

largest possible line-rate guarantee for a given distributed fabric.

• Variable-size flits can be used to greatly reduce the control overheads of fixed-size

flits. The units of flow control (flits) used in interconnection networks have tradi-

tionally been fixed size to simplify implementation. However, this restriction neces-

sitates large control overheads. Our approach of variable-size flits carefully loosens

this restriction to maintain a simple hardware implementation while greatly reducing

control overhead.

• Long packets should be split to maximize fabric throughput.Allowing packets to be

spread across many routers within the distributed fabric leads to massive throughput

losses due to resource coupling. By splitting these long packets into many smaller

packets and reassembling and reordering the pieces before transmission out of the IP

router, fabric throughput becomes nearly independent of the incoming IP packet size.

1.4 Outline

For the remainder of this thesis, we first focus on how routing affects line-rate guarantees in

distributed router fabrics. Chapter 2 describes a technique to find the guaranteed line-rate

of an arbitrary distributed fabric by solving a series of maximum-cost flow problems. This

technique is applied to known routing algorithms and compared against the characterization

given by existing approaches. Building on the technique of Chapter 2, Chapter 3 shows

that the maximum-cost flow formulation can be extended to the design optimal routing

algorithms for a particular fabric by solving convex optimization problems. This enables
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an exploration of tradeoffs in the design of worst-case optimal routing algorithms and a

evaluation of existing routing algorithms in various topologies. Our focus then shifts to

flow control and in Chapter 4, we address flow-control issues specific to distributed fabrics,

including flit and packet sizing and reordering. Conclusions and future work are presented

in Chapter 5, and notation and definitions are included in Appendix A for reference. Details

of a subgradient method for worst-case optimal routing design are included in Appendix B.



Chapter 2

Worst case of oblivious routing

algorithms

As discussed in the introduction, when designing an IP router, we are concerned with the

maximum line-rate guarantee that can be made for that router. Informally, the line rate is

the highest bandwidth that can be supported by the IP router’s inputs and outputs without

the router itself ever becoming a bottleneck to the flow of packets. We formulate this as

a worst-case problem — a particular fabric must have enough internal capacity to deliver

packets underany sequence of packet arrivals that does not oversubscribe (exceed) the

line rates of any input or output. The internal capacity of a fabric is determined by the

bandwidth of the fabric’s channels and also the ability of a fabric’s routing algorithm to

balance load over these channels where the routing algorithm determines the path each IP

packet takes through the fabric.

In this chapter, we focus on the set of oblivious routing algorithms, that is, any routing

algorithm that ignores network state when selecting a path through the fabric. Oblivi-

ous algorithms have an important linearity property (Section 2.2) that makes their analysis

tractable. Building on this, we show that the problem of finding the worst-case channel

load, and thus the guaranteed line rate, can be cast as a maximum-weight matching of a

bipartite graph (Section 2.3). The worst-case pattern is then used to determine the worst-

case throughput of a particular system. Extensions of this method to switch fabrics with

unequal port bandwidths along with optimizations based on fabric symmetry are presented

8
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in Section 2.5.

Finding the exact worst-case throughput offers a significant improvement in accuracy

over existing techniques used to estimate the worst case. Previous studies of routing al-

gorithms generally chose “bad” traffic patterns that the authors felt represented worst-case

or near worst-case behavior [11, 48]. However, for the example presented in Section 2.4,

these traditional techniques overestimate the worst-case throughput of the ROMM routing

algorithm [48] by approximately 47%. Moreover, despite the fact the that ROMM uses

randomization to more evenly spread load, its worst-case throughput is shown to be ap-

proximately half that of simple dimension-order routing for 2-dimensional torus networks.

2.1 Preliminaries

Before we tackle the problem of finding the maximum line rate that a fabric can guarantee,

several assumptions and a description of the fabric model are useful. First, we abstract

each fabric as a graph — a collection of fabric routers (nodes) connected by directed edges

(channels). The set of nodes is denoted asN and the size of this set isN . Likewise, the set

of channels isC and its size ifC. A channelc’s bandwidth isbc. Without loss of generality,

each of the fabric routers has an associated line card. We do not explicitly include these line

cards in our figures to avoid unnecessary clutter. Routing is the process of finding a path (a

sequence of channels) through the graph from a particular source line card to a destination

line card. The source and destination of a particular IP packet is predetermined as part of

how routing is performed in IP networks.

For this chapter and the next, we determine the throughput of a fabric solely by the

bandwidth of the channels. That is, as long as all the channels are notsaturated, or being

asked to deliver more packets than any channel’s bandwidth supports, the fabric can deliver

all the packets causing the demand. This model assumes an ideal flow control method that

is able to perfectly schedule these packet without ever causing idle time on the channels.

Thus, any performance determined by this model is an upper bound on what is practically

obtainable.
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2.2 Linearity of oblivious routing algorithms

Oblivious routing algorithms determine the path an IP packet takes through the fabric with-

out taking into account any network state. They can, though, use randomization to select

amongst several paths probabilistically. For example, consider a packet routing from source

5 to destination 8. A simple oblivious routing algorithm might have two possible paths,A

andB, from 5 to 8 and, for a particular packet, could select the path to use with a coin flip

— on heads, pathA is used and, on tails, pathB is used.

As each packet arrives at its input line card and is routed through the fabric, demand is

placed on the fabric’s channels. We refer to this as channel load. The average load on a

particular channelc can be expressed using a set of random processes: the arrival process

a(t)ij is one if a bit arrives at inputi destined for nodej at timet and zero otherwise; the

routing processr(t)cij is one if the routing algorithm uses channelc as part of a route from

nodei to nodej at timet and zero otherwise. Using these definitions, let the system begin

at an arbitrary timet = 0 and then the time average loadγc on channelc is

γc = lim
n→∞

[
1

n

n−1∑
t=0

∑
i,j∈N

a(t)ijr(t)cij

]
.

Based our our network model, the fabric is stable and can deliver a particular arrival se-

quence as long as the channel load on each channel is less than the channel’s bandwidth

(γc ≤ bc, ∀c ∈ C).

Since we are interested in time average channel loads, we make the weak assumptions

that both the arrival and routing processes are stationary and ergodic. Then, by linearity of

expectation,

γc =
∑

i,j∈N
E [a(t)ijr(t)cij] .

At this point, the key feature of oblivious routing algorithms comes into play. Since the

path selection is independent of network state, the arrival and routing processes must also

be independent. So, it follows that

γc(Λ, X) = E [a(t)ij] E [r(t)cij] =
∑
i,j

λi,jxcij. (2.1)
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Figure 2.1: An example of two independent contributions to channelc’s load. One bit per
cycle is being sent from nodei to nodej, crossing channelc (solid route). Another bit per
cycle is sent from nodek to nodel and also uses channelc (dashed route). Both of these
routes contribute a load of one bit per cycle across channelc. The total load on channelc
is simply 2 bits per cycle.

Here,λij is the average amount of traffic traveling from sourcei to destinationj (bits/s).

We typically refer to the matrix of these traffic ratesΛ as the traffic matrix or traffic pattern.

Each routing variablexcij gives the probability of using channelc when routing a packet

from sourcei to destinationj. As is evident in the form of (2.1), the channel load of an

oblivious routing algorithm is a sum of the individual contributions due to each source-

destination pair. An example of this property is also shown in Figure 2.1. We will make

heavy use of this linearity in the following sections.

2.3 The homogeneous case

Using the linearity principle developed in the previous section, the guaranteed line rate

of a particular fabric can be found. For simplicity, we focus on a homogeneous case in

this section: all injection (ejection) bandwidths into (out of) the network are considered

to be equal. Also, the number of sources and destinations are considered to be equal. In

practice, this is a common case — all the line cards in a given router often have the same

injection and ejection bandwidth. The analysis is generalized to heterogeneous cases in
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Section 2.5.1.

The guaranteed line rate of a fabric is, in essence, a worst-case guarantee made by the

fabric, that is, a guarantee on the throughput over the set of traffic patterns that do not

oversubscribe the input or output ports of the fabric. The basic approach for finding the

worst-case throughput is straightforward: focus on a particular channel, find the worst-case

traffic pattern for that channel, and then repeat this process for the remaining channels. Still,

we are faced with searching the infinite set of admissible traffic patterns. This problem is

addressed by first showing that it is sufficient to search only the permutation traffic patterns

(Section 2.3.1). Then, by constructing a bipartite graph whose edge weights are determined

by the incremental load placed on a corresponding channel in the network (Section 2.3.2),

we show that the solution to a maximum-weight matching problem defines the worst-case

traffic for that network channel (Section 2.3.3).

2.3.1 Narrowing the worst-case search

In Section 2.2, we established that, under mild assumptions, the channel load induced by a

particular traffic pattern and a particular routing algorithm can be expressed as a sum of the

contributions from each source-destination pair. Moreover, for a fixed routing algorithm,

channel load is linear in the traffic pattern. This has several importance consequences,

which we take advantage of in this section to simplify the search for the worst case.

First, remember that our goal is to find the largest injection and ejection bandwidths

that can be supported by the switch fabric over all admissible traffic patterns. In the ho-

mogeneous case, all injection and ejection bandwidths are equal to a throughputΘ, so the

admissible patterns are those whose corresponding traffic matrix has row and column sums

of at mostΘ. That is,

∑
j∈N

λij ≤ Θ, ∀i ∈ N
∑
i∈N

λij ≤ Θ, ∀j ∈ N

λij ≥ 0, ∀i, j ∈ N
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While we are ultimately interested in finding the largest value ofΘ supported by the

switch fabric over all admissible patterns, this task can be simplified by momentarily as-

suming unit injection and ejection bandwidths (lettingΘ = 1 bit/s). This assumption

reduces the search space to doubly-substochastic traffic matrices — matrices with row and

column sums less than or equal to one. Due to the result of von Neumann [72], any such

doubly-substochastic matrix can be made doubly-stochastic (rows and columns of exactly

one) by strictly increasing the matrix entries. Since we are searching for worst-case traf-

fic and adding traffic can never increase throughput, it is sufficient to consider only the

doubly-stochastic matrices in the worst case.

Then, for a particular channelc, assume that a doubly-stochastic traffic matrixΛ∗ max-

imizes the channel load onc. The traffic matrixΛ∗ may induce more or less load on the

channel than its capacitybc. However, by scaling the traffic pattern by the ratio of channel

bandwidth to the channel load induced byΛ∗, channelc can be exactly saturated,

γc

(
X,

bcΛ
∗

γc(X, Λ∗)

)
= bc,

as a direct result of the linearity of channel load. Moreover, as proved in the following

theorem, this scaling factor times the unit bandwidth used forΛ∗ gives the largest value of

Θ that the switch fabric can support.

Theorem 1. The scaling factorbc/γc(X, Λ∗) is the smallest fraction of the unit injection

rate needed to saturate channelc.

Proof. Assume a scaling factorα < bc/γc(X, Λ∗) saturates channelc for some different

doubly-stochastic traffic matrixΛ:

γc(X, αΛ) = bc.

Applying linearity and substituting,

α =
bc

γc(X, Λ)
<

bc

γc(X, Λ∗)
.

It follows that γc(X, Λ∗) < γc(X, Λ), but this is a contradiction becauseΛ∗ maximizes
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channel load. Therefore,bc/γc(X, Λ∗) is the smallest fraction of the injection rate needed

to saturatec.

Based on this result, our previous assumption of considering just doubly-stochastic

matrices to find a worst-case pattern is justified because we can later scale this pattern and

find the actual throughput supported by the network. Consequently, we can further simplify

the search to include only permutation matrices as shown by the following theorem.

Theorem 2. For any oblivious routing algorithmX, a permutation matrix can always load

a channelc as heavily as a doubly-stochastic traffic matrixΛ.

Proof. Assume thatΛ gives a throughput lower than any permutation matrix. This implies

Λ loads channelc more heavily than any permutation. By the result of Birkhoff [9], any

doubly-stochastic traffic matrixΛ can be written as a weighted combination of permutation

matrices:

Λ =
n∑

i=1

φiPi, s.t.
n∑

i=1

φi = 1 andφi ≥ 0.

A permutationP ∗ is found such that

P ∗ = argmax
P∈{P1,...,Pn}

γc(X,P ).

The corresponding total load onc can be written using linearity as

γc(X, Λ) =
n∑

i=1

φiγc(X, Pi)

≤
n∑

i=1

φiγc(X,P ∗) = γc(X, P ∗).

P ∗ loads channelc at least as heavily asΛ, but this is a contradiction. Therefore, a permu-

tation matrix can always give the same load onc as a doubly-stochastic traffic matrix.

Using these two theorems, worst-case traffic patterns can be found by first searching

all permutation matrices while momentarily ignoring the feasibility of the solutions. Then,
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the permutation matrix that most heavily loads a channel is scaled to account for the ac-

tual channel bandwidth, and the scaling factor gives the smallest injection and ejection

bandwidths needed to saturate that channel.

2.3.2 Bipartite graph representation

Given the results from the previous section, the search for worst-case traffic patterns can

be restricted to just searching permutation patterns. To facilitate this, a bipartite graph can

be used to represent the load on a single channel due to any particular permutation. For

our graph, the first set ofN nodes are used to represent packet sources and the second set

of N nodes represent the packet destinations. Edges are added between every source and

destination node for a total ofN2 edges, as shown in Figure 2.2. There is a one-to-one cor-

respondence between permutation matrices andperfect matchingsof this bipartite graph,

where a perfect matching is a subset of the graph edges such that each node is incident

with exactly one edge in the subset. Also, note that this graph’s structure is unrelated to the

topology of the underlying interconnection network.

The graph’s construction is finished by weighting each edge from source nodei to

destination nodej with the amount of load contributed to a particular channelc when

packets are routed fromi to j, which isxcij (Figure 2.2). Techniques for finding the edge

weights are discussed in Section 2.4.1. Using these weights, the amount of load due to

a specific permutation is just the sum of the edge weights in its corresponding bipartite

matching. This sum is called theweightof that matching.

2.3.3 Maximum-weight matching

Using the bipartite construction, amaximum-weight matchingof the graph is found. From

the correspondence between matchings and permutations, finding a maximum-weight match-

ing is equivalent to evaluating

γc,max(X) = max
P∈P

γc(X,P ),
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xc,0,0

xc,0,1

xc,0,2

xc,N−1,N−1

s2 d2

s1 d1

s0 d0

sN−1 dN−1

P =




0 1 0
0 0 1
1 0 0

.. .
1




Figure 2.2: Construction of the bipartite graph for finding channel load due to a particular
permutation. A perfect matching (bold edges) and its corresponding permutationP are
also shown. The rows (columns) ofP correspond to the source (destination) nodes of the
bipartite graph. As an example, the matching’s edge from source node 0 to destination
node 1 corresponds to the 1 in entry(0, 1) of the permutation matrix.
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whereP is the set of all permutation matrices. By repeating this operation over all the

channels, the ideal worst-case throughput can be determined as

Θideal,wc(X) = min
c∈C

[bc/γc,max(X)] .

It is important to realize that while the worst-case throughput is certainly unique, the traffic

pattern that causes this worst case may not be. There may also be non-permutation patterns

that realize the worst-case throughput.

An O(N3) maximum-weight, bipartite matching algorithm exists [42], and therefore,

finding the worst-case channel load requiresO(CN3) time. For typical fixed-degree net-

works, such as tori or meshes, the size ofC is proportional toN and the run time isO(N4).

The maximum size ofC is N2, corresponding to a fully-connected network, which bounds

the time of the overall algorithm toO(N5). So, the worst-case traffic and, thus, the the

guaranteed line rate, of a network can be found in time polynomial in the size of that net-

work.

2.4 Implementation and experiments

As an illustration of both how to implement the worst-case algorithm described in Sec-

tion 2.3 and the practical utility of this approach, we present a comparison of two minimal,

oblivious routing algorithms fork-ary n-cube (torus) networks. (See Chapter 5 of Dally

and Towles [26].) Torus networks containkn nodes placed in ann-dimensional grid with

k nodes in each row of a dimension. Channels connect nodes whose address differs by

±1 in one dimension modulok. Also, since tori are direct networks, there is a source and

destination associated with each of the nodes in the network. Figure 2.3 shows an example

of a 4-ary 2-cube network. Low dimensional torus networks are popular in implementation

because they keep channel lengths short and are used in systems such as the Avici TSR IP

router [23] and the Cray T3E supercomputer [57].

To find exact worst-case traffic patterns in tori and other network topologies, exact edge

weights are needed for the bipartite graphs. Section 2.4.1 outlines a simple implementation

for finding these weights. Once edge weights are determined, a standard maximum-weight
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Figure 2.3: A 4-ary 2-cube (torus) network.
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matching algorithm can be applied. (See Section 12.4 of Ahuja et al. [2], for example.) An

analysis of the worst cases for two example algorithms is then presented in Section 2.4.2.

Finally, we can use the infrastructure created for finding the worst case to also compute

the distribution of throughputs and answer questions about how common the worst case is

(Section 2.4.3).

2.4.1 Computing bipartite edge weights

To compute the edge weights of the bipartite graph used to find the worst case, a conceptu-

ally simple experiment must be run: for each source-destination pair in the network, route

1 bit per second of traffic between the source and destination and measure the average load

placed on a focus channel in the network. While simple, strictly speaking, this procedure

may take time exponential in the size of the network to complete. For example, if a routing

algorithm spreads load between all minimal paths in the network (the number of these paths

grows exponentially), the time required to visit each path and determine the average load on

a channel will be exponential. Fortunately, practical algorithms rarely use an exponential

number of paths. For some implementation approaches this would imply an exponential

amount of hardware, but there is a more fundamental reason that a very large number of

paths is not necessary: any set of channel loads induced by a routing algorithm between a

particular source-destination pair can always be realized with at mostC paths, whereC is

the number of channels in the network. (See Section 3.5 of Ahuja et al. [2].) Informally,

theseC paths provide just enough free variables to set the load on each of the channels

in the network. A formal treatment of these issues and the associated time complexity in

computing edge weights is discussed by Towles and Dally [69], but for the remainder of

this section we focus on a practical method for finding edge weights.

For this section and the next, we consider two minimal routing algorithms for torus net-

works. The first algorithm is dimension-order routing (DOR) [66]. DOR deterministically

routes a packet along a shortest path, routing completely in one dimension before moving

on to the next dimension. An example dimension-order route from sourcei to destination

j for a 2-dimensional network is shown as a solid line in Figure 2.4. In this example, DOR

routes first in the horizontal dimension and then in the vertical dimension.
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Figure 2.4: Example dimension-order (solid line) and ROMM routes (dashed lines) in a
portion of a 2-dimensional network.

The second algorithm is the two-phase variant of the randomized algorithm (ROMM)

described by Nesson and Johnson [48]. ROMM routes a packet from source to destination

by uniformly choosing a random intermediate node within the minimal quadrant. The

minimal quadrant is the set of nodes along any minimal length path between the source

and destination. The packet then uses DOR from the source to the intermediate and repeats

the same algorithm from the intermediate to the destination. Two example ROMM routes,

which use intermediate nodesa andb respectively, are shown in Figure 2.4 as dashed lines.

Given that DOR is a deterministic and simple routing algorithm, it is not difficult to de-

velop a procedure for directly computing its corresponding bipartite graph’s edge weights.

This task is significantly more difficult for ROMM and, in general, must be approached

on a per-case basis for each routing algorithm to be analyzed. To avoid developing spe-

cialized methods for each routing algorithm, we adopt a general approach based on a “C”

implementation of an algorithm.

