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Abstract computationally demanding. To decompress, deinter-
leave, and scale an HDTV video stream in real time, for

This paper describes an experimental evaluation of the €xample, requires billions of operations per second. For-
prototype Imagine stream processor. Imagine [8] is a stream tunately these applications are characterized by ample
processor that employs a two-level register hierarchy with parallelism. Most of these applications are served to-
9.7 Kbytes of local register file capacity and 128 Kbytes day by special-purpose ASIC processors containing hun-
of stream register file (SRF) capacity to capture producer- dreds to thousands of ALUs. While such ASIC solutions are
consumer locality in stream applications. Parallelismis e  efficient, they lack flexibility and are not feasible for cer-
ploited using an array of 48 floating-point arithmetic units tain low-volume applications.
organized as eight SIMD clusters with a 6-wide VLIW per  |magine [8] is a programmable stream processor aimed
cluster. We evaluate the performance of each aspect ofat media applications. Expressing an application as arstrea
the Imagine architecture using a set of synthetic micro- program, sequences of records flowing through computa-
benchmarks, key media processing kernels, and full appli-tion kernels exposes both parallelism and locality. Imag-

cations. These micro-benchmarks show that the prototypee exploits the parallelism of a stream program with an ar-
hardware can attain 7.96 GFLOPS or 25.4 GOPS of arith- oy, ot 48 32t floating-point units. Two levels of register

X . r
metic performance, 12.7 Gbytes/s of SRF bandwidth, 1'58files, 9.7 KBytes of local register files and 128 KBytes of

Gbytgs/ s of memory system band.W|dth, and accept up tostream register file, capture the locality of stream program
2 million stream processor instructions per second from a

host processor enabling a high ratio of arithmetic to off-chip bandwidth.
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On a set of media processing kernels, Imagine sustaineqf’e ¥sszglggrr:?§é§|art: t{:ggﬁ??ﬁ!gggg?j e/ ?ﬁ?;:rilctrags_
an average of 43% of peak arithmetic performance. An 9 ) 9 y-ap

evaluation of full applications provides a breakdown of proaching that of an ASIC while retaining the flexibility of
where execution time is spent. Over full applications, Imag & Programmable processor. _ _
ine achieves 39.4% of peak performance, of the remain-  1hiS paper describes the experimental evaluation of a
der on average 36.4% of time is lost due to load imbal- Prototype Imagine processor fabricated in an 1.5 Volts30.1
ance between arithmetic units in the VLIW clusters and lim- #m CMOS processand packaged in a 768-pin BGA pack-
ited instruction-level parallelism within kernel innerdps, ~ age. A set of micro-benchmarks are used to measure the per-
10.6% is due to kernel startup and shutdown overhead be-formance of each feature of Imagine independently. Media
cause of short stream lengths, 7.6% is due to memory stallskernels and applications are then used to measure the over-
and the rest is due to insufficient host processor bandwidth.all performance of Imagine on actual workloads.
Further analysis included in the paper presents the impact  Imagine achieves 7.96 GFLOPS / 25.4 GOPS ALU per-
of host instruction bandwidth on application performance, formance on synthetic benchmarks and sustains between
particularly on smaller datasets. In summary, the experi- 169 and 60% of this peak performance on four media ap-
mental measurements described in this paper demonstratgyications. On all of these applications, a single Imagine
the high performance and efficiency of stream Processing.chip is able to sustain greater than real-time performance.
operating at 200 MHz, Imagine sustains 4.81 GFLOPS on o, MPEG encoding, for example, Imagine sustains a com-
QR decomposition while dissipating 7.42 Watts. pression rate of 138 frames per second while consuming 6.8
Watts. At the kernel level, the difference between peak and
sustained performance is primarily due to idle ALUs caused

. by limited ILP and load imbalance across ALUs. On three
1. Introduction

Media applications such as video processing, wire- 1 The process used to fabricate Imagine has Qui8metal rules with
less communication, and 3-D graphics are pervasive and 0-15#m devices.



Input Data Kernel for a stereo depth extractor application [5]. This applica-
Stream tion processes images from two cameras that are positioned
M Output Data at a horizontal offset from each other. The images are first