For example, a C implementation of DOR is shown in Figure 2.5. The routing function

takes as inputs a pointer to the network class (net ), a randomization class (rs ), a current

node (current ), the destination node (dest ), the network radix (k), and the network

dimension (n). A single call of theDORfunction is responsible for routing the packet from

the current node to the destination. Load is added to each channel along the path using

theAddLoad method. The amount of load added to each channel is determined by calling
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1 : void DOR( Network * net, Random * r,
2 : int * current, int * dest, int k, int n )
3 : {
4 : Channel * c;
5 : int steps, dim, dir;
6 :
7 : for ( dim = 0; dim < n; dim++ ) { // Traverse dims in order
8 :
9 : // Determine the minimal direction in the dim of the network
10: steps = ( dest[dim] - current[dim] + k ) % k;
11: if ( steps > k/2 ) { // CCW around the ring is minimal
12: steps = k - steps;
13: dir = -1;
14: } else { // CW around the ring is minimal
15: dir = 1;
16: }
17:
18: // Follow the minimal direction in the current dimension and
19: // add load to the channels traversed
20: for ( int s = 0; s < steps; s++ ) {
21: c = net->GetChannel( current, dim, dir );
22: c->AddLoad( r->BranchProb( ) );
23: current[dim] = ( current[dim] + dir + k ) % k;
24: }
25: }
26: }

Figure 2.5: Code for the DOR algorithm.

the BranchProb method of the randomization class. In the case of DOR, the result of

BranchProb is always 1 bit/s and one call toDORper source-destination pair is sufficient to

determine the edge weights of the bipartite graph. While it may seem unnecessary to query

a method that will always return 1 bit/s, the power of this approach is better appreciated in

the case of the ROMM routing algorithm.

Figure 2.6 shows the C code for the ROMM algorithm following the same format used

with DOR. The key difference in this case is that ROMM also uses randomization to de-

termine its path choice. Each random intermediate requires a random number for each

dimension in the network. So, the ROMM code calls theRandInt method of the ran-

domization class — the method returns a random integer between its first and second

arguments, inclusive. Then, one technique for determining average channel loads for a
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1 : void ROMM( Network * net, Random * r,
2 : int * current, int * dest, int k, int n )
3 : {
4 : int steps, im[n];
5 :
6 : // Select the random intermediate node (im) one dim at a time
7 : for ( int dim = 0; dim < n; dim++ ) {
8 :
9 : // Find the extend of the minimal quadrant in the current dim
10: // (steps) and select a random number in that range.
11: steps = ( dest[dim] - current[dim] + k ) % k;
12: if ( steps > k/2 ) { // CCW is minimal
13: steps = k - steps;
14: im[dim] = ( current[dim] - rs->RandInt( 0, steps ) + k ) % k;
15: } else { // CW is minimal
16: im[dim] = ( current[dim] + rs->RandInt( 0, steps ) ) % k;
17: }
18: }
19:
20: // Two-phases of dimension-order routing
21: DimOrder( net, rs, current, im, k, n );
22: DimOrder( net, rs, im, dest, k, n );
23: }

Figure 2.6: Code for the ROMM algorithm.

particular source-destination pair (and thus edge weights), would be to perform numerical

integration over several calls toROMM. If 1000 samples where used in the integration, for

example, theBranchProb method would be set to return 0.001 — the probability of a

single sample.

The same code can also be used to exactly determine channel loads by systematically

visiting each path of the routing algorithm once. To determine loads in the case of ROMM,

the routing function is called just as before. However, now each call toRandInt pushes an

element onto a stack stored in the randomization class (r ) and returns zero — the smallest

value in the requested range. In the next invocation of the routing function, the return value

of the last call toRandInt is incremented to one and all other calls again return zero.

The last call toRandInt continues to increment with each invocation until it reaches the

maximum value of its range. At this point, it is popped off of the stack and the return value

of the second to last call toRandInt is incremented. The routing function continues to
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12: RandInt(0,1)
dim = 0

12: RandInt(0,2)
dim = 1
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Figure 2.7: Possible executions ofROMMwhen routing from(0, 0) to (1, 2) in a 8-ary 2-cube
network.

be invoked until the entire stack is emptied. This ensures each possible sequence of values

return by the calls toRandInt is evaluated exactly once.

As illustrated in Figure 2.7, this approach is equivalent to a depth-first traversal of

the tree containing all the possible executions of the routing algorithm for a particular

source-destination pair. The channel load returned byBranchProb is determined by the

probability of a particular execution — this is simply equal to one over the product of all

the ranges in theRandInt calls used in the corresponding branch. For example, the branch

in Figure 2.7 shown in bold represents the choice of(0, 1) as an intermediate node, which

occurs with probability1/6. By manipulating these probabilities as rational numbers (an

integer numerator and denominator), exact values for each edge weight can be determined.

2.4.2 Worst-case example

Qualitatively, one might except ROMM to have better throughput than DOR because it

more evenly distributes its traffic through the network whereas DOR concentrates all the

traffic between each source-destination pair along a single path. In fact, several theoretical

results [12, 37] have indeed shown that deterministic (single path) routing is provably bad

in the worst case and reinforce the intuition about the benefits of spreading load.

To test this intuition, the performance of these two algorithms was compared against

uniform random traffic and two permutations that are typically relied upon to demonstrate

poor performance [11, 48]: bit-complement and transpose. The tornado pattern was also
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Table 2.1: Ideal throughput as a fraction of network capacity for DOR and ROMM over
several traffic patterns on an9-ary2-cube.

Pattern DOR ROMM

Uniform 1 1
Bit-complement 0.556 0.332

Transpose 0.278 0.421
Tornado 0.278 0.278

Worst of104 permutations 0.278 0.302
Worst-case 0.278 0.173

considered, where each node sends packets(k − 1)/2 hops to the right in the horizontal

dimension. In addition to these patterns, a trial of104 random permutation matrices was

generated and the worst-case throughput for both algorithms over the104 permutations was

determined. Each permutation was chosen uniformly from the space of all permutations

using Durstenfeld’s algorithm [27]. As shown in Table 2.1, ROMM performed as well as

DOR on most of these conventional metrics. The notable exception was the bit-complement

pattern for which dimension-order routing happens to be particularly well used. Moreover,

despite its additional load balancing, these ad-hoc tests reveal little worst-case advantage

for ROMM over DOR.

Next, the algorithm presented in Section 2.3 was used to determine the worst case for

both DOR and ROMM (Table 2.1). All calculations were performed using integer arith-

metic and the worst-case results are exact. Values shown in the table have been rounded

to three significant digits. The worst-case of DOR matched the result of 0.278 of capac-

ity found in the random permutations. However, ROMM’s exact worst-case of 0.173 was

significantly less — only 62.3% of DOR’s worst-case throughput.

The reason for ROMM’s lower worst-case throughput is illustrated by constructing an

adversarial traffic pattern (Figure 2.8). The pattern is started with the tornado pattern in a

single row of the network. This row is outlined with a dashed box in the figure. The source-

destination pairs in the tornado pattern send all their traffic within a single dimension,

resulting in a single minimal path between each pair. Because both ROMM and DOR are

minimal routing algorithms, they both route all their traffic along the single minimal path
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between each pair of the tornado pattern. In our example of a 9-ary 2-cube, this gives a

channel load of 4 bits/s in the tornado row. For DOR, this is a worst case — their are

only 4 nodes in any row that can send traffic along a dimension-order route crossing a

particular horizontal channel. Similarly, their are only 4 nodes in any column that can

receive traffic along a route crossing a particular vertical channel. However, the channel

load in ROMM can be increased further by selecting source-destination pairs outside the

tornado row whose minimal quadrants include a channel of the tornado row. By setting up

a large number of these crossing patterns, as shown in Figure 2.8, the channel load can be

increased to almost twice that of DOR’s worst case.

A further comparison of the worst case throughput of ROMM and DOR onk-ary 2-

cubes shows that for odd values ofk beyond 9, DOR approaches approximately 25% of

capacity, while ROMM approaches 12.5% of capacity — half that of DOR (Figure 2.9).

Similar results hold for even values ofk. So, although ROMM might qualitatively seem

to be a more balanced routing algorithm, these experiments show that simple DOR has

superior worst-case performance onk-ary 2-cubes.

However, ROMM does perform better relative to DOR for higher dimensional networks

(larger values ofn). For example, in the case of a 5-ary 3-cube, ROMM has a worst-case

throughput which is approximately two times that of DOR (Figure 2.9). Much of ROMM’s

advantage for higher dimensional networks comes from the fact that DOR’s worst-case

load must grow with
√

N = kn/2 because it is a deterministic routing algorithm [12, 37].

Since the capacity of a torus network is only a function ofk, increasingn for a fixed value

of k reduces DOR’s throughput as a fraction of capacity exponentially. Specifically, for

oddk, DOR’s exact worst-case is
k + 1

4kdn/2e

of capacity. While ROMM is not subject to the
√

N bound because it is a randomized

algorithm, its performance is still only marginally better for larger values ofn.
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Figure 2.8: Adversarial pattern for ROMM in a 9-ary 2-cube. The network channels are
not shown for clarity and arrows connect source-destination pairs in the worst-case traffic
pattern. The nodes in the middle row (dashed box) run the tornado traffic pattern and nodes
outside this row send across the row, maximizing load on the channel from node 34 to node
44.
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Figure 2.9: Worst-case throughput of DOR and ROMM fork-ary 2-cubes (left) and for
5-aryn-cubes (right).

2.4.3 Throughput distributions

While worst-case throughput is the primary design consideration for IP router applications

of interconnection networks, in other situations it may also be useful to know the distribu-

tion of throughput over a particular set of a traffic patterns. For example, these distributions

also reveal how common the worst case is over a particular traffic distribution.

Figure 2.10 shows the distribution of DOR’s throughput when sampling uniformly from

the set of permutation traffic patterns (104 samples). Since each source sends all of its traf-

fic to a single destination in a permutation and DOR does not use randomization, channels

are always loaded with 1, 2, 3, or 4 bits/s of traffic. These loads correspond directly to

the 4 vertical bars shown in the figure. On average, DOR’s throughput is 78.6% of capac-

ity, but the worst-case throughput is also fairly common, occurring for about 0.7% of the

permutations.

As shown in Figure 2.11, ROMM performs much better on average than DOR in the

same test — ROMM’s average throughput is approximately 96.8% of capacity. While we

have already seen that ROMM has a low worst-case throughput of 17.3% of capacity, the

distribution also shows that the worst case is very rare. More than 99% of the traffic can be
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Figure 2.10: Distribution of throughput over the set of permutation traffic patterns for DOR
on a 9-ary 2-cube. Dotted vertical lines indicate the expected throughput achieved on a
given percent of the patterns. For example, 99% of the patterns achieve a throughput of at
least 35.3% of the network’s capacity. The worst-case throughput is marked with the line
labeled “WC”.
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Figure 2.11: Distribution of throughput over permutation traffic patterns for ROMM on a
9-ary 2-cube.

delivered at twice the throughput of the worst case. So, while the intuition that spreading

load should improve performance did not hold in terms of the worst case, it did improve the

average-case performance for ROMM. This opens an interesting question about the tradeoff

between average- and worst-case performance, which we will explore quantitatively once

we develop the tools of Chapter 3.

2.5 Extensions

In this section, we develop extensions to the basic method for finding the worst case pre-

sented in the previous sections. As described in Section 2.5.1, the worst case for hetero-

geneous sources and destinations can be found by solving a generalized version of the

maximum-weight matching problem. Also, many common networks and routing algo-

rithms exhibit some symmetry. Section 2.5.2 shows how this symmetry can be used to

reduce both the number of channels considered for the worst case and the time required to

compute edge weights.
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2.5.1 Heterogeneous cases

In a heterogeneous worst-case problem, both the restriction that each source (destination)

injects (ejects) at the same bandwidth is lifted along with the restriction that there are an

equal number of sources and destinations. However, the basic objective still remains: find

a traffic pattern that is both admissible and induces the maximum possible load on a given

channel.

To approach the heterogeneous case, we can use the idea of a maximum cost flow

problem. (See Ahuja et al. [2].) The flow problems we are interested in begin with a

directed graph. Each edge of the graph has both a capacity (bits/s) and a cost ($ per bit/s)

and each node of the graph can either sink or supply flow to the graph. Then, the objective

in a maximum-cost flow problem is finding a flow from supplies to sinks that maximizes

the total cost (sum of flow cost over all edges).

Figure 2.12 shows a maximum-cost flow problem which can be used to determine the

worst-case traffic for a channel in the heterogeneous case. As before, a bipartite graph

is created with nodes corresponding to the sources and destinations in the network. The

cost of each edge in the bipartite graph (xcij) is also the same as before and the capacity

of these edges is infinite. An additional “master” source nodeS is added to the network

and connected to each source node in the bipartite graph. These edges have zero cost, but

a capacity equal to the bandwidth of the corresponding source. So, for example, the edge

from S to source nodes1 has a capacity ofbs1 bits/s, wherebs1 is the injection bandwidth of

the linecard at source 1. Similarly, the destination nodes in the bipartite graph are connected

to a master sink nodeT . NodeS can supply an infinite amount of flow, nodeT can sink an

infinite amount of flow, and the remaining nodes do not source or sink traffic.

Because of the addition of the capacity constrained edges to (from) each source (des-

tination), any flow in the graph is an admissible traffic pattern and any admissible traffic

pattern is a valid flow. If we refer to the flow going fromsi to dj in the graph asλij, the

total cost of a particular flow is ∑
i,j

λijxcij,

which is our expression for channel load. Thus, by maximizing cost over all valid flows,

we also maximize the channel load over all admissible traffic patterns. For a network with
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Figure 2.12: Maximum-cost flow problem used to solve heterogeneous cases of the worst-
case traffic problem. Edges are labeled with a (capacity,cost) pair.
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N sources andM destinations, a maximizing flow can be found inO((N +M)NM) time.

There are obviously large similarities between this maximum-cost flow problem and

the maximum-weight matching problem used in the homogeneous case. In fact, if the

source and destination bandwidths were set to 1 bit/s and ifN = M , the problems would

be exactly the same. What might not be obvious when approaching the homogeneous case

from this point of view is that flows corresponding to permutation traffic can always obtain

the maximum cost. However, this result can be reached by viewing this maximum-cost

flow problem in its linear programming form:

maximize
∑

i,j∈N λijxcij

subject to
∑

j∈N λi,j ≤ bsi
, ∀i ∈ N∑

i∈N λi,j ≤ bdj
, ∀j ∈ N

λij ≥ 0, ∀i, j ∈ N

Since this optimization occurs over a bounded set of traffic patterns, the fundamental the-

orem of linear programming states that an extreme point of this set of traffic patterns can

always realize the maximum. When the source and destination bandwidths are 1 bit/s, the

set extreme points become the permutation traffic patterns by the result of Birkhoff [9]

used in Section 2.3.1. For heterogeneous cases, the extreme points can still realize the

maximum, but, in general, the extreme points would not necessarily have a structure that

can be described as simply as the permutations.

Finally, as long as the possible traffic patterns form a convex set, maximizing the worst-

case channel load can be cast as a general convex program, which can be solved efficiently

(in polynomial time).

2.5.2 Symmetry optimizations

Both the maximum-weight matching algorithm (Section 2.3.3) and the maximum-cost flow

algorithm (Section 2.5.1) run in polynomial time, but the large powers ofN can still restrict

the practical size of networks that can be analyzed. To reduce the complexity of finding a

worst-case traffic pattern, symmetry in the network and routing algorithm can be used. In

this section, we give an overview of how to reduce the number of channels considered for
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the worst case and how to reduce the time required to find the edge weights. The application

of these techniques to our previous example of DOR in a 2-dimensional torus network is

then described.

Intuitively, if we are dealing with a completely symmetric network, each edge in the

network is equivalent to any other edge and, thus, it should be sufficient to examine just

one edge when searching for the worst-case throughput. Then, the worst-case throughput

for any other edge should be the same by symmetry.

More formally, letΓ be a group whose elements define a mapping of the nodes of the

network onto themselves. That is, forg ∈ Γ, g : N 7→ N . The worst-case channel load of

a network is said to beΓ-invariant if for everyg ∈ Γ the following conditions hold:

1. g is defines an automorphism of the network.

2. g preserves bandwidth of the sources and destinations: the bandwidth of source node

si equals the bandwidth of the mapped source nodeg(si), bsi
= bg(si), and likewise

for the destination nodes.

Also, denote the mapping of of a routing algorithmX usingg asg(X) where, for all sources

i, destinationsj, and channelsc = (u, v), xcij = x(g(u),g(v)),g(i),g(j). Then, these conditions

are sufficient to ensure that the worst-case channel load of algorithmX is unchanged by

any mappingg ∈ Γ,

max
Λ∈T

γc(Λ, X)/bc = max
Λ∈T

γc′(Λ, g(X))/bc′ , (2.2)

whereT is the set of admissible traffic patterns being considered andc′ is the mappingc

usingg.

While the above conditions express symmetry in the network itself, there must also

be symmetry in the routing algorithm to reduce the complexity of finding the worst-case

throughput. Specifically, a particular algorithm is said to beΓ-invariant if for everyg ∈ Γ,

X = g(X). (2.3)

For a groupΓ, if both the worst-channel load and routing algorithm areΓ-invariant, then

combining (2.2) and (2.3) reveals that the worst-case channel load on a particular channel
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c = (u, v) is the same as the worst-case on the set of channels{g ∈ Γ|(g(u), g(v))}.
Thus, the number of channels whose worst-case traffic must be found can be reduced by a

factor≤ |Γ|. The reason the reduction is not always exactly|Γ| is that some (non-identity)

mappings may mapc onto itself.

Symmetry can also be used to reduce the time required to compute the edges weights.

When using the technique described in Section 2.4.1, the complexity of edge weight com-

putation is largely determined by the number of source-destination pairs considered — for

each sourcei and destinationj, the technique findsxcij for all c ∈ C. By applying a map-

ping g ∈ Γ, the computed values ofxcij can be used to find the values ofxc′,g(i),g(j) for

all c′ ∈ C (routing algorithm invariance). As before, some mappings may map a source-

destination pair onto itself, so the reduction in the number of pairs considered is at most

|Γ|.
As an example of how symmetry can be used, consider the example of finding a worst

case in a 2-dimensional torus network (k-ary 2-cube) that uses DOR. Define the groupΓT

using the generators for a horizontal shift (SX), vertical shift (SY ), horizontal flip (FX), and

vertical flip (FY ). For any node in the network given by its radix-k address(x, y), these

generators are defined as w

SX(x, y) = (x + 1, y) SY (x, y) = (x, y + 1)

FX(x, y) = (k − x, y) FY (x, y) = (x, k − y),

where all operations are performed modulok. This set of generators produce mappings

that allow any horizontal (vertical) channel to be mapped to any other horizontal (vertical)

channel in the torus. For example, mapping the channel from (0,0) to (1,0) to the channel

from (3,3) to (2,3) can be achieved with a horizontal flip, three horizontal shifts, and three

vertical shifts. The mappings also allow a particular source (destination) to be mapped to

any other source (destination) in the network. The resulting groupΓT preserves the condi-

tions listed above and thus the worst-case channel load isΓT -invariant. Also, note that for

this example adding a generator that swaps thex andy coordinates would have preserved

worst-case invariance, but would not have preserved the routing algorithm invariance be-

cause DOR treats the horizontal and vertical dimensions differently.
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When using these symmetries for finding the worst-case traffic, only one representa-

tive horizontal channel and one representative vertical channel need to be considered. This

decreases the number of channels whose worst case must be found by a factor of2N and re-

duces the complexity of finding the worst-case throughput toO(N3) in this example. When

computing edge weights, a canonical source can be considered, such as the origin, and then

only destinations whose minimal routes are in a particular quadrant of network, such as

the(+x, +y) quadrant, need to be considered. Then, by applying the symmetry mappings,

this limited set of source-destination pairs can be mapped to any source-destination pair in

the network. This reduces the number of pairs that need to be considered by a factor of

approximately4N .

2.6 Related work

This approach compliments work in charactering of the worst case from a theoretical per-

spective. For example, Borodin and Hopcroft [12] showed that deterministic routing al-

gorithms induce a channel load ofΩ(
√

N/d3/2), whered is the maximum degree of any

node in the network. Kaklamanis et al. [37] later strengthened this bound toΩ(
√

N/d)

and the ideas were extended to bit-serial routing by Aiello et al. [3]. While these results

hold for the class of all deterministic routing algorithms, they only provide lower bounds

on performance. Rather, our approach is tailored for use by the network designer and pro-

vides an exact worst case for a specific problem instance. As illustrated in Section 2.4,

finding the exact worst case significantly improves over the characterization given by ex-

isting ad-hoc testing methods such as those used by Nesson and Johnson [48], Bolding et

al. [11], for example. As shown, these methods overestimated the throughput of ROMM

by approximately 47% in our case.

2.7 Summary

An IP router can guarantee a particular throughput only if it can deliver packets at that rate

over all admissible traffic patterns. In a distributed fabric, a routing algorithm determines

how these traffic demands are spread over the fabric channels. Therefore, to meet this



36 CHAPTER 2. WORST CASE OF OBLIVIOUS ROUTING ALGORITHMS

throughput guarantee, the fabric’s channels must not become overloaded, even for worst-

case traffic. In this chapter, we showed that the worst-case traffic for an oblivious routing

algorithm in a particular fabric can be found by solving a series of maximum-weight match-

ing problems. This traffic pattern then determines the throughput that can be guaranteed

by the fabric. The resulting algorithm runs in polynomial time, making exact worst-case

analysis tractable.

Finally, computing the exact worst-case does have practical limits. While the underly-

ing algorithms for solving the maximum-weight matching algorithms are polynomial in the

network size, this dependence is cubic and grows quickly. Our implementation can analyze

networks of around 500 nodes without exploiting symmetry. The symmetry optimizations

described in Section 2.5.2 extend the approach to networks of several thousand nodes.



Chapter 3

Design of worst-case optimal routing

algorithms

In the previous chapter, we showed how the worst-case throughput of an oblivious routing

algorithm could be found by solving a series of maximum-cost flow problems. While

this significantly improved the characterization of routing algorithms compared to existing

ad-hoc approaches, it still leaves unanswered the more fundamental question of how to

design oblivious routing algorithms that perform well in the worst case. As we show in

this chapter, the maximum-cost flow formulation of the worst case is a convex function of

the routing algorithm (Section 3.1). This, combined with the knowledge that the set of all

oblivious routing algorithms is convex, allows us to formulate the design of good worst-

case routing algorithms as convex optimization problems.Globally optimalsolutions to

these problems can be found efficiently (in polynomial time) giving us provably optimal

oblivious routing algorithms. We present two practical approaches for finding solutions to

these optimization problems in Section 3.2.

Once worst-case optimal routing algorithm design is cast as an optimization problem,

a host of interesting applications are possible. Of course, routing algorithms can be cus-

tomized to a particular topology. Also, the tradeoff between the worst-case and other de-

sign metrics can be explored. Specifically, we look at the tradeoff between worst-case

throughput and both locality and average-case throughput in Section 3.3. These experi-

ments reveal that, in torus networks, current routing algorithms give up too much locality

37
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to achieve optimal worst case performance, leading to the development of two new rout-

ing algorithms. Also, for the same torus networks, a weak tradeoff between average- and

worst-case throughput is demonstrated. Another set of experiments explores the perfor-

mance advantages of worst-case optimal oblivious algorithms in irregular topologies. For

example, in the comparison of 15 random topologies, optimal oblivious routing improves

average worst-case throughput by 46.4% over Valiant’s algorithm [71].

The one caveat in the routing algorithms developed through optimization is that they

are specified in terms of real numbers. If these results are to be used to implement a routing

algorithm in hardware, they must be converted to a finite representation (Section 3.4). A

randomized rounding approach is developed and it is experimentally shown that approxi-

mating an oblivious routing algorithm’s specification using integer multiples of a valueε

decreases the worst-case throughput by a factor of1 − O(εN). Two different hardware

approaches for storing the finite representation of a routing algorithm are also presented

and compared.

Finally, Section 3.5 discusses the key differences, in terms of both performance and

implementation, between oblivious and adaptive routing algorithms.

3.1 Worst-case routing design as a flow problem

To formulate the design of routing algorithms for the worst case, we first develop a flow-

based description of oblivious routing algorithms (Section 3.1.1). Then, this description

is combined with the worst-case channel load as an objective function forming a convex

optimization problem (Section 3.1.2).

3.1.1 Routing algorithm representation

A common way to formalize routing algorithms and the movement of data through a net-

work is as a set of data flows through its topology. Early examples of this formulation

include Fratta et al.’s study of routing algorithm design [29]; Bertsekas [6] contains an

thorough overview of this and related formulations. We adopt the flow description, but

point out one key difference between our approach and more common approaches. Here,



3.1. WORST-CASE ROUTING DESIGN AS A FLOW PROBLEM 39

the flows through the network are not used to represent the actual flow of data through the

network, but rather the flow of the probability of routing along the channels. This allows us

to separate the description of the routing algorithm from the demands induced by a partic-

ular traffic pattern — a critical point, as we will ultimately optimize our routing algorithms

over many traffic patterns simultaneously.

We have previously defined the probability of a packet using a particular channelc

when routing from a sourcei to a destinationj asxcij. For now, we assumexcij is a non-

negative real number. Then, for a particular nodek in the network, wherek 6= i andk 6= j,

the probability of using any channel entering that node must equal the probability of using

any channel leaving the node,

∑

{l|(k,l)∈C}
x(k,l),i,j −

∑

{l|(l,k)∈C}
x(l,k),i,j = 0, (3.1)

by the conservation of packets through that node.

However, (3.1) is nothing but a conservation of flow constraint through the nodek.

Considering that packets are injected at source nodes with probability one, there should

be a surplus of one unit of flow reflected in the flow constraints. Likewise, destinations

should have a deficit of one unit of flow. Combining the flow constraints for each node and

source-destination pair with non-negativity constraints, any flows for which

∑

{l|(k,l)∈C}
x(k,l),i,j −

∑

{l|(l,k)∈C}
x(l,k),i,j = [k = i]− [k = j] ∀i, j, k ∈ N

xcij ≥ 0, ∀i, j ∈ N , c ∈ C
(3.2)

define a complete oblivious routing algorithm.1 In the language of network optimization,

these equations specify a multicommodity flow with one commodity per source-destination

pair. Such flows can also be described as a probability distribution over the paths between

each source-destination pair and this formulation is used later in Section 3.2.2.

Building on these multicommodity flow constraints, we can pose problems about de-

signing optimal routing algorithms for a particular traffic pattern. So, for example, the

1The notation[x = y] denotes a function that is 1 ifx = y and 0 otherwise, as adapted by Graham et
al. [31] from Iverson’s APL programming language [35].
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throughput for the traffic patternΛ can be maximized by solving

minimize max
c∈C

∑
i,j∈N

λijxcij/bc, (3.3)

where the routing algorithmX is subject to the constraints of (3.2). The optimal value of the

optimization is a scaling factor that gives the reciprocal of the fraction of the original traffic

pattern that can be supported by the network. For example, if the optimal value of (3.3) is

1.25, the network can support1/1.25 = 80% of the original traffic pattern before a channel

becomes overloaded. In general, this form of a multicommodity optimization is known as

a maximum concurrent flow problem (MCFP) and can be solved using linear programming

methods as discussed by Ros Peran [50] or quickly approximated with primal-dual methods

as introduced by Shahrokhi and Matula [60]. We will shortly extend the structure of this

problem to solve our worst-case routing algorithm design problem (Section 3.1.2), but,

first, we consider a particularly useful MCFP.

In theuniform capacity problem[26], or simply thecapacity problem, the traffic pattern

of (3.3) is defined to be

λij =
bsi

bdj

max
(∑

k∈N bsk
,
∑

k∈N bdk

) , (3.4)

for all i, j ∈ N . This traffic pattern is uniform in that each node spreads its traffic over

each of the destinations in proportion to the destination bandwidths. In the homogeneous

case (Section 2.3), where all injection and ejection bandwidths are equal to one, the pattern

simplifies toλij = 1/N . The fraction of the uniform pattern supported by a particular

network is commonly used to normalize the performance of the network on other patterns.

So, for example, if a network achieves 50% of capacity in the worst case, then the channel

load induced by a worst-case pattern is twice that of the uniform pattern specified by (3.4).

Since the uniform pattern is well-defined for any network, expressing throughputs as a

fraction of capacity allows a meaningful comparison between networks with potentially

different bandwidths. We will make use of this definition of uniform capacity in the later

experimental sections.
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3.1.2 Worst-case problem

The maximum concurrent flow problem (MCFP) introduced in the previous section closely

resembles our goal of designing good worst-case routing algorithms, but rather than op-

timizing over the set of all admissible traffic patterns, the MCFP optimizes for a single

traffic pattern. The logical extension to this is to augment the objective to include all the

admissible traffic patterns,

minimize max
Λ∈T

max
c∈C

∑
i,j∈N

λijxcij/bc, (3.5)

whereT defines the set of admissible traffic patterns,

T =
{
Λ

∣∣∑
j λij ≤ bsi

, ∀i ∈ N
∑

i λij ≤ bdj
, ∀j ∈ N

λij ≥ 0, ∀i, j ∈ N}
.

(3.6)

Before considering the tractability of even computing the objective (3.5), let us carefully

consider its form. First, the sum and innermost maximum compute the fraction of a traffic

pattern that can be supported by the network by summing to find the channel loads and

then taking the maximum to find the bottleneck channel. The major change compared to

the MCFP formulation is that the traffic pattern under consideration is no longer given as

part of the problem setup, rather the set of admissible patternsT is specified. Then, the

outermost maximum of (3.5) finds the worst-case traffic pattern amongst all the admissible

traffic patterns. So the goal of the optimization is exactly what we want — a routing

algorithm that minimizes the worst-case channel load, and thus maximizes throughput, over

all admissible traffic patterns. We call this optimization problem the worst-case oblivious

routing design problem (WCORDP).

Fortunately, despite its potentially intimidating form, the objective (3.5) can also be

minimized efficiently. That is, for any network theglobally best oblivious routing algo-

rithm for minimizing worst-case channel load can be found. One key to a solution is the

understanding that the objective is convex. This implies that any local minimum of the
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objective functionf(X), where

f(X) = max
Λ∈T

max
c∈C

∑
i,j∈N

λijxcij/bc

is also a global minimum. The convexity off follows from the fact that it can be viewed as

a point-wise maximum over linear functions, one for each possible traffic pattern-channel

pair. A point-wise maximum of any number of convex functions is convex.

Stated another way, convexity guarantees that for any two valid routing algorithmsX1

andX2 and a scalar0 ≤ α ≤ 1,

f(αX1 + (1− α)X2) ≤ αf(X1) + (1− α)f(X2). (3.7)

So, any routing algorithm formed by interpolating between two routing algorithms always

has a worst case that is at most equal to the interpolated worst cases of the two routing

algorithms. It is also important that the interpolated algorithm itself is a valid algorithm,

but it is not difficult to verify that this is indeed the case using the constraints of (3.2). More

formally, the set of feasible routing algorithms form a convex set. This fact, combined

with the convexity off , means the task of designing worst-case optimal oblivious routing

algorithms can be cast as a convex program.2

The final condition for any such convex program to be solved efficiently is that the

objective can be evaluated easily (in time polynomial in the number of variables). Since

we showed that the worst-case objective can be solved as a series of maximum-cost flow

problems in Chapter 2, any WCORDP can be solved efficiently. We explore two specific

solution methods in the following section.

3.2 Optimization approaches

As described in the previous sections, a worst-case oblivious routing design problem (WCORDP)

can be cast as a convex program that, in theory, can be solved efficiently. However, as might

be expected, the particular optimization method chosen has a large impact on the size of

2See Boyd and Vandenberghe [15] and Bertsekas et al. [8] for a detailed treatment of convex optimization.
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problems that can be solved practically. In this section, several methods that take advantage

of the structure of WCORDPs are described.

Section 3.2.1 shows that a WCORDP can be reformulated as a linear program (LP),

allowing the use of specialized, off-the-shelf LP solvers. Alternatively, by taking advantage

of the fact that the worst case for a particular routing algorithm can be found by solving

maximum-cost flow problems, as described in Chapter 2, a subgradient method can provide

fast solutions (Section 3.2.2). Finally, the symmetry of the underlying network can be used

to constrain the search space of optimal routing algorithms and, thus, simplify the problem

(Section 3.2.3).

3.2.1 Linear programming representation

A linear program (LP) is an optimization problem with a linear objective, linear constraints,

and real-valued variables. Since linear functions are also convex, an LP is also a convex

program — that is, linear programming is a special case of convex programming. The

advantage in expressing our WCORDP as a simpler LP is that the solution methods for

LPs are correspondingly simpler and faster. This allows us to extend the range of problem

sizes that we can practically solve.

The first step in expressing a WCORDP as an LP is to take advantage of an observation

from Section 2.5.1: for a particular routing algorithm, the maximum channel load can al-

ways be realized with an extreme point from the set of admissible traffic patternsT defined

by (3.6). As a reminder, this was a direct consequence of the fundamental theorem of linear

programming. Because the set of admissible traffic patterns describes a bounded polyhe-

dron, there are a finite, although exponential, number of extreme points,T1, . . . , TE ∈ T .

This allows us to rewrite our original convex objective (3.5) as a linear objective with linear

constraints by introducing an inequality for each extreme point-channel pair as

minimize w

subject to γc(X, Te)/bc ≤ w, ∀c ∈ C, e = 1, . . . , E,

(3.8)

where the routing algorithmX is also subject to the constraints of (3.2). While this gives

us a linear program, there are an exponential number of constraints associated with the
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extreme points. However, these constraints can be simplified by first considering the dual

of this linear program.

Substituting the definition ofγc(X, Λ), the Lagrange dual function corresponding the

optimization problem defined by (3.8) and constrained by (3.2) is

g(D, Y, Z) = inf
w,X

{ ∑

i,j,k∈N
dijk([k = j]− [k = i]) + w

(
1−

∑
c∈C

E∑
e=1

yce

)
+

∑
i,j∈N

∑

(k,l)∈C
x(k,l),i,j

(
dijk − dijl − z(k,l),i,j +

E∑
e=1

yceteij/bc

)}
, (3.9)

whereD is the dual variable associated with the conservation of flow constraints of (3.2)

and has dimensionN3, Y is the variable associated with the channel-load constraints

of (3.8) and has dimensionCE, andZ is the dual variable associated with the flow non-

negativity constraints and has dimensionCN2. While an explanation of Lagrangian duality

is well beyond the scope of this thesis, the dual functiong is a lower bound on the optimal

value of the primal optimization (3.8) for any value ofD and any values ofY, Z ≥ 0.3

Moreover, this bound is tight and, for some dual variable values,g is exactly equal to the

optimal primal value.

The Lagrange dual (3.9) can be simplified by focusing on the third summation. The

final term of this summation is a sum of extreme points weighted byY . By again applying

the fundamental theorem of linear programming, this sum can be replaced by a single,

scaled traffic patternΛc associated with each channelc,

Λc =
E∑

e=1

yceTe, φc =
E∑

e=1

yce,

whereφc is the scaling factor. The scaled traffic patterns are always admissible traffic pat-

terns,Λc/φc ∈ T . Then, applying this simplification, the problem of finding the maximum

value of the Lagrange dual, and thus the minimum value of the primal problem, can itself

3See Boyd and Vandenberghe [15] Chapter 5 for an introduction to duality.
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be written as a linear program

maximize
∑

i,j∈N dijj − diji

subject to λ(k,l),i,j/b(k,l) ≥ dijl − dijk, ∀i, j ∈ N , c ∈ C,∑
j∈N λcij ≤ φcbsi

, ∀i ∈ N , c ∈ C,∑
i∈N λcij ≤ φcbdj

, ∀j ∈ N , c ∈ C,
λcij ≥ 0, ∀i, j ∈ N , c ∈ C,∑

c∈C φc = 1.

(3.10)

Notice that (3.10) has a polynomial number of variables and constraints. Then, finding

the dual of (3.10) recovers a simplified version of the primal problem

minimize w

subject to xijc ≤ vcj − uci ∀i, j ∈ N , c ∈ C∑
j∈N vcjbdj

−∑
i∈N ucibsi

= bcw, ∀c ∈ C,
(3.11)

whereX is also subject to the constraints of (3.2). By introducing the extra variablesU

andV , each of dimensionCN , the exponential number of constraints of (3.8) have been

reduced to a polynomial number. This LP formulation of the WCORDP requires a total of

CN2 + 2CN + 1 variables and2CN2 + N3 + C constraints.

It is worth noting that the reformulated primal problem (3.11) is closely related to the

dual of the maximum-cost flow problem introduced in Section 2.5.1. In this context, the

valuesU andV are commonly referred to as node potentials and minimizing the weighted

sum of node potentials is equivalent to maximizing channel load. See Ahuja et al. [2],

Section 9.4 for further information.

Also, the dual optimization problem (3.10) can be interpreted as optimizing many si-

multaneous shortest-path problems. Each channelc is assigned a “distance”λcij associated

with the source-destination pair(i, j). Then, for each sourcei and destinationj, every node

k is labeled with the valuedijk that defines the shortest distance to that node as measured

by the channel lengths. To find the shortest distance from a nodep to a nodeq, the absolute
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distances are subtracted:dijq − dijp. The objective seeks to maximize the sum of short-

est distances between each source-destination pair. Since the distances for each channel

are determined by the traffic patternΛc, the dual problem seeks to design traffic patterns

that maximize the shortest-path distances between the source-destination pairs. Thus, any

heuristic for choosing the traffic patterns gives a lower bound on the performance of any

routing algorithm for the network.

3.2.2 Projected subgradient method

An alternative to reformulating the worst-case routing algorithm design problem as a linear

program is to solve the convex program defined by (3.5) directly using a projected subgra-

dient method. Subgradient methods [8] can be thought of as a generalization of gradient

descent methods to non-smooth objective functions. The basics of the subgradient method

are introduced in this section and a detailed implementation of the method is left for Ap-

pendix B.

For our case, the objective function of the optimizationf is defined as

f(X) = max
Λ∈T

max
c∈C

γc(X, Λ)/bc. (3.12)

Then, the subgradient method repeats the following steps to minimizef :

1. Initialize with any valid routing algorithmX(1) and setk ← 1.

2. For any subgradientG(k) of f atX(k), update the routing algorithm as

x
(k+1)
cij = P

(
x

(k)
cij − α(k)g

(k)
cij

)
,

whereα(k) is a step size andP is the Euclidean projection onto the set of feasible

routing algorithms.

3. k ← k + 1; go to Step 2

Roughly speaking, the subgradient defines a direction of improvement based on the

shape of the objective function at the current iterate of the routing algorithmX. Formally,
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a subgradient off atX is anyG for which

f(Y ) ≥ f(X) +
∑
c∈C

∑
i,j∈N

gcij(ycij − xcij)

holds for allY . Geometrically, a subgradient defines a supporting hyperplane that passes

through the pointX. For any pointY on the side of the hyperplane where the inner-product

of G andY is positive, the value off(Y ) is guaranteed to be larger thanf(X). Thus, the

direction of descent in Step 2 is−G. In the special case wheref is differentiable atX, the

supporting hyperplane is equal to the tangent plane atX and the subgradient is equal to the

gradient.

For the worst-case objective function defined by (3.12), anyG for which

f(Y ) ≥ f(X) +
∑
c∈C

∑
i,j∈N

gcij(ycij − xcij)

over allY is a subgradient off at X and, sincef is convex, at least one such subgradient

exists at all points. The shape of the worst-case objective function is determined by the

elements of the maximum that are “active” for a particular value of the routing function

X. That is, possible subgradients are determined by the traffic pattern-channel pairs that

maximize the objective. It is easily shown4 that anyG for which

∑
c∈C

∑
i,j∈N

gcijxcij/bc = max
Λ∈T

max
c∈C

γc(X, Λ)/bc

is a subgradient off atX. For example, if for a particular routing algorithmX, if a worst-

case traffic patternΛ∗ overloads channelc∗, definingG as

gcij =





λ∗ij, if c = c∗

0, otherwise,
(3.13)

gives a subgradient off atX. This result has a very simple interpretation when connected

to its use in the subgradient method — the current routing algorithmX is improved by

4For example, see Bertsekas et al. [8] Proposition 4.5.1
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shifting demand away from the current worst-case channel. Moreover, since the subgra-

dient can be described in terms of a worst-case traffic pattern, the techniques described in

Chapter 2 can be used to efficiently find a subgradient.