4 ;
—>—> i pre-processed by two convolution kernels (3x3 convolve
O O N D:m and 7x7 convolve). Then the Sum-of-Absolute-Differences
ﬂ —> (SAD) kernel is called repeatedly to find the number of pix-
- ,:c -~ ) n els of horizontal shift that minimizes the SAD of a 7x7 area
> Cao ™ el
O

centered around each pixel. Each call to the kernel searches

$) a different set of horizontal offsets, or disparities. Tlegith
= at each pixel is proportional to the inverse of the best dis-
parity match. Notice, in the example above, that data in
Figure 1. Stream and kernel diagram for stereo each output stream is destined either for the next kernel in
depth extractor application the application pipeline, or is consumed by the next call

to the same kernel. Furthermore, though not shown in the
of the four applications, less than 10% of performance is diagram, the programmer can embed arbitrary C/C++ in a

lost due to overhead at the application level — memory andStreamclprpgrarI]m. . del
host interface stalls. Kernels in the stream programming model are pro-

grammed in KernelC. They are structured as loops that
evaluation of Imagine in detail. Section 2 describes our ex- process elemefnt(s) frr(])m each input sgregm and hglener-
perimental setup including the Imagine processor and sup-f"Ite QUtDUt(S) or each output stream during each loop
porting hardware and software infrastructure. Resultaef t iteration. KernelC disallows any external data accesses be
micro-benchmark programs, used to measure and verify thesides input stream reads, output stream writes, and a few
performance and power efficiency of Imagine components,scala_‘r parameter inputs. Kernels are also written so tleat su
are described in Section 3. Results from full applications, C€SSive iterations of the main loop can be executed concur-
described in Section 4, show how these components inter-ren'\t/lly using pargl_lel harf_lwa_re. S C and K Ic
act. Section 5 highlights the effectiveness of stream m®ce apping media applications to StreamC and Kerne

ing and analyzes factors causing differences in the resultsSXPOSes the available parallelism and locality. Producer-

between simulation and experimental measurement. consumer locality b(_etween subsequent kernels is exposed
as the streams passing between kernels in StreamC. Local-

ity within kernels is captured in KernelC. Data-level par-

allelism is exposed by both StreamC and KernelC because
The Imagine stream processing system is composed of &ernels perform the same computation on all of the elements

programming model, architecture, compiler tools, and a de-of an input stream.

velopment board all organized to take advantage of the lo- ] ]

cality and parallelism inherent in media applications.sThi  2.2. Imagine Architecture

system allows stream processors to provide the performance The Imagine architecture directly exploits the paral-

of a special-purpose processor on media applications whilelelism and locality exposed by the stream programming

The remainder of this paper describes the experimental

2. The Imagine Stream Processing System

retaining the flexibility of a programmable engine. model to achieve high performance. As shown in Figure 2,
_ Imagine runs as a coprocessor to a host. The host proces-
2.1. Stream Programming Model sor executes scalar code compiled from a StreamC pro-

Media processing applications have considerablegram and issues stream instructions to Imagine via an
producer-consumer locality, are data-parallel, and areon-chip stream controller. The stream register file (SRF),
compute-intensive [13]. The stream programming model a large on-chip storage for streams, is the nexus of Imag-
exposes these characteristics by representing applicaine. All stream instructions operate on data in the SRF.
tions as a set of computation kernels that consume and proStream load and store instructions transfer streams of
duce data streams. Each data stream is a sequence afata between the SRF and memory (possibly using indi-
data records of the same type, and each kernel is a protect (gather/scatter) addressing). Kernel-execute uostr
gram that performs the same set of operation on eachtions perform a kernel (such as 7x7 convolve or SAD from
input stream element, and produces one or more out-Figure 1) on input streams of data from the SRF, and gen-
put streams. Media applications are programmed usingerating output streams in the SRF.
this model with two languages developed for Imag-  The eight arithmetic clusters execute kernels in an eight-
ine: StreamCandKernelC wide SIMD manner. Each arithmetic cluster, shown in Fig-

A StreamC program specifies the order of kernel exe- ure 3, contains six 32-bit floating-point units (FPUs) (thre
cutions and organizes data into sequential streams that aradders, two multipliers, and a divide square-root unitghEa
passed from one kernel to the next. For example, Figure 1FPU except for the divide square-root unit is fully pipetine
shows a graphical representation of the StreamC progranto execute a single-precision floating-point, 32-bit ireg
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Figure 2. Diagram of Imagine architecture with bandwidth hierarchy numbers

St} ToFrom are passed through the intra-cluster switch and storecin th
E% E% herC'usters LRFs. Producer-consumer locality between kernels is cap-
Tl T I tured by storing kernel output streams in the SRF and read-

Intra-cluster Switch To/From
| B ad ing input streams from the SRF during subsequent kernels
Figure 3. Imagine arithmetic cluster without going back to external memory. While kernel exe-

cution is ongoing, the host processor can concurrentlgissu
_ S _ stream load and store instructions so that when the next ker-
or multiple lower-precision integer operations per cycle. nelis ready to start, its input data is already availabléén t
These six FPUs execute kernel VLIW instructions issued SRE.
from a S|_ngle mlcro-controller eacr_l clock cycle. Two-port In our example application, the stereo depth extractor,
Ioce_ll register files (!_RFs) feed the inputs of each FPU and g5 stream in the SRF is a row from an input image, and
an intra-cluster switch connects the outputs of the ALUS ¢5ch stream element is a pair of 16-bit pixels from that
and external ports from the SRF to the inputs of the LRFS. (\; For each iteration of a 7x7 convolution kernel, 16 in-

In addition, a scratchpad (SP) unitis used for small indexed , t pixels (two per cluster) are operated on, convolved with
addressmg operations W|th|_n.a cluster, and an interaluste neighboring pixels, and 16 output pixels are produced. Out-
communication (COMM) unit s used to exchange data be- ¢ sireams from the 7x7 convolution kernel are stored in
tween clusters. the SRF and passed directly to the 3x3 convolution ker-
When a kernel-execute instruction is received from the nel. The other kernels proceed similarly. By exploiting-par
host processor, the micro-controller starts fetching @aad i allelism and locality in this manner, stream processors are
suing VLIW instructions from the microcode instruction able to achieve high performance on a range of media ap-
store. For each iteration of a typical kernel's inner loop, plications with only modest off-chip memory bandwidth re-
the eight clusters read eight subsequent elements in paralguirements.
lel from one or more input streams residing in the SRF,
each cluster executes an identical series of VLIW instruc-
tions on stream elements, and the eight clusters then write2'3' Software System
eight output elements in parallel back to one or more output  The Imagine software system provides the compile-time
streams in the SRF. Kernels repeat this process for severadnd run-time support necessary for running stream pro-
loop iterations until all elements of the input stream have grams. As shown in Figure 4, the software system includes
been read and operated on. In this manner, data-level paraleompilers for converting StreamC and KernelC programs
lelism is exploited across the eight clusters through SIMD into host CPU assembly code and kernel microcode, respec-
execution and instruction-level parallelism is exploigth tively, and provides run-time support for issuing stream in
VLIW instructions per cluster. Locality within kernelsize  structions to Imagine via the host CPU’s external memory
ploited during each loop iteration when intermediate rssul interface.
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tion to be written into the scoreboard. The dependencies be-
tween the new stream instruction and other scoreboard en-
tries are encoded with the instruction itself by the stream

' compiler. The stream controller on Imagine uses these de-
pendencies to determine the next stream instruction to is-
sue from the scoreboard when necessary resources become
available. The dispatcher performs all reads/writes ftom/
Imagine registers, which are mapped to addresses in the
host memory space. For data transfers between the host
CPU and Imagine, the stream dispatcher performs memory-
mapped reads/writes to a on-chip fifo.

For many media applications such as stereo depth ex-
action, the control-flow for the entire application is aat
dependent. In these cases, the StreamC compiler takes ad-
vantage of the static control-flow by using a playback mode,

. . . in which the intermediate C++ code is replaced by a record
loaded while an_other kernel is boelng executed, a perfor- of the encoded stream instructions, in order. The playback
mance degradation of_Ies_s than 6% o_ccurg._ dispatcher reads from this recorded sequence of stream in-
The StreamC compilation process is splitinto two stages. structions and dispatches them as scoreboard slots become
In the first stage, a stream compiler performs a number offree. Although less general than running application code
high-level tasks such as dependency analysis between kergp the host processor, this playback method allows for a

nels and stream load/stores, software pipelining betweenmgre |ightweight efficient dispatcher implementation when
stream loads or stores and kernel operations, optimal sizontrol-flow is data independent.

ing of stripmined streams, and allocating and managing
the SRF [6]. After these optimizations and analyses are2.4. Development Board

completed, the stream compiler generates stream instruc- The Imagine developmentboard, shown in Figure 5, pro-
tions (stream loads or stores, kernel invocations, and imag vides a platform for testing the Imagine stream processing
ine register reads and writes). These stream instructi@ns a hardware and software tools. The board contains two Imag-
embedded in intermediate C++ code, which preserves theine processors running at 200 MHz, fed by a single 150
control flow of the StreamC. During the second stage, a MHz PowerPC 8240 host processor. Each Imagine proces-
standard C++ compiler compiles and links the intermedi- sor has four SDRAM channels and is connected to eight
ate code with a stream dispatcher, generating a host procesp56Mbit SDRAMSs running at 100 MHz for a total capac-
sor executable (assembly code). ity of 256 Mbytes per Imagine. An FPGA serves as a bridge
At run time, a command line interface is used to run a between the PowerPC and Imagine chips, providing a 66
StreamC application of user’s choice, which inturn invokes MHz interface for issuing stream instructions and reading
the stream dispatcher with relevant stream instructiohs. T Imagine control registers. The board is connected to a host
stream dispatcher manages a 32-slot scoreboard on ImagPC with a PCl interface, providing a command-line user in-
ine. When a slot is free, it issues a new stream instruc-terface and file storage system for the PowerPC host pro-