The two remaining aspects of the subgradient method are the selection of the step size

α and the computation of the projection back to the set of feasible routing algorithms. First,

there are many simple rules for selecting the step size, such asα(k) = 1/k, that ensure the

method will converge to a global minimum off . See Bertsekas et al. [8] Section 8.2, for

more information. Second, while a naive formulation of the projection requires solving

a quadratic minimization problem with similar complexity to the WCORDP, significantly

more efficient approaches are possible.

For example, projection can be greatly simplified if a path-based description of the

routing algorithmX is adopted. In this description, the algorithm is expressed in terms of

paths between each source-destination pair. Denoting the probability of routing fromi to j

along pathk aspkij, the original objective function is preserved because

xcij =
∑

pathsk
from i to j

containingc

pkij. (3.14)

Then, the routing algorithm constraints of (3.2) can be replaced by

∑

pathsk
from i to j

pkij = 1, ∀i, j ∈ N .

Computing the projection for each source-destination pair is independent and can be

expressed as a quadratic program

minimize ||p− q||2
subject to

∑n
k=1 pk = 1,

pk ≥ 0, ∀k = 1, . . . , n,

(3.15)

whereq is a vector ofn path probabilities for a particular source-destination pair and the
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variablep is the projection of these probabilities back onto the probability simplex. Fortu-

nately, solving this optimization directly can be avoided by considering how the optimality

conditions constrain the set of possible solutions.

Let p∗ be a primal optimal point of (3.15). Then, the Karush-Kuhn-Tucker (KKT)

conditions require the following to also be true:

λ∗i ≥ 0, i = 1, . . . , n

λ∗i p
∗
i = 0, i = 1, . . . , n

p∗i = qi − λ∗i − ν∗, i = 1, . . . , n

(3.16)

whereλ∗ andν∗ form a dual optimal point. Combining the second and third KKT con-

ditions with the fact thatp∗ is non-negative, ifp∗i > 0 thenλ∗i = 0 andp∗i = qi − ν∗.

Otherwise,p∗i = 0. Thereforep∗ can be written as

p∗i = max(0, qi − ν∗), i = 1, . . . , n. (3.17)

The fact thatp∗ can be expressed in terms of a single scalar variableν∗ greatly simplifies

the computation and avoids the need to solve a quadratic program. Figure 3.1 shows C

code for computingν∗ given the elements ofq in sorted order. Conceptually, the code

works by first settingν∗ to the largest element ofq — at this point,p∗ would be the zero

vector. If ν∗ is then decreased, the element ofp∗ corresponding to the largest element of

q will increase. This continues until the value ofν∗ reaches the second largest element

of q. Then, decreasingν∗ further causes two elements ofp∗ to increase while the rest

remain at zero. This process of decreasingν∗ should continue until the sum of all thep∗

values exactly equals one. The rate of change in this sum is exactly equal to the number

elements inq greater than the current value ofν∗. In the code of Figure 3.1, this rate

of change is stored in the variablei . Each iteration of thewhile loop corresponds to

ν∗ falling below another element ofq. Sorting dominates the complexity of computing

p∗ and the overall complexity of the projection isO(n log n). This procedure is closely

related to the waterfilling algorithms that appear in applications such as allocating power to

communications channels. See Boyd and Vandenberghe [15] Section 5.5.3, for an example.
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1 : double FindNu( double * qs, int n )
2 : {
3 : double sum = 0.0;
4 : double nu = qs[0];
4 : int i = 1;
5 :
6 : while ( ( i < n ) && ( sum < 1.0 ) ) {
7 : sum = sum + ( (double)i ) * ( nu - qs[i] );
8 : nu = qs[i++];
9 : }
10:
11: if ( sum > 1.0 ) { i--; }
12:
13: return ( nu + ( sum - 1.0 ) / (double)i );
14: }

Figure 3.1: Code to computeν∗ for projection onto a probability simplex. The values ofq
are stored in sorted order, from largest to smallest inqs and the dimension ofq is stored in
n.

Combining the efficient projection algorithm with the fact that subgradients can be eas-

ily computed results in a fast projected subgradient approach to finding worst-case optimal

routing algorithms. Additionally, for homogeneous networks, as described in Section 2.3,

worst-case traffic patterns at each iteration can be permutation patterns and onlyN of the

N2 source-destination pairs need to be updated per iteration. A potential drawback of this

method are the limitations of describing the routing algorithms using path probabilities.

Since there are an exponential number of paths, only a subset can be considered in any

practical optimization. While this offers an advantage when also considering the deadlock

properties of the resulting routing algorithm (see Dally and Towles [26]), it also leaves the

potentially difficult problem of selecting appropriate paths to the designer. An alternative

to the path-based approach is described in Appendix B.

3.2.3 Symmetry optimization

Just as symmetry allowed simplifications in finding the worst case (Section 2.5.2), network

symmetry can also be used to simplify the search for worst-case optimal routing algorithms.

First, the definition of a worst-case invariant group from Section 2.5.2 is augmented to

include channel symmetry. The worst-case throughput of a network is said to beΓ-invariant
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if for every mappingg ∈ Γ the following conditions hold:

1. g is defines an automorphism of the network.

2. g preserves bandwidth of the sources and destinations: the bandwidth of source node

si equals the bandwidth of the mapped source nodeg(si), bsi
= bg(si), and likewise

for the destination nodes.

3. g preserves bandwidth of the channels: the bandwidth of a channelc = (u, v) equals

the bandwidth of the mapped channelc′ = (g(u), g(v)), bc = bc′.

These conditions are sufficient to ensure that

max
c∈C

max
Λ∈T

γc(Λ, X)/bc = max
c∈C

max
Λ∈T

γc(Λ, g(X))/bc,

for any g ∈ Γ. Moreover,g(X) is valid routing algorithm because the automorphism

condition preserves (3.2).

Then, for a particular routing algorithmX, let X be the average ofX over itsΓ-orbit,

X =
1

|Γ|
∑
g∈Γ

g(X).

X is a valid routing algorithm by the convexity of the set of oblivious routing algorithms

and, sinceΓ is a group,X = g(X) for anyg ∈ Γ. Thus,X shares the same symmetry as

the underlying network.

By applying the convexity of the worst case,

max
c∈C

max
Λ∈T

γc(Λ, X)/bc ≤ 1

|Γ|
∑
g∈Γ

max
c∈C

max
Λ∈T

γc(Λ, g(X))/bc = max
c∈C

max
Λ∈T

γc(Λ, X)/bc.

So, routing algorithms that share the symmetry of the network have worst-case performance

that is as least as good as their non-symmetric counterparts. This allows the search for

optimal routing algorithms to be restricted to those that have the same symmetries as the

network. Specifically, a set of variables can replaced by a single value

x(u,v),i,j = x(g1(u),g1(v)),g1(i),g1(j) = . . . x(gn(u),gn(v)),gn(i),gn(j),
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for g1, . . . , gn ∈ Γ. Also, because the routing algorithm being optimized isΓ-invariant

once these reductions are applied, all the symmetry optimizations for finding the worst

case described in Section 2.5.2 are applicable.

Revisiting the example of the 2-dimensional torus network (k-ary 2-cube) network from

Section 2.5.2, routing variables only need to be tracked for routing from the origin to any

destination whose minimal quadrant is increasing in both dimensions relative to the origin.

Instead of considering allN2 source-destination pairs, this reduces the number of pairs that

need to be considered to approximatelyN/4.

3.3 Experiments

As we have shown, worst-case optimal routing algorithm design can be cast as a convex

optimization problem and then solved, for example, via linear programming or subgradi-

ent methods. In this section, we apply these ideas to several different design problems.

The tradeoff between worst-case throughput and both locality and average-case through-

put is explored in Section 3.3.1 for torus networks. These experiments reveal that current

routing algorithms give up too much locality to achieve optimal worst case performance,

leading to the development of two new routing algorithms. In addition to increasing lo-

cality while maintaining optimal worst-case performance, these new algorithms achieve

good average-case throughput. This demonstrates a weak tradeoff between average- and

worst-case throughput in the torus.

In Section 3.3.2, worst-case optimal oblivious algorithms are compared to Valiant’s [71]

routing algorithm in irregular networks. While Valiant’s algorithm performs as well as an

optimal oblivious algorithm in many symmetric networks, the experiments show the same

result does not hold for irregular networks. For example, in a comparison of 15 random

topologies, optimal oblivious routing improves average worst-case throughput by 46.4%

over Valiant’s algorithm.
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3.3.1 Design tradeoffs

In addition to simply designing routing algorithms for the worst case, our framework can be

extended to optimize other convex properties of a routing algorithm. For example, both the

average distance a packet travels, a measure of locality, and the average-case throughput

are convex in the routing algorithm. In this section, we explore how these two measures of

a routing algorithm’s performance can be traded off against worst-case throughput.

To define the average distance a packet travels, we assume a uniform traffic pattern —

each packet picks a particular destination from theN possible destinations with probability

1/N . Then, the average distance (number of channels) a packet travels is found by sum-

ming over all source-destination pairs and paths. In terms of the routing algorithm, the

average distance is
1

N2

∑
i,j∈N

∑

pathsk
from s to d

pkij · len(i, j, k), (3.18)

wherepkij is the probability of routing fromi to j along pathk and len(i, j, k) is the

length of that path in channels. From (3.14) this expression can be rewritten in terms of

the channel variablesxcij and, since the path lengths are just a constant, the average packet

distance given by (3.18) is a linear function of the routing algorithm. Linear functions are

convex, so average packet distance can be efficiently optimized.

It is certainly possible to design a routing algorithm that minimizes (3.18), but the

result of this optimization is simply a routing algorithm that uses only shortest paths. A

more interesting and informative optimization explores the tradeoff between average packet

distance and worst-case throughput by incorporating (3.18) as a linear constraint in the

worst-case optimization (3.5). Then, for a fixed average packet distance, the optimal worst

case can be found.

For example, Figure 3.2 shows the result of this tradeoff problem for an 8-ary 2-cube

network. Each point in the tradeoff space represents a separate routing algorithm that

achieves a particular average packet distance and worst-case throughput. Ideal algorithms

would sit in the lower-right corner of the graph. However, only certain algorithms are

possible and the shaded area of the graph represents the set of feasible oblivious routing

algorithms. Moreover, the guarantees of convex programming ensure that the unshaded
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Figure 3.2: Tradeoff between average packet distance and worst-case throughput for a 8-
ary 2-cube network. The set of feasible algorithms is shaded and the solid line indicates
Pareto optimal algorithms.

areas are provably unobtainable. An important set of routing algorithms, shown as a dark

line, are those that are Pareto optimal. Each Pareto optimal algorithm cannot be improved

in either average packet distance without sacrificing worst-case throughput and vice versa.

Along with the feasible algorithms, Figure 3.2 shows several existing algorithms that are

summarized in Table 3.1.

The DOR and ROMM algorithms are minimal routing algorithms and therefore achieve

the best possible locality. At the other extreme, Valiant’s algorithm (VAL) achieves the best

possible worst-case throughput, but sacrifices locality because it doubles the average path

length. The two tradeoff algorithms, RLB and RLBth, achieve points between these two

extremes. While DOR is at the lower-left end of the Pareto optimal curve, none of the

existing algorithms lie near the upper-right of Pareto optimal curve. This observation leads

to our development of the IVAL and 2TURN algorithms [70].

IVAL is an improvement over Valiant’s algorithm that maintains its worst-case opti-

mality while reducing average path length. As described in Table 3.1, Valiant’s algorithm
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Table 3.1: Summary of routing algorithms

DOR Dimension-order routing [66]. Packets are routed minimally in the X dimension
first, then in Y. If either direction is minimal in a dimension, routes are split evenly
between both directions.

VAL Valiant’s routing algorithm [71]. In the first phase, packets are routed from the
source to a randomly chosen intermediate node using a minimal routing algorithm
(e.g. DOR). The second phase routes minimally from the intermediate to the desti-
nation.

ROMM ROMM [48]. A two-phase algorithm that uses DOR for both phases, like Valiant’s,
but routes are kept minimal by always choosing the intermediate from the minimal
quadrant.

RLB Randomized local balance [63]. Another two-phase algorithm where the interme-
diate is chosen so that minimal routing occurs in the X dimension with probability
(k − ∆X)/k, where∆X is the minimum distance inX that must be traveled and
minimal routing occurs in Y with probability(k − ∆Y )/k. DOR is used for both
phases.

RLBth RLB threshold [63]. A modification of RLB where a packet is always routed mini-
mally in X if ∆X < k/4 and minimally in Y if∆Y < k/4.
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routes packets using two phases of randomized routing. By randomly picking the interme-

diate destination node of the first phase, load is balanced over the channels of the network.

However, in this strict implementation, many paths revisit nodes, forming loops. Obvi-

ously, eliminating these loops cannot degrade the performance of the algorithm because

the load placed on the channels is only reduced. IVAL takes this idea further by making the

observation that the two phases can use different routing algorithms to try to increase the

occurrence of loops. As long as both phases route minimally, the worst-case performance

is maintained. Specifically, IVAL uses DOR (X first, then Y) for the first phase and then

uses DOR with the dimension order reversed (Y first, then X) for the second phase. This

creates large loops as once a packet reaches the intermediate node, it often doubles back

over the same channels on its way to the final destination. For an 8-ary 2-cube network,

IVAL reduces average path length to about 1.61 times minimal — an almost 20% reduction

over the average path length of VAL.

Although IVAL has a simple closed-form (algorithmic) description and improves sig-

nificantly over Valiant’s algorithm, its average path length is still about 9.1% above the

optimal point of just below 1.48 times minimal. There may exist other simple algorithms

that lie within this gap, however the gap can also be reduced if the designer is willing to

abandon a purely closed-form description of the routing algorithm. We introduce such an

algorithm, called 2TURN, that does just that.

Instead of requiring that the routing algorithm have a closed-form description, the

2TURN algorithm only uses a closed-form description of the possible paths a packet may

take through the network. As its name implies, 2TURN allows any path through the net-

work which contains at most two turns. A turn is defined as any change from routing in

one dimension to the other. Also, “u-turns” or changes of direction within dimensions are

disallowed in the 2TURN algorithm. Since every path in IVAL also has at most two turns,

2TURN contains all the paths considered by IVAL. 2TURN can also use paths not available

to IVAL. For example, IVAL always routes minimally after its final turn, but 2TURN has

the option to route non-minimally.

The constraints on path choice imposed by the 2TURN algorithm can be easily incorpo-

rated into the path-based formulation of the routing algorithm optimization problem. The

result of the optimization is the probability with which each of the possible paths should
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be taken. Since the paths of 2TURN are a superset of those of IVAL, 2TURN can match

IVAL’s worst-case performance. At the same time, the average path length of 2TURN is

reduced to approximately 1.48 times minimal, only 0.36% more than the Pareto optimal

algorithm (Figure 3.2). The main advantage of adopting the closed-form paths of 2TURN

is one of implementation. Since our networks have finite resources, the dependencies be-

tween these resources need to be carefully considered to avoid deadlocks [25]. The possible

routes a packet takes determines these dependencies, so having a simple description of the

paths allows an equally simple approach to deadlock avoidance.5

Now that we have routing algorithms near both ends of the Pareto optimal curve, con-

vexity can be taken advantage of to create algorithms between these two points. Oblivious

routing algorithms form a convex set and, by definition, any interpolation between routing

algorithms is itself a valid routing algorithm. For example, consider the routing algorithms

X andY and an interpolation factor0 ≤ α ≤ 1. Then a new routing algorithmZ can be

formed by interpolating betweenX andY ,

zcij = αxcij + (1− α)ycij.

The interpolation factorα controls the relative influence ofX andY on Z. Intuitively, as

α sweeps from one to zero, the properties ofZ transition from those ofX to those ofY .

Quantitatively, if we define the average path length of a routing algorithmX asL(X), then

it is easily verified that

L(Z) = αL(X) + (1− α)L(Y )

by using the linearity of path length. Also, if the worst case of a routing channel load of an

algorithmX is defined asW (X), then

W (Z) ≤ αW (X) + (1− α)W (Y ). (3.19)

This inequality is simply a restatement of the convexity of the worst case from (3.7).

For the 8-ary 2-cube, the set of routing algorithms produced by interpolating between

52TURN can be made deadlock free with 4 virtual channels (VCs). Packets start in VC set zero and the
VC set is incremented after a turn from the Y to X dimension. Each VC set has 2 individual VCs to avoid
intra-dimension deadlock.
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Figure 3.3: Routing algorithms produced by interpolation. The dashed line shows interpo-
lation between DOR and IVAL and the dotted line shows interpolation between DOR and
2TURN.

DOR and IVAL and between DOR and 2TURN is shown in Figure 3.3. Each point in the

curve corresponds to a different value ofα used in the interpolation. For this example, it

also happens that the worst-case throughput of the interpolated routing algorithms is exactly

equal to the lower bound of (3.19).6

The interpolated algorithms between DOR and IVAL are at most 17% above the optimal

locality with the maximum percent difference occurring about 65% of the way between

DOR and IVAL. At the same worst-case throughput as RLB, the interpolated algorithm

gives a roughly 14% reduction in path length. Also, the reduction in path length over RLBth

is about 12%. Interpolating between DOR and 2TURN improves performance further, with

the set of interpolated algorithms at most 10% above the optimal locality and offering a 19%

and 15% reduction in path length over RLB and RLBth, respectively. Also, the algorithms

produced by interpolation are simple to implement. For example, to interpolate between

IVAL and DOR a packet is routed using IVAL with probabilityα and using DOR with

6Since DOR and IVAL and DOR and 2TURN share a worst-case traffic pattern, the actual worst-case
throughput of the interpolated routing algorithms are equal to the bound. This is always true when interpo-
lating between routing algorithms that share a worst-case traffic pattern.
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probability1− α.

Another interesting performance metric that can be approximated by a convex function

is the average-case throughput of a routing algorithm. First, the average channel load is a

convex function of the routing algorithm and is proportional to

∫

Λ∈T
max
c∈C

∑
i,j∈N

λcijxcij/bc. (3.20)

The true average would be divided by the volume of the traffic set, but we have left out this

constant factor for clarity. Then, we approximate the average-case throughput as simply

the reciprocal of (3.20).

Figure 3.4 shows the tradeoff between average packet distance and average-case through-

put in the 8-ary 2-cube. In this experiment, (3.20) was evaluated by numerically integrating

over a sample of the set of all traffic patterns. Unlike the worst-case tradeoff, the existing

routing algorithms (Table 3.1) generally lie far from the Pareto optimal set. Computing the

average throughput of the two new routing algorithms developed for the worst-case, IVAL

and 2TURN, reveals that they are both much closer to the maximum average-case through-

put: IVAL is within 8.4% and 2TURN is within 6.4%. This also demonstrates that there is a

weak tradeoff between worst-case and average-case throughput in the 8-ary 2-cube and that

routing algorithms can be designed to have both good worst-case and good average-case

throughput.

Adapting the approach used to develop the 2TURN algorithm for the worst case, a sim-

ilar algorithm 2TURNA can be designed for the average case. 2TURNA allows all paths

with at most two turns and the probabilities for each path are found by first optimizing for

the average-case throughput, then for maximizing locality. The resulting algorithm’s per-

formance is also plotted in Figure 3.4. As shown, 2TURNA has an average-case throughput

within 4.6% of the maximum of approximately 62.8% of capacity. 2TURNA also increases

locality over IVAL and 2TURN, sitting roughly 16% above the optimal tradeoff curve in

terms of average path length.
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Figure 3.4: Tradeoff between average packet distance and average-case throughput for a
8-ary 2-cube network. The set of feasible algorithms is shaded and the solid line indicates
Pareto optimal algorithms.

3.3.2 Comparison to Valiant’s algorithm in faulty and irregular topolo-

gies

As demonstrated in the previous section, designing routing algorithms through optimiza-

tion offers a significant improvement in locality for a given worst-case throughput in the

two-dimensional torus network. However, in terms of just worst-case throughput, Valiant’s

algorithm matches the best performance of any oblivious algorithm. It is easily shown that

this result extends to any torus network and many other symmetric networks. (See Dally

and Towles [26] Section 9.1.1 or Singh et al. [61], for example.) However, in this section,

we show that this result does not hold in general, and quantify the performance difference

between Valiant’s algorithm and an optimal oblivious algorithm in several networks.

The first set of experiments compares the worst-case throughput of Valiant’s algorithm

to an optimal oblivious algorithm on a 6-ring (one-dimensional torus) network with a vari-

able number of faulty channels. It is assumed that the routing algorithm cannot deliver
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Figure 3.5: The worst-case throughput of both an optimal oblivious algorithm and Valiant’s
randomized algorithm in a 6-ring (one-dimensional torus) with a variable number of faulty
channels. All throughputs are normalized to the fault-free case and only channel fault
patterns that leave the network connected are included in the results. For a given number
of faults, there are many possible fault patterns that leave the network connected and the
bars show the average throughput over these patterns and the error bars show one standard
deviation.

any traffic over a faulty channel and only channel fault patterns that leave the network con-

nected are considered. Also, in the faulty cases, the throughput of Valiant’s algorithm is

always half of the network’s capacity — the throughput achieved when the channel load is

exactly twice that of uniform traffic (Section 3.1.1).

As shown in Figure 3.5, both Valiant’s algorithm and an optimal algorithm have the

same performance for the symmetric, fault-free network. In the case of a single fault, the

performance of the algorithms again remains the same. Performance diverges for the two-,

three-, and four-fault cases, where the optimal algorithm offers a 13.7%, 8.1%, and 16.5%

improvement in throughput, respectively. For the five- and six-fault cases, the bidirectional

ring has degenerated to essentially a unidirectional ring in which there is a single path

between each source and destination and, thus, no variation between the different routing

algorithms.
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Figure 3.6: The worst-case throughput of both an optimal oblivious algorithm and Valiant’s
randomized algorithm on faulty torus (left) and random networks (right). All throughputs
are normalized to the fault-free capacity of the corresponding network. As in Figure 3.5,
the bars show the average case over a sampling of fault patterns and random topologies and
the error bars show one standard deviation.

This analysis is extended to two-dimensional torus networks in the left graph of Fig-

ure 3.6. In this case, 4-ary 2-cube (torus) networks with zero, one, and two faults are

considered. All throughputs on the torus are normalized to the capacity of the non-faulty

case. As shown, the performance of Valiant’s algorithm and an optimal oblivious algorithm

are exactly the same in all cases. Also, the results show that average throughput is reduced

by 13.2% when one channel is faulty and 16.8% when a second channel fails in a 4-ary

2-cube.

The lack a performance difference for the one- and two- fault cases in the 4-ary 2-

cube combined with the results in the ring could indicate that the worst-case performance

gap between Valiant’s algorithm and an optimal oblivious algorithm is determined by the

“irregularity” of the underlying network — the more irregular a network’s topology, the

larger the advantage to using an optimal oblivious algorithm. This informal observation is

supported further by comparing the two algorithms in random topologies.

A total of 15 random topologies with 16 nodes and 48 channels were constructed using a
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Figure 3.7: A random network with 16 nodes and 48 channels created using linear prefer-
ential attachment.

two-step process. First, each node was randomly connected to another node in the network.

Then, additional channels were added using linear preferential attachment. That is, the

probability of selecting a node as an endpoint of a new channel was proportional to the

number of channels currently incident to that node.7 In this rich-get-richer model, the

distribution of node degrees tends to a power law, which has been observed experimentally

in many real-world networks. An example of a network generated using this approach is

shown in Figure 3.7. See Mitzenmacher’s survey [45] for more information on power laws

and preferential attachment.

The performance on these random networks is also shown in the right graph of Fig-

ure 3.6. Here the advantage of using an optimal oblivious algorithm is very pronounced,

offering a 46.4% improvement in throughput over Valiant’s algorithm. These results also

lend more support to out observation that optimal oblivious algorithms offer the most im-

provement in irregular networks.

7We always added channels in bidirectional pairs, disallowed self loops, and discarded disconnected
topologies.
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3.4 Implementation

A fundamental assumption in our discussion of routing algorithm design up to this point

has been that the routing variables (xcij) can be represented as real numbers. When using

the optimization approach as a guide for algorithm design, as with the IVAL algorithm

discussed in Section 3.3.1, this assumption has no impact. However, if the results of the

optimization are used to directly define the algorithm, a finite representation will need to

be used.

In this section, we first examine the properties of several routing algorithms designed

using the techniques described in this chapter and the cost of moving these algorithms

to a finite representation (Section 3.4.1). A randomized rounding approach is developed

and it is experimentally shown that approximating the routing probabilities of an oblivious

routing algorithm as an integer multiple of a valueε decreases the worst-case throughput

by a factor of1−O(εN).

Two different hardware approaches for storing the representation of a routing algorithm

as a source route are presented in Section 3.4.2. A direct SRAM lookup approach is simple,

but is expensive for storing a small number of paths precisely. An alternative ternary-CAM

(TCAM) approach that adds an extra stage to route lookup that covers the drawback of the

SRAM approach is also presented along with an area comparison of both approaches.

3.4.1 Routing algorithm approximation

When designing routing algorithms for hardware implementation using optimization tech-

niques, the ideal approach would be to add integral constraints to the optimization problem

so that the resulting routing variables were always an integer multiple of a granularityε.

Unfortunately, affixing such constraints creates an integer program and integer programs

are generally NP-hard to solve exactly. There has been a significant amount of work in

approximating the solution to these optimization problems. Specifically, the randomized

rounding technique of Raghavan and Thompson [55] and later improvements by Srini-

vasan [64] for packing problems. Both of these techniques work on a class of optimization

problems, the most relevant of which is the integer packing problem. The WCORDP can
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Figure 3.8: Cumulative distribution of path weights for a routing algorithm that minimizes
path length while maintaining optimal worst-case throughput in a 8-ary 2-cube network.

be cast as a packing problem by using the formulation of (3.8), but this is extremely in-

efficient — the problem size is exponential in the size of the network. Rather, we adopt

a pragmatic approach which starts with solutions produced by either of the methods from

Section 3.2 and then applies a randomized rounding step. Before describing the details

of this approach and its performance, it is informative to see an example of the results

produced by the optimization approach prior to rounding.

Figure 3.8 shows the cumulative distribution of path weights (thepkij variables used

in Section 3.2.2) for a worst-case optimal routing algorithm for the 8-ary 2-cube network

(N = 64). For this particular algorithm, each source-destination pair uses roughly 33.5

paths on average. In terms of approximation, it is important to note the substantial num-

ber of paths that have low weights — more than 20% of the paths have a weight less than

0.0021, meaning they are used less than 0.2% of the time. Also, very few paths are used

more than 10% of the time. Although this distribution is only an example, it is represen-

tative of the routing algorithms generally produced when optimizing for the worst case —

load is spread finely over a large number of paths.
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To approximate a particular algorithm so that the paths weights are all integer multi-

ples of a granularityε, we adopt a randomized rounding [55] approach. First, the routing

algorithm is expressed using path weights (pkij). Edge weights (xcij) can be converted to

paths weights in polynomial time as described in Section 3.5 of Ahuja et al. [2]. Then,

approximated path weights are formed by rounding eachpkij down to the nearest multiple

of ε. The difference in the rounded and original path weights is stored as a remainderrkij.

Additional weight is distributed to the paths in proportion to their remainder until the sum

of approximated weights is one for each source-destination pair. (See Algorithm 1.)

Algorithm 1 Routing algorithm approximation

1. Extract paths.Either use the givenpkij values, or use Dijkstra’s algorithm to extract
the path weights (largest weight paths first) from thexcij values.

2. Loop over s-d pairs.For eachi, j ∈ N ,

(a) Round paths down.For all pathsk from i to j,

p̃kij ← ε
⌊pkij

ε

⌋
,

rkij ← pkij − p̃kij.

(b) Randomized rounding.While
∑

k p̃kij < 1 randomly pick a pathl with proba-
bility rlij/

∑
k rkij,

p̃lij ← p̃lij + ε.

As is the case with the randomized rounding approach, the expected value of an approx-

imated path weight is equal to its corresponding original path weight,E[p̃kij] = pkij, and,

by linearity of expectation, the same holds for the edge weights. Of course, the important

aspect of this algorithm is how it affects the worst case. While exact analysis is difficult,

qualitatively, worst-case channel load tends to increase additively byO(εN). So, to have

an approximation error that is constant with the number of nodesε should beO(1/N).

Intuitively, the O(εN) error is because the standard deviation in edge weight in the

approximated algorithm is proportional toε and many of the edge weights in the corre-

sponding maximum-cost flow will increase by at leastε. Since a worst-case optimal rout-

ing algorithm tends to balance load, there are generally many traffic patterns that cause
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worst-case or near worst-case load and, with high probability, one of these patterns will

largely use the edges that have been increased byε in the maximum-cost flow graph. The

same argument holds for each channel and the variation from channel-to-channel tends to

be small. So, the number of channels has negligible impact on the increase in the worst

case. It follows that the variation between particular instances of the algorithm (one set of

random values) is small and little benefit is seen from running the algorithm multiple times

and taking the approximation with the least error.

An example of the performance of the randomized routing algorithm is shown in Fig-

ure 3.9. For smallε, our previous observation about the increase in channel load due

to approximation implies the throughput should be reduced by a multiplicative factor of

(1 − O(εN)). For 1/ε between 64 and 1024 this relationship holds at most packet dis-

tances. For the two algorithms in the upper-right corner of the feasible space, the output

of the optimization produced edge weights that were all multiples of1/64, so the approxi-

mation had no effect untilε ≥ 1/32. The fact that the optimization produced such regular

values is attributed to the symmetry of this particular network. For allε ≥ 1/32, the ap-

proximations performed poorly.

While this randomized rounding approach appears to require a path granularity ofε =

O(N) to maintain constant error, it may be possible to reduce the granularity in many

networks. To see how this is possible, consider an optimal oblivious routing algorithmX∗.

One way to view a constant error approximation ofX∗ is as a sum of deterministic routing

algorithmsD each weighted byε. If f(x) is the worst-case channel load of a routing

algorithmX, then, by convexity

f(X∗) + C = f(ε
∑

i

Di) ≥ εf(D∗),

whereD∗ is an optimal deterministic routing algorithm andC ≥ 0 is the constant error.

Then,

ε ≤ f(X∗) + C

f(D∗)
.

So, the maximum epsilon is determined by the ratio of the optimal oblivious algorithm’s
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Figure 3.9: Performance of approximated routing algorithms for a 8-ary 2-cube network.
Each point is an approximation of the routing algorithm with the same average path length
and optimal worst-case (all approximations lie on the same horizontal line as their original)
and every sequence of points joined by lines represents a particular value ofε (whose value
is indicated by a label). The gray region represents the set of feasible oblivious routing
algorithms.
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channel load to optimal deterministic algorithm’s channel load. For any network, the chan-

nel load of a deterministic algorithm is at leastf(D∗) = Ω(
√

N) by the result of Borodin

and Hopcroft [12] and this bound can be met in many common networks, such as the torus,

mesh, and butterfly. By a later result by Borodin et al. [13], the lower bound on the channel

load of an oblivious routing algorithm isf(X∗) = Ω(log N). Combining these results, it

could be possible for anε as large asO(log N/
√

N) to give a constant approximation error

for a general network. For some networks, such as the torus and mesh, the best oblivious

algorithms havef(X∗) = Ω(
√

N), which allows the possibility of a constant number of

paths giving a constant approximation error regardless of the size of the network. It is left

as an open problem as to whether these bounds can be achieved or countered.

Another interesting approach to the problem of reducing the granularity of oblivious

routing algorithms is presented by Krizanc et al. [41] for the closely related problem of

batch routing. In this work, the authors take advantage of the fact that a very small set of

deterministic routing algorithms can be selected so that, with high probability, a particular

traffic pattern routed with one of these algorithms will have a low channel load. This

essentially allows the route granularity to be reduced to a constant. Some of the broadcast

aspects of the algorithm may be difficult to adapt efficiently to our problem of continuous

(as opposed to batch) routing, but the general approach is certainly noteworthy.

3.4.2 Hardware organization

Once we have a finite precision representation of our routing algorithm, we are still faced

with the task of randomly selecting a route based on the given probabilities. One approach

for computing routes issource routing, where a packet’s route is completely determined at

injection. This information is then attached to the packet and used at the intermediate hops

to direct the packet to its destination. The mechanics of source routing within the fabric are

well understood (see Dally and Towles [26], for example), so we focus on the initial route

look up in this section. An advantage of this approach is that it allows routing algorithms

to be loaded into memory at run time, so retuning of the algorithm, due to a fault in the

network, for example, is possible.

Two different hardware organizations for route lookup are shown in Figure 3.10. For
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both approaches, route lookup begins by creating a destination-random value (DRV) pair.

The random value can be created by a pseudo-random number generator and, for a path

weight granularity ofε (Section 3.4.1), containslog2 ε−1 bits. This pair is enough to ac-

cess all the possible paths from a particular source and the same route lookup hardware is

replicated at each source.

In the first approach (Figure 3.10[a]), the DRV pair is used to directly access an SRAM

that stores path indices. Then, for example, if pathp to destination 10 is used with probabil-

ity 1/8 and the granularity isε = 1/64, then 8 entries are placed in the SRAM ((1/8)/(1/64) =

8) all of which store the index of pathp. So, the total number of entries in the SRAM is

equal to the number of destinations over the path granularity orN/ε. Each entry stores a

path index and, if there are an average ofP paths per source-destination pair, each path

index is approximatelylog2 NP bits wide. Storing indices in the table reduces replication

for paths that are used more frequently than the minimum granularity — only the path in-

dices need to be replicated instead of the entire path description. Moreover, storing indices

allows paths that are subsequences of other paths to be overlapped in path storage as illus-

trated in Figure 3.10(c). Dally and Towles [26], Section 11.1.1, also covers this overlapped

storage technique.

Although storing path indices reduces the problem of replication in the SRAM-based

approach, it still seems wasteful — especially in the case where a relatively small number of

paths need to be stored with a high precision (low granularity). To address this, a hardware

organization based around a ternary content addressable memory (TCAM) is introduced

(Figure 3.10[b]). Unlike an SRAM, a TCAM is an associative structure, which is accessed

by providing a tag that is matched against tags stored in each of entry of the TCAM. The

output of a lookup is the address (entry number) of the matching tag(s). In the case of a

ternary CAM, each bit of the stored tags can take three values: zero (0), one (1), or don’t

care (X).

To see the advantage of a TCAM in storing path weights, consider an example where

the granularity isε = 1/64 and a path of weight28ε needs to be stored. In the SRAM

organization, that path’s index would simply be replicated 28 times. However, only three

entries are needed in the TCAM as shown in Table 3.2. By using don’t care bits, a single

entry can match against many DRV pairs. For the example, the probability of taking the
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Figure 3.10: Hardware organizations for route lookup.P is the average number of paths per
source-destination pair,N is the size of the network, andε is the path weight granularity.
(a) A direct, SRAM-based approach in which a destination-random value pair is used to
access a table of path indices. (b) An indirect, TCAM-based approach that uses the TCAM
to more efficiently store path weights. (c) Example of two path indices accessing a path
table.
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Table 3.2: TCAM encoding of a path of weight28ε destined to noded.

Tag Probability
d,00XXXX 1/4
d,010XXX 1/8
d,0110XX 1/16

path is28/64 and this is represented as1/4 + 1/8 + 1/16 in the TCAM. In general, any

weight can be decomposed into at mostlog2 ε−1 entries — one entry per bit of the weight.

So, the TCAM needs at mostNP log2 ε−1 total entries. Once a tag has been matched in the

TCAM, this address is used to index an SRAM that stores in the path indices. The number

of entries in this SRAM is the same as the TCAM and, as in the SRAM only organization,

the size of each entry islog2 NP bits.

Qualitatively, the SRAM-based organization is more efficient when the number of paths

is large and the TCAM-based organization is better at storing a smaller number of paths

with high precision. To make a quantitative comparison of these two organizations, we

derive simple estimates of the area of both approaches. For the SRAM-based approach, the

total number of SRAM cells needed is

Nε−1 · log2 NP.

The cells of a TCAM are about1.54 times larger than those of a SRAM8 and using this

conversion factor, the area of the TCAM-based organization is

1.54NP log2 ε−1 · log2 Nε−1 + NP log2 ε−1 · log2 NP

SRAM cells. While these area models ignore other structures such as decoders, they pro-

vide a good first-order estimate of the total area required. Using these models, the mini-

mum area organization is plotted as a function of the average number of paths per source-

destination pair and the granularity in Figure 3.11.

8The1.54 area factor is derived from the52λ×24λ TCAM cell used by Shafai et al. [58] and a41λ×28λ
6-transistor SRAM cell.
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Figure 3.11: Minimum area hardware organization for route lookup as a function of the
average number of paths per source-destination pair and the path granularity shown as a
phase diagram. A 64-node network is used. The solid lines show the transitions between
preferred implementations: a TCAM organization is preferred in the leftmost region, an
SRAM implementation in the middle, and the rightmost region is infeasible. Also, the
points shown indicate the number of paths and granularity for approximated worst-case
optimal routing algorithms in a 8-ary 2-cube. Optimal algorithms with path lengths that are
1.5 times and 2 times minimal are shown.
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As expected, the TCAM organization is preferred when the number of paths is small

relative to the granularity. However, the area models reveal that for the two algorithms

approximated in Figure 3.9, the SRAM implementation is preferred in all but one of the

cases. That is, the number of paths generated by approximating at a particular granularity

are more compactly implemented using the SRAM-based organization. Still, for networks

where the number paths or granularity is lower, the TCAM implementation may be attrac-

tive.

3.5 Adaptive routing

In this chapter, we have assumed all of our routing algorithms are oblivious and therefore

do not incorporate network state into their routing decisions. An important question is

how much this costs in terms of the worst-case performance of a network. As previously

mentioned, for many symmetric networks, specifically the torus [26, 61], it can be shown

that adaptive routing offers no advantage in the worst case.

To explore this performance gap in non-symmetric networks, we compared the perfor-

mance of optimal oblivious routing and adaptive routing for the faulty ring networks and

random networks considered in Section 3.3.2. We consider an ideal adaptive routing al-

gorithm that has perfect knowledge of the current traffic and minimizes channel load by

solving a maximum concurrent flow problem (MCFP) as described in Section 3.1.1. If

maximum channel load of this adaptive routing is thought of as a function of the traffic

pattern, it can be shown that this function is convex. Then, finding the worst traffic pattern

for an ideal adaptive algorithm is equivalent to maximizing this convex function. However,

maximizing convex functions is difficult in general. (Convex functions can beminimized

efficiently.) So, we determine a lower bound on the performance for adaptive routing by

simply selecting a large number of traffic patterns, solving the corresponding MCFPs, and

taking the worst channel load across all the patterns as a lower bound.

The surprising result after running this experiment on all the topologies from Sec-

tion 3.3.2 was that the gap between adaptive and oblivious routing was zero in all the

cases. Further experiments, though, reveal a gap does exist in some networks. To find

these examples, a systematic exploration of all simple, connected, directed graphs with a
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Figure 3.12: A network with a gap in the worst-case performance of an adaptive routing
algorithm and an optimal oblivious routing algorithm. If each channel has a bandwidth of 1
bit/s, adaptive routing supports 1 bit/s of injection and ejection bandwidth from each node
in the worst case while oblivious routing can only support approximately 0.875 bit/s per
node.

given number of nodes was performed. Since the number of nodes was necessarily small,

it was possible to find the exact worst case of adaptive routing by simply trying all possible

permutation traffic patterns. For all graphs with two and three nodes, the gap was zero.

Of the 83 unique graphs with four nodes, adaptive routing had a throughput approximately

14% higher than oblivious routing for the worst case in four cases. One of these topologies

is shown in Figure 3.12 as an example. The gap was zero in the 79 other cases.

While the gap between adaptive and oblivious appears to be quite small, there are other

aspects of adaptive routing that warrant its consideration in many cases. One of the draw-

backs of oblivious algorithms is their potentially large routing tables. As shown in Sec-

tion 3.4, the total size of routing tables tends to grow asO(N3) when trying to approximate

an arbitrary oblivious routing algorithm with constant error. Adaptive algorithms do not

generally need large routing tables such as these because their routing decisions are based

on dynamic information. Also, recent work by Singh et al. [61, 62] introduces new ap-

proaches to designing adaptive routing algorithms. Specifically, the work indicates that

approximate global information may be sufficient to design a practical adaptive routing

that makes good global decisions and, hence, has high throughput in the worst case.
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3.6 Related work

In parallel with the work on which this chapter is based, Räcke [54] developed an inter-

esting theoretical result on the relative performance of oblivious and adaptive algorithms

in the worst case. His work showed that in networks with undirected channels, oblivious

routing is alwaysO(log2 N) competitive with adaptive routing in terms of channel load.