The KernelC compiler uses communication scheduling
to produce VLIW microcode from KernelC [9]. It per-
forms high-level optimizations such as copy-propagation
loop unrolling and automatic software pipelining, schegul
arithmetic operations on functional units, specifies thauda
movement between ALUs and LRFs, and performs regis-
ter allocation. All of the kernel microcode for an applica-
tion is loaded from the host CPU into the Imagine memory
space during startup. At the start of application execution
the kernel microcode is transferred from Imagine memory
to the microcode store (2K VLIW instructions total). If all
the kernel microcode for an application does not fit in the ¢
microcode store, the host ensures that kernels are loade
dynamically from Imagine memory to the microcode store
before kernel execution occurs. If new kernels are being



cessor on the development board. Additional board compo- Component (achieved / theoretical) Power
nents are used for 1/0 and a multi-processor network, but Cluster (OPS) (25.4/25.7) GOPS 5.79 W

are beyond the scope of this paper. Cluster (FLOPS) | (7.96/8.13) GFLOPS 6.88W

This development board provides a platform for evalu-  |nter-cluster comm (7.84/8.00) ops/cycle  8.53 W
ating the effectiveness of stream processing in exploiting SRE (12.7/12.8) GB/s 579 W
the parallelism and locality to achieve high performance on MEM (1.58/1.60) GB/s 542 W

media applications. The remainder of this paper presents Host Interface (2.03/20.0) MIPS 472 W
this detailed evaluation using experimental measurements ' ' ‘

from this development board, except where otherwise men-  Table 1. Performance of Imagine components®

tioned. o _ o _
is discussed in detail in Section 5. The peak cluster perfor-

3. Micro-Benchmark performance mance benchmarks also demonstrate Imagine’s power effi-
ciency, sustaining 4.39 GOPS/W for integer operations and

In order to explore the range of achievable performance1.16 GFLOPS/W for floating point operations. All power

and power efficiency on Imagine, a number of tests were measurements use input data patterns that incur high tog-

written in KernelC and StreamC to exercise SpeCiﬁC com- g|e rates on internal nets, so during app"cations with |y|gh

ponents of the Imagine stream processor. First, a set ofcorrelated data, the average power dissipation in thesgties

synthetic micro-benchmarks validate the peak performancecomponents will be lower.

of Imagine subsystems. Second, key media processing ker-

nels show how actual kernel characteristics affect susthin  3.2. Kernels

performance. Finally, anoth.er set of micro-bgnchmarks are  Although Imagine sustains close to peak performance on
used to explore how Imagine performance is affected by synthetic micro-benchmarks, when actual media process-
stream length. ing kernels are mapped to Imagine, limited parallelism, in-
31. Micro-benchmarks struction mix, and stream lengths can affect sustained per-
o e ) formance substantially. Table 2 summarizes performance,
The six micro-benchmark programs used to exercise thepgyer, register bandwidth, and instructions per cycle JIPC
peak performance of Imagine components are shown in Tao, 5 set of kernels from the media processing and scien-
ble 1. The first four ml_cro-_benchmarks affect kernels_and tific computing domains. All of the kernels except for RLE
the Igst two affect application p_erforma_nce. Peak aghlevedand GROMACS achieve an IPC of over 35, indicating that
floating-point performance while running kernels in the here is ample arithmetic intensity and parallelism in ¢hes
arithmetic clusters occurs with a mixture of floating-point yemels to be exploited by the kernel compiler. The register
adds and multiplies while peak achieved integer perfor- anqwidth data shows that more than 95% of data accessses
mance occurs with four 8-bit operations on each adder andyre 10 the cluster LRFs, demonstrating the large amount of
two 16-bit operations on each multiplier. Inter-clustemeo |5¢ajity within kernel computations. On average, most ker-
munication bandwidth is stre_ssed W|_th a kernel that sorts ye|s require significantly less than the peak SRF bandwidth
32 elements of a stream, which requires a large number ofot 12 71 GB/s, meaning that some headroom remains for
inter-cluster data exchanges, per loop iteration. Peak SRFyemory streams and for portions of kernels requiring bursts
bandwidth is achieved with a kernel that reads multiple in- ¢ higher SRF bandwidth.
put stream elements per loop iteration and writes the data g ther analysis provides insight into the differences be-

directly back to the SRF via output streams. Memory Sys- yeen peak and sustained performance on kernels. Run-
tem bandwidth and host interface bandwidth are stressedjme quring kernel execution can be classified into the four