That is, for any traffic pattern, an optimal oblivious routing algorithm loads a channel at

mostO(log2 N) times as heavily as an ideal adaptive algorithm. This is a slightly different

focus than our work as we are interested in the ratio of worst-case performance (as opposed

to the worst-case ratio of performance) taken over of a set of admissible patterns. Still, his

result adds more weight to the observation that oblivious routing algorithms can perform

very well in a worst-case sense. Also, while Räcke’s first results relied on an explicit, but

exponential time construction, Azar et al. [5] have since shown that his routing algorithm

design problem can also be formulated as a convex optimization problem.

Beyond the application of the ideas of this chapter in designing routing algorithms

for IP router fabrics, they can certainly be used in any situation where robust routing is

necessary. We explore this line of thinking in greater detail as part of Chapter 5, but it

is worth mentioning that both Applegate et al. [4] and Kodiamlam et al. [40] have started

exploring similar approaches to solve larger-scale routing problems in the Internet, such as

routing between the many separate IP routers typically located in a central office.

3.7 Summary

This chapter has demonstrated that designing worst-case optimal oblivious routing algo-

rithms is a tractable problem. The underlying reasons for this are that the worst-case chan-

nel load can be expressed as a convex function of the routing algorithm and that the set of

oblivious routing algorithms is convex. These features enable the design problem to be cast

as as a convex optimization problem. We showed two possible approaches to solving these

problems, one based on a linear programming method and another based on a subgradient

method. More detail on the subgradient method is contained in Appendix B.

Having a technique for finding optimal worst-case routing algorithms enabled several
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interesting comparisons. Exploring the tradeoff between locality and worst-case throughput

in the torus revealed that most existing algorithms lie far from the Pareto optimal set and

several new algorithms along with the idea of interpolated algorithms were introduced to

address this in the specific case of torus networks. Additional experiments showed that

worst-case optimal oblivious routing algorithms also tend to offer the largest advantage

over existing algorithms in highly irregular topologies. The details of taking the real-valued

results produced by optimization methods and adapting them for hardware implementation

were also explored. In general, worst-case optimal algorithms tend to spread their load

finely over many paths. This, combined with the fact that the worst-case is quite sensitive

to approximation error, necessitates large routing tables.



Chapter 4

Flow control

Broadly speaking, flow control refers to the coordination and scheduling of packets in time

through a network. While our focus to this point has largely been on routing (scheduling

in space), we now shift our attention to flow control issues specific to distributed router

fabrics. One of the challenges of building an efficient fabric is handling the variation in

IP packet sizes robustly. That is, for any packet size distribution, an IP router should

continue to deliver data at full rate. As discussed in Section 4.1, an interconnection network

typically subdivides a packet into smaller chunks, calledflits. Flits, or flow-control digits,

are then used as the unit of resource allocation throughout the fabric. Their small, fixed size

simplifies the fabric router design and also decouples fabric buffering requirements from

IP packet size.

However, in Section 4.2 we show that the standard approach of fixed-size flits leads

to large control overheads. In a typical network, for example, fixed-size flits require ap-

proximately 0.6375 control bits to be sent for every data bit. To solve this problem, we

introduce the idea of variable-size flits. As we show, variable-size flits reduce overhead in

our example to just 0.2 control bits per data bit while only requiring minor changes to a

typical router implementation.

Variable-size flits tackle the overheads that are most problematic in small packets, but,

as discussed in Section 4.3, fabric designers must also carefully consider long-packet ef-

fects. Experimentally, long packets tend to drastically reduce the throughput of a fabric

— sometimes by over 50%. This loss is attributed to the fact that long packets are spread

78
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over many fabric routers, thus coupling channel resources and reducing throughput. The

solution is to divide long IP packets into many smaller fabric packets. Combined with

variable-size flits, this approach does not increase control overhead, but does avoid the loss

in performance associated with longer packets.

Finally, IP routers are generally designed so that the flow of packets between a source-

destination pair leaves the router in first-in first-out order. This requires the use of reorder

buffers at the outputs. In Section 4.4, we present a window-based scheme for reordering

and develop expressions for both the added latency due to reordering and the size of the

reorder buffer. As these expressions show, reordering latency and reorder buffer size are

related to the variation in delays through the network, the rate at which packets are injected

into the fabric, and the burstiness of this rate.

4.1 Background

Before we delve into several of the flow control issues specific to distributed fabrics, we

present a brief background on both IP packets and the flow control commonly used in

interconnection networks.

4.1.1 IP packets

The most relevant feature of Internet protocol (IP) packets to the design of a switch fabric

is their variable size. IP packets can be at most 64K bytes [53] and valid packets as small as

28 bytes can be constructed.1 Of course, most traffic on the Internet is TCP/IP for which the

minimum packet size is a 40 byte TCP acknowledgment (ACK). Also, much of the traffic

is delivered across at least one segment of an Ethernet network whose maximum transfer

unit is 1500 bytes [33].

Figure 4.1 shows a typical distribution of packet sizes measured at an Internet router.

The most common packet sizes are 40 and 1500 bytes corresponding to TCP ACKs and

the Ethernet maximum, respectively. In terms of the number of bytes of data delivered

through routers, 1500 byte packets dominate. For example, in the distribution of Figure 4.1,

1An ICMP packet can be constructed with a 20 byte header and 8 bytes of data.
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Figure 4.1: A distribution of Internet (IP) packet lengths captured at the University of
Memphis on October 4th, 2002.

almost 75% of the delivered bytes are contained in 1500 byte packets. If routers were

designed for this typical distribution, packet formatting issues would be largely moot — as

long as the flit size was chosen to be much smaller than 1500 bytes, any overhead due to

fragmentation and control information would be amortized over the long packet. However,

current practice is to design the router to be robust to changes in the packet distribution.

Under this consideration, the extremes (minimum and maximum) of the distribution play a

more important role as we will see.

4.1.2 Flow control in interconnection networks

Most of today’s routers are built using flit-buffer flow control [25, 26]. The key idea behind

this approach is to decouple the unit of routing through the fabric from the unit of resource

allocation where resources are primarily channels and buffers. Figure 4.2 shows a typical

packet formatting for this flow control method. As shown in the figure, a packet is the unit

of routing and contains control information that is used by the fabric routers to determine

its route. For delivery through the network, the packet is split into smaller flits or flow-

control digits. These flits follow the same route through the network, so a packet is always
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fabric packet

Figure 4.2: A typical packet format for flit-buffer flow control. Packets are the unit of rout-
ing and may contain route information and packet sequence numbers (SN), for example.
These packets are broken into one or more flits for transmission across the network. Flits
contain a virtual-channel identifier (VC) that ties them to the same packet and may also
contain other control information.

delivered as an entire unit. However, each flit must individually vie for access to each of

the resources (channels and buffers) needed for delivery. Then, the flow of flits is pipelined

through the network — as the first (head) flit arbitrates for access to a channel, the second

flit arbitrates for access to the channel just held by the first flit, for example.

As is common in many interconnection networks, distributed fabrics also take advan-

tage of virtual channels [22]. That is, the buffer resources associated with a single physical

channel are divided to support many parallel, virtual channels. Each virtual channel is mul-

tiplexed onto the single physical channel. This allows, for example, a packet traveling on

one virtual channel to “pass” a blocked packet traveling on a different virtual channel (VC).

To isolate traffic destined to different outputs of the fabric and in different service classes,

a VC is typically associated with each service class-destination pair. This use of VCs to

isolate traffic types is analogous to the idea of providing virtual-output queues [44, 67]

at each of the inputs of an input-queued crossbar. The result is a need for 100s to 1000s

of VCs. Flit-buffer flow control makes supporting this many virtual channels much more

manageable as each fabric router only needs to able to store a single flit per VC instead of

an entire packet.
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4.2 Flit sizing

A typical interconnection network uses a fixed-size flit and, in this case, selecting a flit size

that minimizes control overhead is a tradeoff between fragmentation and per-flit overheads

— a small flit size results in more bandwidth dedicated to the per-flit control information,

while a large flit wastes bandwidth for packets that do not fit into an integer number of

flits. As we show in Section 4.2.1, even for an optimally chosen flit size, this results in high

overheads. For our example network, 0.6375 control bits are required per data bit. To solve

this problem, we introduce variable-size flits (Section 4.2.2), which greatly reduce over-

heads. For the same example network, only 0.2 control bits are required per data bit. Since

the size of a variable-size flit is bounded to a small range, their hardware implementation

remains simple and requires only small modifications to a typical router microarchitecture

(Section 4.2.3).

4.2.1 Fixed-size flits

For simplicity of implementation, most interconnection networks are built using fixed-size

flits. In picking a flit size, the designer must take router microarchitecture, fragmentation,

and control overheads into consideration. The microarchitecture itself generally places an

upper and lower bound on the size of an individual flit. The upper bound arises from the

limited buffering on chip. Since resources are allocated in units of flits, there must always

be enough buffering to store a flit before that flit can be sent. Moreover, the buffering of a

fabric router is generally split between many parallel virtual channels, one for each output

port of the fabric, so that maximum flit size is limited to be smaller than the maximum IP

packet size. Small flits stress the resource allocation speed of a router. Since resources

must be allocated every flit arrival time, smaller flits require faster, more deeply pipelined

allocators. See Dally and Towles [26] for further details on how flit-size affects microar-

chitecture.

Overhead due to fragmentation is a direct result of our choice of fixed-size flits. For

example, if the flit size is chosen so that the flit body can hold 40 bytes, sending a stream of

41 byte packets results in an overhead of almost 100% because each 41 byte packet must

be split into two 40 byte flits. Obviously, picking a small flit size mitigates this effect, but,
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at the same time, it increases the overhead due to control.

Control overhead is introduced for both packets and flits. At the packet level, routing

information, a sequence number, and check field are added to each IP packet. The routing

information is internal to the router fabric and is used to direct the packet to its output

port. A sequence number is also attached to the packet because the fabric itself does not

guaranteed in order delivery of packets and reordering may need to be performed at the

output port (Section 4.4). The packet check field protects both the routing information

and sequence number. A packet data check field is optional, but because the IP packet

itself contains a checksum field, a packet-level check would only truly be necessary if the

internal links of the fabric had a higher error rate than the long-haul optical fibers that

connect IP routers.

At the flit level, a virtual channel field identifies the packet to which a particular flit be-

longs. To provide isolation between traffic destined to different outputs, a virtual channel

is provided for each output port of the network. Once a flit leaves a particular router, flow

control information must be sent back upstream to indicate the newly available buffer. As-

suming credit-based flow control [26], this requires one credit to be sent per flit containing

the virtual channel. Finally, both flits and credits are generally protected with a check field.

Let P0 be the amount of per-packet control information (in bits) and letF0 be the

amount of per-flit control information. (We will discuss typical values for these overheads

shortly.) Then, the total amount of data transmitted to sent a packet ofP bits can be written

as a function of both the packet size and the flit sizeF as

D(F, P ) = (F0 + F )

⌈
P0 + P

F

⌉
. (4.1)

The left term of (4.1) is the size of a single flit and the right term is simply the number flits

in the packet — rounding up to the next multiple of the flit size accounts for the increased

overhead due to fragmentation.

The next question is how to select a fixed value ofF to minimize overhead while being

robust to the packet size distribution. We first defineα as worst-case number of total bits

sent per true data bit,

α(F ) = max
Pmin≤P≤Pmax

D(F, P )/P,
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wherePmin andPmax are the minimum and maximum packet sizes, respectively. We assume

Pmin = 40 bytes andPmax = 1500 bytes for the rest of this chapter. Then, minimizing

overhead is a matter of selecting the value ofF that minimizesα.

This expression forα can be greatly simplified by observing the behavior ofD(F, P )/P

for a specific value ofF . As P is increased,D(F, P )/P tends to decrease as control

overheads are amortized over the larger packet size. However, periodic “jumps” occur at

the packet sizes that correspond to the addition of another flit. This is shown in Figure 4.3.

The peaks of later jumps (larger packet sizes) decrease because the packet overhead is being

amortized over a longer packet. Based on this, the packet size that maximizes overhead is

always the minimum packet size or the smallest packet that requires one more flit than the

minimum-size packet. Thus, we can rewriteα as

α(F ) = max

{
D(F, Pmin)

Pmin
,
D(F, Pjump)

Pjump

}
. (4.2)

where

Pjump = 8d(F d(P0 + Pmin)/F e − P0)/8e (4.3)

The outermost ceiling in (4.3) accounts for the fact that IP packets have integer byte lengths

(multiples of 8 bits). Also, (4.2) holds as long as the maximum packet size occurs after the

first jump (Pmax≥ Pjump).

Following from (4.2), it is interesting thatPmax plays such a minor role in determining

the optimal flit size. While one might suspect that finding the worst-case overhead over

larger and larger ranges of packet sizes (increasingPmax) would incur more overhead, this

is not the case. For example, ifPmax≥ 2Pmin, overhead becomes independent ofPmax. This

follows from the simple observation that sending two packets always incurs more overhead

than sending one packet of twice the length. Thus, as correctly reflected in the bounds,

overhead is largely insensitive to maximum packet size.

To quantify the effects of overhead on the choice of flit size, consider a typical 256-

port fabric implemented as a 2-dimensional torus network. Source routing is used and all

routes can take at most two turns, which requires 18 bits to encode (2 bits for the initial

direction and each turn and 4 bits for the length of each run). The number of sequence

numbers required is determined by the largest number of packets in flight in the fabric
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Figure 4.3: An example of overhead vs. packet length. As shown, overhead is maximized at
either the minimum-size packet or the first “jump” corresponding to sending an additional
flit. The peaks of later jumps (greater packet sizes) are always smaller than the first.

from a particular input. This is determined by the bandwidth-delay product of the input

and, assuming a typical 10 Gb/s input link, a 12-bit sequence number field is sufficient to

support a large delay of approximately 164µs for minimum size packets. Also, the 256

virtual channels, one per output, are encoded in 8 bits in both the flits and credits. These

overheads are summarized in Table 4.1.

The resulting overhead (α) as a function of the flit size is shown in Figure 4.4. For this

example, the best flit size is 107 bits with an overhead of 1.6375. That is, for each data

bit of an original IP packet, 1.6375 total bits must be sent over the fabric. This is a fairly

substantial overhead with more than 1 of every 3 bits sent over the network used for control

information.

Finally, selecting a flit size of 107 bits might give a hardware designer pause because

most datapaths are powers of two or small multiples of a power of two. However, 107 just

happens to be a prime number. This problem can be avoided, though, by providing a small

amount of internal speedup to the routers. For example, a 107 bit flit could be aligned to

a 16-bit data path by rounding 107 up to 128 inside the router. This wastes bandwidth

due to fragmentation, but if the router is built with an internal bandwidth128/107 ≈ 1.2
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Type Description Size (bits)
packet route information 18

sequence number 12
check 4

flit virtual channel 8
check 4

credit VC 8
credit check 4

Table 4.1: Summary of control overheads for a typical 256-node network with source rout-
ing (P0 = 34 bits andF0 = 24 bits).
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Figure 4.4: Control overhead as a function of the flit size forP0 = 34 bits andF0 = 24 bits.
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times greater than its external (channel) bandwidth, no expensive channel bandwidth will

be wasted. Such a small internal speedup is essentially free for the router chips because

their area is generally pin limited.

4.2.2 Variable-size flits

Variable-size flits inherently tackle the overhead due to packet fragmentation. Instead of

having to split a 41-byte packet into two 40-byte flits, for example, with variable-size flits

that same packet could be split into a 40-byte flit and a 1-byte flit, eliminating fragmen-

tation. Of course, that same 41-byte packet could be split into a 21-byte flit and 20-byte

flit or could be contained in a single 41-byte flit. In fact, all packets could be sent in just

a single flit — this would certainly eliminate fragmentation and would also minimize the

total flit control overhead. However, this approach is equivalent to abandoning flits and

their implementation advantages, such as small buffers and fine-grain resource allocation.

Rather, we introduce an implementation of variable-size flits that eliminates fragmenta-

tion, but constrains flit sizes to maintain the advantages of distinguishing between flits and

packets.

Independent of other constraints on the minimum flit size (Fmin) and the maximum

flit size (Fmax), an important observation is that fragmentation can always be completely

eliminated when

2Fmin ≤ Fmax, (4.4)

Fmin ≤ Pmin + P0. (4.5)

To see this, consider the splitting of a packet into flits. Without loss of generality, assume

the packet contains betweenFmin and2Fmax− 1 bits. Maximum size flits can always be

extracted from a longer packet until this condition is met and by (4.4) no packet shorter

thanFmin bits can be sent. Then, if the packet contains no more thanFmax bits it is sent as

a single flit. Otherwise, theX bits of the packet are split into abX/2c bit and adX/2e bit

flit. Applying (4.4) and the constraints onX,

Fmin ≤ bX/2c ≤ dX/2e ≤ Fmax.
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By splitting the packet into two nearly equal flits, we are ensured both flits are at least

minimum size. So, to eliminate fragmentation, the maximum-size flit should be at least

twice the minimum-size flit.

The next consideration in constraining the size of a variable-size flit is the correspond-

ing impact on control overhead. Intuitively, a larger maximum-size flit will reduce control

overheads because the per-flit overhead (F0) is amortized over a longer flit. While this is

true for a fixed packet size, we are optimizing over a range of packet sizes. As with the

fixed-flit size, the worst control overheads can only happen for two packet sizes: the mini-

mum packet sizePmin + P0 or at one plus the next largest value ofP + P0 that is an integer

multiple of Fmax. This can be used to bound the maximum flit size by first assuming a

minimum packet fits into a single flit (Fmax ≥ P + P0). Then, as long as the overhead at

the next multiple ofFmax is less than the overhead for sending a minimum size packet in a

single flit, further increasing the maximum flit size will not reduce overhead. Solving for

that maximum flit size gives

Fmax≥ 2Pmin − (Pmin − 1)(P0 + 1)

P0 + F0

− 2.

From this result, it is sufficient forFmax = 2Pmin + 2P0 to minimize control overhead

and then selecting a minimum flit size ofFmin = Pmin + P0 ensures no overhead from

fragmentation. As long as the hardware has enough buffer space to store two minimum-

length packets per virtual channel, fragmentation can be eliminated and overhead can be

reduced to that of sending a minimum-length packet in a single flit

Pmin + P0 + F0

Pmin
.

Moreover, as we will explore in Section 4.2.3, the 2-to-1 ratio of the maximum to minimum

flit size allows a simple implementation.

To see the quantitative benefit of variable-size flits, we return to the example overheads

from Table 4.1. In addition to comparing to fixed-size flits, we also compare to the approach

adopted in the Avici TSR router fabric [24]. In the Avici TSR, two flit sizes are supported:

a single flit and a double flit where two flits worth of data from the same packet are sent
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back-to-back while sharing a single set of control information. From Section 4.2.1, the

optimal flit size for the fixed-size flit approach is 107 bits, which yields an overhead of

1.6375 bits per original data bit. For the Avici TSR approach, the optimal single flit size

is 58 bits, reducing overhead to about 1.464. Finally, using variable-size flits reduces the

overhead to 1.2 when accounting for 6 additional bits per flit to specify its length — 26.7%

lower than the fixed-size approach and 18.0% lower than the Avici TSR approach. Thus,

variable-size flits can offer a significant reduction in control overhead.

4.2.3 Implementation

Variable-size flits can be implemented with a just few changes to a fabric’s routers. For this

section, we assume a typical input-queued microarchitecture: arriving packets are queued

in buffers associated with input, queued packets arbitrate for access to a central crossbar

switch, and, upon a successful arbitration, packets are switched from input to output. See

Dally and Towles [26] for further details of input-queued router architecture.