with the last two micro-benchmarks. Peak memory band- ¢4teqories shown in Figure 6: minimum inner-loop run-time
width is measured by running two memory stream loads that,eqired to execute arithmetic operations, extra run-time
hit a small range of random memory addresses simultaneythin kernel inner loops incurred from ILP limitations and
ously. Host interface bandwidth is stressed by writing a se- |44 imbalance, non-main loop execution time, and cluster
ries of stream instructions which continually update cointr o515

registers. The first two categories combined from Figure 6 is the
_Table 1 shows that all tested components except the Nosho centage of execution time spent in kernel main loops.
|nterfa(_:e achieve over 98% of _the theoretical peak. The ‘Operations’ are what execution time would be if peak per-
bandwidth of the host interface is 10x lower than the the- 5 mance were achieved within the main loop (operations)
oretical peak because itis limited by the developmentboard, 4 the remaining execution time is due to limited ILP
implementation, not the host interface on Imagine. The ef-\yiihin cluster main loops and load imbalance between the
fect of host interface bandwidth on application perform@nc e of arithmetic units in a cluster. For example, the inne
loop of theupdate2kernel executes inner products requir-
2 These are measured at 200 MHz and 1.8 \olts throughout lepa  ing one multiplication and one addition per element. Since
8 When the chip is idle, it dissipates 4.72 W. the Imagine clusters have 3 adders and 2 multipliers, per-




LRFBW SRF BW Power
Kernel ALU (GBI/s) (GB/s) IPC  (Watt)
2D DCT 6.92 GOPS 95.13 2.09 359 6.99 two-dimensional direct easansform
of 16-bit 8-by-8 pixel macroblocks
blocksearch 9.62 GOPS 98.18 0.07 35.9 7.07 search similar macroblockadtion estimation
RLE 1.21 GOPS 54.00 0.39 19.8 6.15 apply run length encoding twahdocks (16 bit)
conv7x7 9.76 GOPS 99.44 2.75 36.7 7.76  convolve images with a 7x7 {il&bit)
blockSAD 4.05 GOPS 108.7 8.87 35.2 7.79 compute SAD of two images (16 bi
house 3.67 GFLOPS 101.4 2.26 35.3 7.05 compute the Householdexr(fidat)
update2 | 5.82 GFLOPS 119.6 2.20 475 7.42  matrix-matrix multiplicat(float)
GROMACS | 2.24 GFLOPS 44.18 0.51 15.3 6.65 force computation betwedaruwnolecules (float)

Table 2. Performance of representative kernels of media applications on Imagine
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Figure 6. Breakdown of kernel performance

formance in this case is limited by the multiplication units 3.3. Stream Length Effects
GROMACS and RLE on the other hand are two kernels  As shown in the previous section by the percentage
which have even worse main-loop performance relatively of kernel runtime spent in non-main loop cycles, stream
because they are limited by divide/square-root and scratch |engths affect the average performance of kernels. Stream
pad bandwidth, respectively. Dependencies between arithiengths also affect average memory bandwidth since loads
metic Operations limit ILP in other kernels, another cause and stores of |Ong streams can more eas"y hide the la-
of degradation in main-loop performance. tency of accessing individual stream elements from exter-
The third and fourth categories in the kernel run-time nal memory. In this section, we present a set of synthetic
percentage are due to non-main loop cycles and clustemmicro-benchmarks to analyze the effect of stream length on
stalls. Non-main loop cycles are cycles during kernel execu both kernel performance and memory performance.
tion spent in loop prologues, epilogues, outer loop blocks,  The first two sets of micro-benchmarks demonstrate the
and in additional main loop iterations used to prime soft- effect of stream length on kernel performance. Both micro-
ware pipelined loops. Note that when kernels are invoked tobenchmarks make use of a kernel where the main loop sus-
operate on longer streams, more main loop iterations are extains 4.8 GOPS and the non-main loop portion sustains 1.6
ecuted and the percentage of run time in non-main loop cy-GOPS. Furthermore, the main loop is software pipelined
cles goes down. In Figure 6, average stream lengths meain order to achieve higher arithmetic intensity and to simu-
sured during application execution were used to measurdate typical kernel conditions. Average performance isimea
the run-time percentages. The effect stream length has orsured over a time period when this kernel is repeatedly is-
kernel performance is analyzed in detail in the next section sued from the hostin order to make sure host interface band-
The last category of run-time percentage accounts for clus-width effects are taken into account.
ter stalls during kernel execution when the SRF is notready  The first micro-benchmark, shown in Figure 7, keeps the
to accept new stream read or write requests from the clusprologue length fixed at 64 cycles and varies the stream
ters. Since the average SRF bandwidth used by these kerength for different sized main loops. Since this kernetlea
nels is significantly lower than the peak SRF bandwidth, one stream element per cluster per loop iteration, in this
these cluster stalls occur during kernel startup periodswh  micro-benchmark the number of main loop iterations exe-
SRF streams have not been initialized and during kernelscuted per kernel invocation is 1/8 the stream length. The
which have bursty SRF bandwidth requirements. However,ideal BW number corresponds to an infinite stream length,
even in these kernels, less than 5% of kernel run-time cy-when all execution time would be spent in the main loop.
cles are spent in stalls waiting for the SRF. As shown in the figure, shorter streams degrade the perfor-
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mance of the shorter main loop kernels more severely be- The next two micro-benchmarks demonstrate the ef-
cause a larger percentage of kernel run-time is spentin nonfect of stream length on the memory system perfor-
main-loop cycles. Also, note that there are cases when themance. On Imagine, there are two address generators
arithmetic performance of the kernel is less than 1.6 GOPS,(AGs) in the memory system, allowing two concur-
the performance of the non-main-loop portion of the ker- rent stream load or store instructions to be executed. The
nel. This is because it takes more time to send stream in-first micro-benchmark, shown in Figure 9, plots the mem-
structions from the host to run a kernel than to run a kernel ory system performance as stream length is varied when
in some cases, meaning the clusters are idle waiting for theonly one of these AGs is used at a time. In this ex-
next kernel to be issued. On the development board, it takegperiment, six different memory access patterns - unit
about 500 ns to send a stream instruction over the host interstride with record size one, stride 2 with record size
face and this kernel requires 5 stream instructions before i one, stride 12 with record size 4, indexing random ad-
can start running, so that if the kernel execution time is les dresses over the range of 16 words to 2K words and 4M
than 2.5us, kernel performance is limited by the host inter- words - are used since external DRAM bandwidth is heav-
face bandwidth. ily influenced by the sequences of addresses received.

In the second micro-benchmark, shown in Figure 8, the  For stream lengths of less than 64, on most access pat-
main loop cycles are fixed and the effect of stream length terns the memory system bandwidth is still limited by the
is measured for different prologue lengths. In this case, fo host interface bandwidth, even though each memory ac-
stream lengths of 64 elements or less, kernel performance isess has 30 to 40 cycles of latency. As streams get longer,
dominated by limited host bandwidth. As a result, kernels the achieved memory bandwidth approaches the limits of
with shorter prologues have worse performance because théhe external DRAM. The indexed random with range of
clusters spend a larger percentage of time idle waiting for 16 words pattern is a special case where all memory ac-
the next kernel to be issued. For stream lengths greater thamwesses are captured in a small on-chip cache in the Imag-
64, performance is dominated by the percentage of run timeine memory controller, thus stressing the on-chip maximum
in main-loop vs. non-main-loop cycles, so shorter prolague AG bandwidth rather than the maximum external DRAM
have higher performance. bandwidth. The second memory system micro-benchmark
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20% 1 loop
10% O kernel main loop

is shown in Figure 10. It is similar to the above micro- 0% . . . . . overhead
benchmark, but with two simultaneously active AGs. As a DEPTH MPEG QRD RTSL Average D oPerations
result, higher bandwidth is achieved in some patterns when
there are no DRAM bank conflicts between the two mem-

ory streams.

Note that although indexed memory addresses over a
small range approach the theoretical peak of 1.6 GB/s
asymptotically, the unit stride case is approximately 20% in the architecture, as discussed in Section 2. Imagine dis-
lower than was expected from simulation. This discrepancy sipates between 5.9W and 7.5W while executing these ap-
is due to a performance bug in the on-chip memory con- plications at their highest performance levels. Furtheamo
troller which causes unnecessary DRAM precharges be-as shown in [7], voltage and frequency scaling allow the
tween some accesses to the same DRAM row. same Imagine chip to execute the MPEG and QRD applica-

In summary, the micro-benchmarks presented in this sec-tions at about half the performance but only one-fourth the
tion show how Imagine is able to achieve near peak per-power (< 2W).
formance with synthetic micro-benchmarks. However, both
the characteristics of typical media processing kernets an 4.2. Analysis of Overheads
stream length effects lead to a difference between sustaine  When compared to the peak capabilities of Imagine, the
performance and peak performance during the execution ofapplications achieve between 16% to 60% of the maximum

Figure 11. Execution time breakdown of applica-
tions obtained from cycle-accurate simulation.