Figure 4.5 shows how an input queue could be constructed to support variable-size

flits. As illustrated, incoming flits are first deserialized in an input shift register. This shift

register is used to align the flits to the input queues (typically implemented as an SRAM).

To simplify the management of this input queue, it is allocated in units of flits and each

queue entry is large enough to store a maximum-size flit. Since minimum-size flits are at

least half the size of maximum-size flits, this ensures at least 50% utilization of the input

buffer space. A virtual channel (VC) controller is responsible for managing this buffer as

well as tracking the status of each of the VCs (e.g. idle, waiting for arbitration, waiting for

credits, etc.).

A key aspect feature of the microarchitecture is that all control decisions are synchro-

nized tophit or physical digit boundaries. A phit is simply a further subdivision of a flit

and its size is chosen based on how frequently a router can make control decisions, such

as switch arbitration. For example, if router decisions could be made at 500MHz and the

channel rate was 10 Gb/s, a reasonable phit size might be1010/(5 · 108) = 20 bits or about

3 bytes. Then, assuming 3 bytes per phit, a 43 byte flit would be rounded up into fifteen

3-byte phits. This allows the entire router pipeline to work with fixed-size units of phits
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Figure 4.5: Input microarchitecture for a variable-size flit fabric router. Arriving packets
are deserialized into entire flits with a shift register and then stored in a flit packet that is
wide enough to store a maximum-size flit — the gray areas of the packets represent unused
data in a less than maximum length flit. All control decisions are synchronized to phit
boundaries.

and is much simpler than dealing with variable-size flits directly. A similar approach of

making control decisions on phit boundaries is also used in the Alpha 21364 [47], but with

the emphasis on reducing latency.

Another consideration in implementing a variable-size flit router is how flit and credit

encoding is performed on the channels. The credit-based flow control method mentioned

in previous sections often takes advantage of the fact that the average flit rate is equal to the

average credit rate — each credit corresponds to a flit that had previously traveled across

the channel in the opposite direction. Because of this relationship, returning credits can be

piggybacked on the flits traveling in the opposite direction across a bidirectional channel

pair. However, this does not work with variable-size flits because the rate at which flits

are traveling across the opposite directions of a channel pair may differ because the size

of the flits is different. For example, if 40 byte flits are traveling across a forward channel

and 80 byte flits are traveling across the opposite channel, there need to be two credits per

flit across the opposite channel. This effect is shown in Figure 4.6. A simple solution to

this problem is to include space to piggyback enough credits in the worst-case mismatch
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Figure 4.6: An example of flit and credit rate mismatch that can occur when credit-based
flow control is used with variable size flits. Router A is sending 40 byte packets to router
B and router B is sending 80 byte packets to router A. Since credits are returned to router
A at only half of its flit rate, it will run out of credits and idle the channel.

of rates. Since we select a ratio of two between the maximum and minimum flit sizes, two

credits are included with each flit.

Finally, care must be taken in the recovery of the channel in case of a bit error. When

such an error is detected using the check bits of a flit, the length field of that flit must be

considered as corrupted. This means the router no longer knows when the current flit ends

and the next flit begins. Before the error is corrected, the routers must resynchronize. One

approach would be to send a special flag to the upstream router using the opposite channel.

This flag would first initiate a resynchronization procedure followed by a recovery of the

corrupted flit, if necessary. Of course, this does not handle the case of when the opposite

channel has also lost synchronization. Fortunately, such an event would be exceedingly rare

and the efficiently of the recovery operation would not be important. The further details of

robust synchronization recovery are left as future work.

4.3 Packet sizing

In the previous sections, we have not make a distinction between IP packets and fabric

packets. For an interconnection network, packets are the unit of routing — all the flits in a

fabric packetmust follow the same path from source to destination. Also, as part of the IP

protocol, eachIP packetmust leave the router as contiguous bits. However, this does not

preclude breaking arriving IP packets into one or more fabric packets, transferring these

fabric packets from source to destination, and then reassembling the original IP packet at

the output before it leaves the IP router. Moreover, as we show in this section, not breaking
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Figure 4.7: Saturation throughput of an 8-ary 2-cube (torus) network for various IP packet
sizes under uniform traffic. Both the throughput of network in which IP packets are sent as
a single fabric packet (“no splitting”) and the throughput of a network in which IP packets
are split into single flit fabric packets (“splitting”) are shown.

long IP packets into smaller fabric packets can result in an over 50% loss of throughput. The

solution is to divide these long packets into fabric packets that are approximately the size

of minimum-size IP packets. This avoids additional overhead when used in conjunction

with variable-size flits (Section 4.2.2) and eliminates the loss of throughput associated with

long packets.

Figure 4.7 shows the effects of long packets on the saturation throughput of a 8-ary

2-cube network. For both simulations, the fabric routers are designed to model the event-

driven routers used in Avici’s distributed router fabric [24]. A separate virtual channel

is used for each of the 64 destinations and each router has 2 flits of buffering per virtual

channel. In addition, Valiant’s routing algorithm is used. The size of incoming IP packets

is varied along the horizontal axis. If these incoming IP packets are not split into smaller

fabric packets, throughput degrades from approximately 90.6% of the network’s capacity

to roughly 41.0%. A second experiment splits each of the incoming IP packets into many

single-flit fabric packets and only a modest reduction in throughput, to 85.6% of capacity,

is observed.
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The dramatic loss in throughput as packet length increases is due to the fact that the

fabric routers have relatively shallow buffers. As mentioned in Section 4.1.2, an IP router

needs a virtual channel (VC) for each service class-destination pair to prevent blocking

and the result is a fabric router that needs to support 100s to 1000s of VCs. This, in turn,

restricts the amount of buffering associated with any single VC due to area constraints.

Since each VC must also have at least one flit of buffering, this also limits the maximum

flit size.

When sending a fabric packet longer than the amount of per-VC buffering, it must be

the case that this packet is spread over multiple fabric routers. The upside of this approach

is that it allows the fabric packet and flit sizes to be chosen independently. However, the

downside is that spreading packets over multiple routers creates a coupling between routers

— for a packet to flow through the network, all of the routers that it is spread across must

cooperate. If just one of the cooperating routers is busier than the others, then it limits

the rate at which the packet can progress. This is the primary source of the throughput

loss when sending long packets through the network. It also suggests that an important

consideration is the ratio of a packet’s length to the amount of per-router VC buffering. For

example, a ratio of two implies that a packet is spread across at least two routers.

An upper bound on the saturation throughput for a certain packet length can be con-

structed by only modeling the router coupling that occurs at source nodes. We consider the

case of one VC per fabric destination (no distinct traffic classes) and this implies that each

destination serves a single packet at a time. The choice of the order in which a particular

destination serves packets is distributed across the fabric routers: as packets for the same

output merge at the different fabric routers, local arbitrations select which packets are for-

warded. Since these local arbitrations are independent and fair, they can be approximated

by randomly selecting the next packet served by a destination from the sources that have

packets waiting for that destination.

These assumptions lead to a simple approach for modeling the throughput of packets

while only considering coupling at sources:

1. Virtual-output queues are maintained at each source. IP packets arriving at a fabric

source are queued according to their destination.
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2. Each destination randomly selects a source from which to serve its next packet from

among the sources with packets queued for that destination.

3. The maximum number of bits of a packet are assumed to be queued in the network

when service starts. This maximum number of bits is equal to the length of a packet’s

path (in hops) times the number of bits of buffering per VC.

4. The packet is served at the destination’s full rate for all the bits assumed to be in the

network or the packet’s entire length, whichever is shorter.

5. If the entire packet cannot be stored in the network, any extra bits are served at the

rate of the source. The source rate is equal to its bandwidth divided by the number

of packets it is currently serving.

The first two parts of the model are simply a restatement of the operation of a typical fabric

network. Parts three and four form an ideal network — when a destination begins service

on a packet, it is only limited by the destination’s bandwidth. Part five incorporates the

fact that even an ideal network only has a finite amount of queuing and packets that cannot

fit within these queues must be served from the source. This introduces coupling — both

the source and destination need to cooperate to serve long packets. Since the destinations

independently choose the next source to serve, multiple destinations may simultaneously

need access to the same source. In these cases, the source becomes a bottleneck and limits

the service rate of all the destinations accessing it.

Figure 4.8 shows the throughput of this simple model for the network used in the first

experiment of this section. While meant as an upper bound, the model shares the approx-

imate features of the full network simulation. Specifically, the packet lengths with the

steepest decline in throughput roughly coincide as do the points where the both curves be-

gin to level out. The actual network does show an earlier decline in throughput and this is

attributed to coupling between routers that begins to occur as soon as a single packet begins

to spread across multiple routers. The model ignores this effect. Also, despite the very op-

timistic network assumed by the model, throughput is still reduced to approximately 55%

of capacity for very long packets.
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Figure 4.8: A simple model of the limits on saturation throughput due to packet length.

4.4 Reordering

In striving to maximize the throughput of a distributed router fabric, we have made design

choices that can both reorder the sequence of IP packets traveling from a particular source

to a particular destination and can also reorder the data within an IP packet. These effects

are due to the fact that fabric packets can follow different paths with potentially different

delays through the fabric and that long IP packets are broken in several smaller fabric

packets, respectively. At the very least, if an IP packet is broken up for transmission across

the fabric, it must be reassembled in its original reception order before being transmitted

out of the IP router. Moreover, most IP routers are designed to avoid (or at least limit)

the reordering of packets flowing between each source-destination pair. That is, the flow

of data between each source-destination pair should appear to be in first-in first-out order

when observing the external ports of the IP router.

Packet ordering is typically required because TCP, the congestion control mechanism

use by most Internet traffic, performs poorly in the presence of misordered packet arrivals.

See Blanton and Allman [10], for example, for specific details about TCP and reordering.
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This is rarely a problem in centralized fabric architectures, which naturally maintain order-

ing, but other, more scalable fabric organizations often have to deal with this problem. For

example, Iyer and McKeown’s parallel packet switch [36] solves this problem by ensuring

a limited amount of missequencing within their switching fabric and then providing a small

coordination buffer at the output of the switch to reorder the packets. Keslassy [39] adopts

a frame-based approach in his load-balanced router that also leads to a bounded amount of

missequencing. However, these approaches inherently rely on the topology of their fabrics

— both have Clos-like organizations. The Clos topologies combined with the synchronous

operation of the routers leads a much more deterministic progression of packets through

the fabric. These approaches do not easily extend to our distributed fabrics because of the

fabrics’ potentially irregular topologies and no assumptions about router synchronization.

To reorder packets in a distributed router fabric, we use a common sliding-window

approach such as that Tanenbaum [68]. In this approach, each source attaches a unique

sequence number to each fabric packet — this is the same sequence number we accounted

for in the overhead calculations of Section 4.2. Each source maintains a sequence number

counter for each destination. So, for example, if a source’s counter associated with desti-

nation 1 has a value of 10, the next packet sent from that source to destination 1 is assigned

the sequence number 10. Then, the counter is incremented and the next packet from that

source to destination 1 receives a sequence number of 11 and so on. At each destination,

a separate reorder buffer (ROB) is maintained for each of the sources. An arriving packet

is then written into the buffer associated with its source using its sequence number to de-

termine the address in the buffer to use. Continuing the example, the packet with sequence

number 10 is written into entry 10 of the buffer associated with its input. Each destination

also keeps counters for each source queue that remembers the sequence number of the next

in-order packet. So, if the destination’s counter for our example packet was 10, the packet

could immediately leave the destination’s port of the IP router and the counter would be

incremented to 11. However, if the counter was 9, the previous packet has not yet been re-

ceived, so packet 10 would be queued and wait until packet 9 arrived. We also assume that

the ROB is organized as a circular buffer so that sequence numbers are eventually reused.

We will focus on the latency of reordering and the size requirements for ROBs for the

rest of this section. The implementation details are beyond the scope of this thesis, but it is
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worth noting that a practical implementation would use anO(1) approach to maintaining

and querying the ROBs. That is, only a constant number of buffer entries could be changed

or examined each cycle. Also, it would be ideal if the ROBs could be kept on a single chip

to eliminate expensive off-chip memory references.

Figure 4.9 shows the additional latency incurred by reordering packets under two dif-

ferent traffic patterns in the same router fabric. The left graph shows uniform traffic with

single-flit IP packets and the right graph shows bit complement traffic2 with 20 flits per IP

packet. These long IP packets are broken into single-flit fabric packets for transmission

and then reordered at the destination. As we will see shortly, the difference in reordering

latency is explained by two factors. First, the bit complement pattern is a permutation —

each source sends to a single destination. Since reordering occurs for source-destination

pairs, permutation patterns offer the most chances for reordering as every packet from a

particular source needs to stay in order with respect to all the other packets leaving that

source. This is in contrast to the uniform pattern, where only one of everyN packets from

a source go to a particular destination. Second, the 20-flit IP packets of the bit complement

case lead to a more bursty injection process — an arrival of a single IP packet creates a

burst of 20 fabric packets, all of which must be ordered.

From these two experiments, we can also get a sense of the size requirements for a

reorder buffer. For example, at an offered load of 40% of capacity in the bit complement

case, the average reordering latency is approximately 113 flit cycles.3 By Little’s Law, each

destination’s reorder buffers contain a total of113 · 0.4 = 45.2 flits on average, which is

quite small. However, in terms of implementation, the range of ROB occupancies is just as

important as the average. If a ROB becomes full, it must apply backpressure to the fabric

to prevent lost packets.4 This, in turn, reduces the throughput of the fabric. With the goal

of ultimately developing an expression for the size of the ROB, we first focus on the delay

incurred by reordering.

2In bit complement traffic, each source sends to the destination whose address is the bit-wise complement
of the source’s address.

3A flit cycle is the time for a minimize-size flit to be injected into the fabric from the source — the flit
size divided by the source bandwidth.

4This backpressure must be applied directly to the source nodes to ensure the ROBs do not overflow. As
an example, this could be accomplished with end-to-end packet . If instead the ROB simply stopped accepting
packets when it became full, deadlock would occur.
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Figure 4.9: Two cases of the average fabric and total latency vs. offered load in an 8-ary
2-cube fabric. The left graph shows the performance of single flit IP packets and uniform
traffic; the right graph shows the performance of 20 flit IP packets, which are broken into
20 single-flit fabric packets, under bit-complement traffic. Valiant’s routing algorithm (Ta-
ble 3.1) is used.
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For a particular packet injected into the fabric at timet be to delayed in a ROB, an

earlier packet sent from the same source to the same destination must still either be in the

ROB when the later packet arrives or yet to arrive at the ROB. Denote the fabric delay of a

packet sent at any timet asD(t) and letA(t) be 1 if a packet was sent at timet and zero

otherwise. Figure 4.10 shows the condition when the packet sent at timet is delayed by an

earlier packet sent at timet− k.

As illustrated by the figure, the later packet must first wait for the arrival of an earlier

packet, which occurs at timet−k+D(t−k). Then, all the packets sent from timet−k+1

until time t− 1 must be drained from the ROB before the packet sent at timet can leave.5

The resulting ROB delay of the packet sent at timet is denoted as∆ in the figure. In

Figure 4.10, we have assumed that the packet sent at timet− k is critical. That is, once it

arrives in the ROB buffer, the buffer drains continuously until the packet sent at timet is

removed from the ROB. In general, any packet sent before timet can be critical. Thus, the

ROB delay of the packetR(t) is the maximum over all earlier packets,

R(t) = max
k>0

(
D(t− k)−D(t) +

∑t−1
i=t−k A(i)− k

)
, (4.6)

whereD(t− k) is defined as zero when no packet was sent on cyclet− k.

Although the queuing behavior of a ROB is complex, (4.6) illustrates that ROB delay

is affected by both the difference in fabric delays,D(t − k) − D(t), and, less obviously,

the fabric injection processA. A fabric with a wide range of delays will create more

opportunity for reordering and, at the other extreme, a fabric with constant delay eliminates

all reordering. Moreover, design techniques that reduce the variation in network delay,

such as the use of age-based arbitration [26], also reduce reordering costs. The connection

between ROB delay and the injection process is because bursty injections also introduce

more reordering — it takes less variation in network delay to cause reordering if packets

are injected in closely-spaced bursts compared to more evenly-spaced injections.

The expression for ROB delay (4.6) can also be used to derive simple models or bounds.

Chernoff bounds can be used to express ROB delay in terms of the variance of network de-

lay and the injection process, but these bounds tend to be loose because delay distributions

5For clarity, this model assumes fixed-size flits and that the reorder buffer can drain at one flit per cycle,
but it can be extended to more general situations.
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Figure 4.10: Reorder buffer timing for a packet sent on cyclet being delayed by a packet
sentk cycles earlier. The delay∆ is incurred because the later packet must first wait for
the earlier packet to arrive and then wait for packets sent betweent andt− k to drain from
the reorder buffer.

typically fall off exponentially. For illustration, we use the simple bound

Pr [ROB delay≥ x] ≤
∑

k>0

Pr
[
D(t− k)−D(t) +

∑t−1
i=t−k A(i)− k ≥ x

]
(4.7)

and further assume all delays and injections are independent. Then, by using a measured

delay distribution from the uniform traffic case of Figure 4.9, a simple model of ROB delays

can be derived. The resulting model, and its comparison to measured ROB delays, is shown

as the left graph of Figure 4.11. For this case, the simple approximation worked extremely

well, but is admittedly less accurate in general.

We can use the reordering delay to determine the number of packet entries required in

the ROB. We begin with a ROB that can hold an infinite number of entries. At the instant

a new packet sent at timet arrives at the ROB, the number of entries required is exactly

the difference in the sequence number of the arriving packet and the sequence number of

the next packet to leave the ROB. This next packet is the oldest outstanding (unordered)

packet still in the fabric or ROB. Then, the probability the ROB size exceedsx packets is

exactly the probability that the packet sentx packets before the newly arriving packet is

still outstanding. Assuming this packet was sentk cycles earlier, it is still outstanding if

the time it leaves the ROB (t − k + D(t − k) + R(t − k)) is greater than the arrival time

of the new packet (t + D(t)). Accounting for the probability that the packet sentx packets
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Figure 4.11: Distribution of reordering delay and reorder buffer size for an 8-ary 2-cube
network with 1 flit per packet and uniform traffic. Both measured data and approximations
based on (4.7) and (4.8) are shown.

ago was sentk cycles ago gives

Pr [ROB size≥ x] =

Pr

[⋃

k>0

(∑t−1
i=t−k A(i) = x

) ∩ (D(t− k) + R(t− k)− k ≥ D(t))

]
. (4.8)

As would be expected, the ROB size is directly tied to the ROB delay and any technique to

reduce reordering delay will also reduce the ROB size. Figure 4.11 also shows an approxi-

mate distribution of the ROB size using the same set of assumptions as in the approximation

of the reorder latency compared to measured values.

The key point emphasized by these analyses is that reducing reordering delay and re-

order buffer size is about reducing both fabric delay variation and injection variation. A

designer might have several options for reducing delay variation. As we previously men-

tioned, using age-based arbitration in the fabric (oldest packets first) tends to reduce delay

variation. Fabric speedup would also reduce variation as over-provisioned fabric channels

could handle more congestion before needing to delay packets. Delay variation is also
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connected to routing — if a particular source-destination pair uses paths whose lengths (in

terms of the number of hops) vary greatly, delay will also tend to vary greatly. So, for ex-

ample, a designer could try to eliminate long paths as part of either the initial formulation

of a path-based worst-case optimal routing problem or during the randomized rounding

of the routing algorithm’s path weights (Section 3.4.1). Another possible approach is to

design a routing algorithm to minimize variance — for a particular average path length,

the variance in packet length is convex in the routing algorithm’s path weights (pkij). By

sweeping average path length and holding the worst-case throughput constant, for example,

a low-path-length variance routing algorithm could be designed. The options in reducing

injection variation are less involved, but a simple approach is to ensure each source injects

packets into the fabric round-robin by destination. That is, packets to the same destination

are interleaved evenly with packets to other destinations. Of course, for permutation pat-

terns, this approach does not affect the injection because all packets at a source are all for

a single destination.

4.5 Summary

As illustrated in this chapter, flow control plays a critical role in determining the ultimate

efficiency of a distributed fabric. For small IP packets, control overheads tend to dominate.

We introduced the idea of variable-size flits to address the problem and, for a representative

design example, variable-size flits reduced control overhead by 26.7% over a common

fixed-size flit approach and by 18.0% over the two-flit-size approach used in the Avici TSR

router fabric. Since the size of the flits only needs to vary over a small range, their hardware

implementation required only minor changes to a typical fixed-flit microarchitecture.

Long IP packets were also shown to be problematic. If flit-buffer flow control is used,

these packets can be spread across many routers. This, in turn, creates a channel coupling

— a packet has to gain access to several channels to make progress through the network.

The more resources that are coupled together, the more difficult it is for a packet to progress.

For example, we showed an example where throughput was reduced by over 50% due to

long-packet effects. The solution is to split these long IP packets into many small fab-

ric packets, each approximately the size of a minimum-size IP packet. When used with
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variable-size flits, this does not introduce any additional overhead in the worst case.

Splitting long packets along with the typical ordering requirements of an IP router re-

quires some reordering mechanism at the outputs. We described a simple window-based

scheme and derived expressions for both the reordering latency and reorder buffer size.

Based on these expressions, we suggested several possibilities for reducing the amount of

reordering that occurs in a fabric.

The ideas of this chapter can be combined to create some simple design guidelines for

efficient flow control in a distributed fabric. Split long IP packets into fabric packets whose

length is betweenPmin and2Pmin. When used with variable-size flits, this minimizes any

long-packet effects without introducing extra control overhead. Let the range of variable-

size flits also be fromPmin to 2Pmin, if allowed by the fabric router area constraints. This

minimizes control overhead. At the same time, it also eliminates the need for differentiat-

ing flits and packets — each fabric packet can fit into a single, variable-size flit. This shifts

the fabric to packet-buffer flow control [26], also known as virtual cut-through flow con-

trol [38]. While modern networks with a limited range of packet sizes or a small number of

virtual channels often use virtual cut-through flow control, such as the Alpha 21364 [46],

our results are in contrast to the Avici TSR router fabric [24], which uses flit-buffer flow

control. As we have shown, virtual cut-through flow control is a better design choice for

distributed fabrics and other throughput-oriented interconnection networks.
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Conclusion

This thesis has shown that the line-rate guarantees of a distributed fabric are closely tied

to the routing algorithm used for that packet. For a particular fabric, these guarantees

can be found by solving a series of maximum-cost flow problems that find a worst-case

traffic pattern. Building on this idea, we also showed that worst-case optimal oblivious

routing algorithms can be found using convex programs. These results combined with the

efficient flow control techniques developed in Chapter 4 give the IP router’s designer a lot

of flexibility in the organization of a router’s fabric — this allows the fabric itself to be

optimized for cost, packaging, or any other design variable.

As we stated in the introduction, line-rate service is just the vanilla flavor of router

services and today’s routers are typically asked to offer many more services. In Section 5.1,

we briefly explore this avenue along with the behavior of a router under inadmissible traffic

patterns. Current technology requires the complexity of the fabric routers to scale with the

number of IP router ports times the number of traffic classes when supporting advanced

services. However, this limits scalability and we present an alternative approach were

packet delivery is separated from packet admission as an interesting area of future work.

We close by considering the ways in which a distributed router fabric could take advan-

tage of the structure of Internet traffic. Our goal throughout this thesis research has been to

guarantee a particular line-rate over all possible traffic patterns and this is the current prac-

tice in industry and almost all academic work. However, this worst-case design mentality

is expensive. Rather, if we could take advantage of predictability, while still maintaining

104
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robust operation in the face of some variation, router cost could be reduced. We explore

this possibility in Section 5.2.

5.1 Traffic admission and quality of service

One of the important aspects of IP router design we did not focus on in this thesis is the

situation where the incoming traffic is inadmissible. For example, all incoming traffic

might be destined to output port 1 of the IP router due to a temporary IP routing table

misconfiguration.1 To satisfy our requirement for line-rate service, we only need to make

sure the overloaded output port continues to deliver packets at its full output rate. This

necessarily leaves a large fraction of the incoming packets unserved — there simply is not

enough bandwidth at the single output to serve all the inputs simultaneously.

In general, an IP router has two responsibilities when an output becomes overloaded.

First, the traffic destined to the overloaded output must be isolated from traffic destined to

other outputs. This is analogous to avoiding head-of-line blocking in a traditional input-

queued crossbar and is often called tree saturation [52] in the context of interconnection

networks. In current distributed fabrics, specifically the Avici TSR [23], this isolation is

achieved by using a non-interfering network. That is, each fabric output is assigned a

separate virtual channel, which ensures isolation between outputs.

The second responsibility of an IP router is to select which packets get access to the

overloaded output by applying a quality of service policy. For example, high priority traffic

might be served before lower priority traffic or, in the case of best-effort traffic, each source

vying for the overloaded output might get an equal share of its bandwidth. Currently, these

polices are enacted using a combination of approaches: prioritized arbitrations within the

fabric routers, per-class virtual channels, and end-to-end techniques.

The current approaches for providing traffic isolation and quality of service are work-

able and are in use, but, ultimately, have limited scalability. Perhaps the biggest obstacle

is that supporting per-class and per-output virtual channels requires the complexity of the

1The IP routing tables define the routing between IP routers and should not be confused with the fabric
routing tables discussed in Chapter 3.
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fabric routers to grow with the number of traffic classes times the number of outputs. Ide-

ally, the fabric routers would have a complexity that is largely independent of the size of

overall IP router, thus maximizing scalability.

A powerful alternative to the current approach may be to separate the tasks of packet

delivery and packet admission. Here, the fabric is solely focused on packet delivery — it

makes no contingency for either traffic isolation or quality of service, it simply delivers

the packets that are presented to it. This keeps the fabric routers extremely simple. Packet

admission is then determined by end-to-end protocols (from fabric inputs to fabric outputs).

To be scalable, these protocols must be distributed and can be thought of as a continuous

negotiation process between the inputs and outputs to determine which packets can be

admitted to the fabric such that no outputs become overloaded and the quality of service

guarantees are met.

As an example, consider a batching approach for admission. For simplicity, we will as-

sumed fixed size packets. At the beginning of each batch, a matrixB holds the packets that

can be admitted during that batch: the integer entriesbij indicate the number of packets that

can transferred across the fabric from inputi to outputj during the batch. Each batch lasts

T packet times andB can be thought of as the traffic matrix for the batch. By overlapping

the forwarding of packets from one batch with computation of the next batch, the fabric

is kept busy. The task of computing the next batch falls upon the end-to-end admission

algorithm. So that each batch is admissible, the admission algorithm should ensure that

each row and column sum ofB is at mostT .

There are many possible criteria, such as fairness or packet priority, an algorithm could

use in selecting the packets for the next batch. Algorithm 2 shows one such example. For

this algorithm, each input tracks the number of packets it has queued for each of the fabric

outputs, which is stored inq(0). Then, the batch is built iteratively — the goal of the loop

in Step 2 is to compute an admissible traffic matrix (row and column sums of one) based

on the size of the queues. During this loop the batch variablesq andt will not necessarily

be integers, but the matrix is scaled and rounded to integer values in the final step of the

algorithm. The first step of each loop is performed at the inputs. Each input computes the

Euclidean projection, denotedP (·), of the vector of its queue sizes (the rows of the traffic

matrix) onto the probability distribution with the same number of elements. The results of
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this projection are transferred (across the fabric) to the outputs. The outputs then compute

the projection of the columns of the traffic matrix and the process is repeated.

Algorithm 2 End-to-end admission

1. Initialize. q0
ij is set to the number of packets waiting at inputi destined to outputj.

δ
(0)
ij ← 0 andξ

(0)
ij ← 0 for all i, j ∈ N . k ← 0.

2. Iterate projections.While k < MAXITER ,

(a) k ← k + 1.

(b) Project at inputs.
[
t
(k)
i1 . . . t

(k)
iN

]
← P

([
q
(k−1)
i1 − δ

(k−1)
i1 . . . q

(k−1)
iN − δ

(k−1)
iN

])
, ∀i ∈ N ,

δ
(k)
ij ← t

(k)
ij − q

(k−1)
ij , ∀i, j ∈ N .

(c) Distributet(k) to outputs.t(k)
11 , t

(k)
21 , . . . , t

(k)
N1 go to output 1, etc.

(d) Project at outputs.
[
q
(k)
1j . . . q

(k)
Nj

]
← P

([
t
(k)
1j − ξ

(k−1)
Nj . . . t

(k−1)
1j − ξ

(k−1)
Nj

])
, ∀j ∈ N ,

ξ
(k)
ij ← q

(k)
ij − t

(k)
ij , ∀i, j ∈ N .

(e) Distributeq(k) to inputs.q(k)
11 , q

(k)
12 , . . . , q

(k)
1N go to input 1, etc.

3. Create batch.bij ←
⌊
T · q(k)

ij

⌋
, ∀i, j ∈ N .

While this iteration may seem at best arbitrary, it is actually computing the Euclidean

projection of the original queue sizes onto a matrix with row and column sums of one.2

The Euclidean projection closely resembles the maximum weight-matching of the queues

and, combined with the result of Shah and Kopikare [59], selection of batches using Algo-

rithm 2 achieves a throughput arbitrarily close to the maximum asT and the number of loop

2There are many details that are not presented here, but the iteration is essentially Cheney and Goldstein’s
alternating projections algorithm [19]. With the addition of the corrective termsδ andξ, as suggested by
Boyle and Dystrka [16], we are ensured that the iteration converges to the Euclidean projection.
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iterations are increased assuming the fabric can continuously deliver admissible batches.

We present this algorithm not to make any argument about its practical utility, but sim-

ply as an illustration of an end-to-end admission algorithm. Other approaches are certainly

possible. The idea of core-stateless fair queuing developed by Stoica et al. [65] shares a

similar goal and Charny and Ramakrishnan [18] present a distributed method for comput-

ing max-min fair admissions in a distributed way, although a direct implementation of their

approach would likely result in too much complexity in the fabric routers. Finally, a more

robust and responsive version of our admission algorithm could possibly be built around

the ideas of online optimization or control theory.

Whatever the approach, there are certainly many interesting questions to be explored

regarding both the advantages of separating packet admission from packet delivery and the

design of admission algorithms.

5.2 Taking advantage of traffic structure

Throughout this thesis we focused on providing line-rate service in a distributed fabric and,

thus, the set of admissible traffic patterns consisted of those whose total input and output

rate (row and column sums) where at most the line rate. Today’s router manufacturers and

researchers have focused their efforts on the same criterion. However, a question that few

router designers have yet considered is how we might take advantage of the predictable

structure of Internet traffic. While there is certainly a significant stochastic component in

this traffic, large-scale measurement studies, such as the one by Roughan et al. [56], reveal

significant predictability. To see how the ideas of a distributed fabric, in particular, can take

advantage of this, consider an example of routing traffic through one of an ISP’s points of

presence (POP).

Figure 5.1 shows an example POP topology with core IP routers interconnected by

optical links. The links at the boundary of the POP are backbone links that are connected

to other POPs. First, there is no reason that this entire collection of IP routers cannot be

treated as a distributed fabric — the inputs and outputs of the fabric are the boundary links

and the fabric routers are the core IP routers. Furthermore, assume that the predicted traffic

pattern for this POP is given bỹΛ. Then, we could apply the same routing algorithm ideas
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Core routers

Figure 5.1: An example point of presence topology. (Not meant to be realistic.)

developed in Chapter 3, but adjust the set of admissible traffic patterns to be defined as

T =
{

Λ
∣∣∣ ||Λ− Λ̃|| ≤ ε

}
,

for example. That is, we design a robust routing algorithm to maximize throughput over

the set of traffic patterns whose distance from the predicted pattern is at mostε. This set of

traffic patterns is convex for any norm and, therefore, the resulting routing algorithm design

problem is a convex program and can be solved efficiently. Of course, many other distance

or uncertainty measures could be developed and we expect that most reasonable measures

would be convex.

Applegate and Cohen [4] have explored similar ideas for routing in POPs using a

slightly different objective than our worst-case objective. Kodialam et al. [40] also inves-

tigate robust routing in POPs, but limit their study to the set of admissible traffic patterns

with row and column sums equal to the line rate. However, an optimal routing algorithm

just one possible advantage of operating what is traditionally treated as a collection of in-

dividual routers as a single distributed router fabric. It would also allow the elimination of

many line card interfaces — the routers within a POP could communicate using the simple,

low-overhead techniques of interconnection networks. Repeated packet processing, admis-

sion control, and statistics gathering could all be eliminated. The main challenge would be

developing the distributed algorithms to control this large distributed fabric and provide the

same service guarantees expected from today’s IP routers. Still, the potential advantages of
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such an approach may it an interesting line of future research.



Appendix A

Notation and definitions

All the topologies (graphs) in this thesis are assumed to be directed. In the context of

networks, edges of the topologies are calledchannelsand vertices are callednodes. A

channelc can also be referred to using its endpointsc = (i, j), where channelc is connected

from nodei to nodej.

Multi-dimensional variables are referred to in capitals and their scalar elements as

lower-case with subscripts. For example, the routing probabilityxkij is an element of the

multi-dimensional variableX.

The notation[C] is used to indicate a function that is one if the conditionC is true and

zero otherwise. For example,[x = y] is one ifx = y and is zero otherwise.

Symbol Definition Units

bc bandwidth of channelc bits/s

bdj
ejection bandwidth of destinationj bits/s

bsi
injection bandwidth of sourcei bits/s

C(C) number (set) of channels in a fabric

F flit size bits

F0 per-flit control overhead bits

N(N ) number (set) of fabric ports

pkij probability of using pathk when routing from sourcei to

destinationj

111
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P packet size bits

P0 per-packet control overhead bits

T a set of traffic patterns

xcij probability of using channelc when routing from sourcei to

destinationj

γc(X, Λ) channel load — amount of data crossing channelc when

routing traffic patternΛ with routing algorithmX.

bits/s

Λ traffic pattern — entryλij is the average amount of traffic

from sourcei to destinationj.

bits/s

Θ fraction of injected throughput
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A subgradient method for the WCORDP

In Section 3.2.2, a basic subgradient method for the worst-case optimal routing design

problem (WCORDP) was introduced. This appendix details some of our experiences in

developing a more robust and flexible subgradient method. While our custom code under-

performed the CPLEX [34] commercial linear programming package, we believe there are

some interesting aspects to our approach. Beyond the work presented here, perhaps the

most promising direction for improvements in the solution time of the WCORDP is along

the lines of the primal-dual methods for the maximum concurrent flow problem [28, 30, 60].

One of the important considerations of any iterative optimization method is the stopping

criteria — both the number of iterations to be run and the guarantees on the quality of the

solution once these iterations have been run. For subgradient methods, these issues are

closely related to step size selection. Several approaches to selecting the step size give

theoretical convergence to an optimal solutions. For example, letting the step size

α(k) =
1

k||g(k)||2 , (B.1)

wherek is the iteration number andg is the subgradient used to update the current solution,

ensures convergence to an optimal solution. In practice, this convergence can be painfully

slow. Moreover, any constant multiple of (B.1) correctly converges, so an additional prob-

lem of selecting this constant factor is introduced.

113
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Of all the methods for selecting step size, including (B.1), we found that using

α(k) =
f (k) − f ∗

||g(k)||22
, (B.2)

produced consistently good convergence. Here,f (k) is the value of the objective at the

current iteration andf ∗ is the optimal value of the objective. While this step size eliminates

the problem of selecting constant factors, it introduces another issue. Specifically, we do

not know the optimal valuef ∗ until the optimization is complete. To avoid this problem,

we reformulate our optimization to solve both the primal and dual simultaneously.1

Our formulation of the WCORDP combines both (3.5) and (3.10) to yield

minimize max
Λ∈T

max
c∈C

∑
i,j∈N

λijxcij/bc −
∑

i,j∈N
min
pathsk

from i to j

∑
channelsc
in pathk

λcij/bc

∑

{l|(k,l)∈C}
x(k,l),i,j −

∑

{l|(l,k)∈C}
x(l,k),i,j = [k = i]− [k = j] ∀i, j, k ∈ N

xcij ≥ 0, ∀i, j ∈ N , c ∈ C∑
j∈N λcij ≤ φcbsi

, ∀i ∈ N , c ∈ C,∑
i∈N λcij ≤ φcbdj

, ∀j ∈ N , c ∈ C,
λcij ≥ 0, ∀i, j ∈ N , c ∈ C,∑

c∈C φc = 1.
(B.3)

The objective is the worst-case channel load minus the lower bound from the dual formula-

tion of (3.10), so the optimal value of the objective is always zero and (B.2) can be used to

determine the step size (f ∗ = 0). In addition, each step of the optimization produces both

an upper bound and lower bound from the primal and dual solutions, respectively.

Solving (B.3) is almost the same as solving the primal and dual problems independently

— the only coupling comes in the objective function. The total subgradient is simply the

sum of the subgradients due to the primal and dual components of the problem. This only

leaves the computation of the projection to complete our subgradient method.

The projection step could be performed by solving a quadratic optimization problem,

1Although we are solving the primal and dual simultaneously, our approach is not what is referred to as a
primal-dual algorithm.
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but the complexity of this problem is on the order of the complexity of our WCORDP.

Instead, we use Boyle and Dykstra’s algorithm [16] for computing the projection. Before

we describe the algorithm, without loss of generality we can assume that all the constraints

of the WCORDP are in the form

aT
i y ≤ bi, i = 1, . . . , M,

whereM is the total number of constraints,||ai|| = 1 for all i, andy is a vector of all

the optimization variables (X andΛ). The equality constraints can be replaced by two

inequalities or relaxed to an inequality. For example, it can be shown that the value of the

optimization is not changed if
∑

c∈C φc = 1 is replaced by
∑

c∈C φc ≤ 1.

Boyle and Dykstra’s algorithm for these linear constraints is shown as Algorithm 3.

The algorithm cyclically applies projections onto the halfspaces where

Pi(y) =





y if aT
i y ≤ bi

y − (aT
i y − bi)ai otherwise

is the projection onto theith subspace [1, 14]. Without the corrective termsδ, the algorithm

would simply be an alternating projection [19], but the addition of the corrective terms

ensure that the iterates converge to a Euclidean projection ofy onto the intersection of

halfspaces defined by the constraints. Furthermore, in the WCORDP each of the constraints

involves only a few variables, so the projections are very simple to compute. The overall

algorithm converges quickly (see Perkins [51] for specific results) and, in practice, 10–20

iterations of the outer loop are sufficient.

The performance of the resulting subgradient method is shown in Figures B.1 and Fig-

ure B.2 for a simple 4-ary 2-cube (16-node torus) network. Figure B.1 shows the optimality

gap and the expected (sublinear) convergence of the subgradient method. This slow conver-

gence is the ultimate limiter of the subgradient method in our experience — to reduce the

optimality gap by a factor of1000, for example,106 iterations are required. Still, the sub-

gradient method may still have some practical utility in large networks where “tuning” of

the routing algorithm, instead of optimization from an arbitrary starting point, is required.
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Figure B.1: Optimality gap vs. iteration for the subgradient method in a 4-ary 2-cube. The
expected asymptotic convergence ofk−1/2, wherek is the iteration number, is shown as a
dotted line. (See Bertsekas [7] for an analysis of the convergence.)

0 200000 400000 600000 800000 1000000

Iteration

0.8

1.0

1.2

1.4

W
or

st
-c

as
e 

ch
an

ne
l l

oa
d

Figure B.2: Primal (solid line) and dual (dotted line) solutions vs. iteration for the subgra-
dient method in a 4-ary 2-cube.
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Algorithm 3 Projection onto an intersection of halfspaces

1. Initialize. y(1,0) is initialized to the value ofy before projection,δ(0,i) ← 0 for i =
1, . . . , M , andk ← 1.

2. Loop until converged.While maxi=1,...,M(aT
i y(k,0) − bi) > ε,

(a) Loop over projections.For i = 1 to M ,

i. Project onto theith halfspace.

y(k,i) ← Pi

(
y(k,i−1) − δ(k−1,i)

)
.

ii. δ(k,i) ← y(k,i) − y(k,i−1).

(b) k ← k + 1 andy(k,0) ← y(k−1,M).
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