real applications. arithmetic performance, and between 21% to 50% of the
maximum [IPC. The difference between the peak perfor-
4. Application Performance mance of Imagine and the achieved performance is due to

several factors, shown graphically in Figure 11. The first

The previous section studied the performance of specificfoyr categories account for kernel run-time in the clus-
components of Imagine in isolation. In this section we will terg comprising 90% of the execution time for all appli-

study the performance of entire applications, which depend cations except RTSL. The kernel run-time, as discussed in

on all of these components working together. Section 3.2, is affected by operation mix, limited ILP, av-
) erage stream lengths, and required SRF bandwidth in the
4.1. Overview kernels. During the remaining execution cycles, the clus-

Table 3 lists the overall performance for four applica- ters idle waiting for a new kernel invocation due to one of
tions: DEPTH is the stereo depth extractor first presentedfour overheads: stalls waiting for a microcode load opera-
in Section 2; MPEG encodes three frames of 360x288 24-tion to complete, memory stalls (waiting for a stream load
bit video images according to the MPEG-2 standard; QRD or store to complete), stream controller issue overhead in-
converts a 192x96 complex matrix into an upper triangu- curred once per stream instruction, and stalls due to inade-
lar and an orthogonal matrix, and is a core component of quate host interface bandwidth. If more than one of these is
space-time adaptive processing [1]; and RTSL renders theresponsible for delaying a kernel at any given time, the ex-
first frame of the SPECviewperf 6.1.1 advanced visual- tra cycles are attributed to the overhead earliest in the lis
izer benchmark using the Stanford Real-Time Shading Lan-  While these four non-kernel overheads occupy less than
guage [10]. 10% of the total execution time for the first three applica-

The first column in the table, which lists the number tions, they occupy over 30% of the time for RTSL. The two
of arithmetic operations executed per second, shows thabiggest culprits are memory stalls and host interfacesstall
Imagine sustains up 7.36 GOPS and 4.81 GFLOPS. If weThe large overhead caused by memory stalls may come as
consider all operations, not just arithmetic ones, therghma a surprise since RTSL actually requires the least DRAM
ine is able to sustain over 40 instructions per cycle on QRD. bandwidth of any of the presented applications (see Sec-
In fact, for all three video applications, Imagine can gasil tion 5.1). It turns out that the problem is not pure band-
meet real-time processing demands of 24 or 30 fps. Thesewidth. Instead, there are periods in the application where
high absolute performance numbers are a result of carefullykernels are required to wait until a memory load or store fin-
managing bandwidth, both in the programming model and ishes, either because the kernel needs to use the datastill b
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Figure 12. Average sustained performance of Imagine components on applications

ing loaded or because it needs to use the SRF space that is {4

occupied by a stream being stored to memory. The stream

compiler does not do as good a job on scheduling memory

operations and kernel operations concurrently for RTSL as — .;F;

it does with the other applications, mainly because stream @ B DRAM

lengths in RTSL are less predictable from batch to batch.

The other major non-kernel overhead for RTSL, host inter-

face stalls, arises when control-flow decisions on the host 2

processor are serialized on kernel results, causing Imag-n‘g

ine to idle during a Imagine-host processor round-trip de- o

lay. While certain portions of these nonfker_nel overheads ' Peak DEPTH MPEG QRD RTSL

are probably inherent to the RTSL application, future re-

search can produce superior compilation strategies te over  Figure 13. Bandwidth hierarchy of applications

lap Imagine operations and improve kernel occupancy to

higher than 70%. tured by a conventional cache. This locality is evidenced by
Further insight into application performance is provided the LRF to memory bandwidth ratio of over 350:1 across

by measuring the average performance of Imagine com-four applications shown in Figure 13.

ponents during application execution. Figure 12 shows the  Second, by scheduling stream loads and stores to hide la-

percentage of peak GOPS, host interface (HI) bandwidth,tency, the Imagine memory system can be designed to pro-

memory bandwidth, SRF bandwidth, and LRF bandwidth vide theaveragebandwidth required by applications with-

sustained on the four applications plotted on a logarithmic out loss of performance. In contrast, conventional proces-

scale. This data demonstrates a range of application charsors are highly sensitive to memory latency and hence pro-

acteristics typical to media applications and shows tHat di  viding memory bandwidth well in excess of the average is

ferent applications stress different components of Imagin required to avoigerialization latencyn each memory ac-

The effect that these four components - the host interface,cess. Although the memory system of a conventional pro-

the memory system, SRF, and LRFs - have on arithmeticcessor is idle much of the time, reducing its bandwidth

performance are explored in more detail in the next section.would increase memory latency (by the additional cycles re-

quired to transfer a cache line across the lower bandwidth
5. Discussion interface) and hence increase execution time.

width (G

-

5.1. Arithmetic to Memory Bandwidth Ratio 5.2. Kernel versus Application Evaluation

Imagine’s arithmetic to memory bandwidth ratio Some previous studies of stream processors [15, 2]
for floating point computation is over 20:1. It can per- showed relatively low performance. These results were
form over 20 floating point operations for each 32-bit due to evaluating the performance of a single kernel ac-
word transferred over the memory interface. Thisis cessing its input and output streams from memory. The
higher than the 4:1 ratio typical of conventional micro- bandwidth demands of many kernels exceed the sustain-
processors and DSPs [14, 16]. Yet Imagine is still able to able memory bandwidth of Imagine (see the SRF BW
sustain half of peak performance on a variety of applica- column of Table 2). Thus, if run from memory, these ker-
tions. Many conventional processors do not do as well evennels would be memory bound. However, in actual applica-
with their greater memory bandwidth. tions, most kernels run from the SRF, not from memory,

Imagine is able to achieve good performance with rela- and the scheduler uses software pipelining to hide the la-
tively low memory bandwidth for two reasons. First, expos- tency of the few required memory operations under the ex-
ing a large register set with two levels of hierarchy to the ecution time of many kernels. The results in Figure 13
compiler enables considerable locality (kernel localitgla  show conclusively that for real applications, a stream pro-
producer-consumer locality) to be captured that is not cap-cessor is not memory bound.



Stream Ops Register Ops
Kernel SDR MAR UCR SDR References BW
Application || + Restart Memory] Write Write Write Move | Misc. (Reuse) Total (MIPS)
DEPTH 5344 3629 45 3608 4635 0 11 32263 (17x) 17272 1.6
MPEG 489 407 182 412 528 108| 428 2744 (15.1%) 2554 0.12
QRD 252 103 215 93 36 0 6 664 (3.09x%) 705 0.23
RTSL 2835 1535 | 6477 1536 1733 927| 1643 | 15166@.34x) 16685 0.75
Table 4. Histogram of stream operation lists of media applications
Avg kernel Avg kernel Avg memory tionis shown in the last column in Table 4. DEPTH required
duration stream length  stream length  the most bandwidth, 1.6 MIPS, because it operates on rel-
DEPTH | 374.5cycles 606.3words  188.6 words  atively short streams (see Table 5). Other applications re-
MPEG | 8244cycles 1191 words 2543 words ~ duire less than half the 2 MIPS maximum bandwidth pos-
QRD | 2234cycles 2087 words 1261 words  Sible inour current setup. It is intergsting to note the num-
RTSL | 1022cycles 585.8words  520.0 words ber of times each SDR is reused. If it were not for Th& x

reuse of SDRs, it is likely that DEPTH would exceed the
maximum possible host bandwidth. For example, if only
the minimum amount of SDR reuse was achieved, 2.,

There is a serious pitfall involved in evaluating proces- then the total number of stream instructions would increase
sors, and in particular stream processors, using just keerne py 1.9x. DEPTH does so well at reusing SDRs because all
As described in Section 5.1, much of the efficiency of a possible SDR values fit within the 32 entries in the SDR
stream processor derives from its ability to (a) forward re- file, reducing the necessary host interface bandwidth. How-
sults from kernel to kernel via the SRF, and (b) to hide mem- ever, a change in the implementation of DEPTH might re-
ory latency by overlapping memory references with the ex- quire more SDR values than can fitin the SDR file, resulting
ecution ofseveralkernels, not just one. Both of these ad- in performance losses due to insufficient host bandwidth.
vantages are lost in a kernel-only evaluation. To alleviate this host bandwidth bottleneck, a new evalua-
tion board is being built that is expected to achieve closer t
the peak theoretical host bandwidth of 20 MIPS. This im-
pact of host bandwidth is quantified in the following sub-
section.

Table 5. Cluster characteristics of applications

5.3. Stream Instruction Analysis

The different stream instruction types supported by
Imagine are shown in Table 4 in the form of an his-
togram per application. “Stream Ops” either transfer or )
process entire data streams. This includes kernel op-2-4. Host Processor Bandwidth
erations, memory loads and stores, as well as cluster Each kernel execution, memory operation, or scalar reg-
“Restart” operations that are used to sequence multiple fi-ister update on Imagine requires that the host proces-
nite streams between the SRF and clusters while presentingor transfer a stream instruction to the stream controller.
the abstraction of a single longer stream to the kernel. “Reg The 32-entry scoreboard in the stream controller acts as a
ister Ops” read or write control registers. These can be buffer, allowing the host processor to run ahead of Imag-
used to pass parameters to kernels (“UCR Write”) and ac-ine, buffering up instructions for future use. Limited
cess descriptor registers that hold length and location in-host interface bandwidth can affect Imagine perfor-
formation for streams in the SRF (“SDR Write”) and in  mance in two ways. First, if the average demand for stream
DRAM (“MAR Write”). Since the data held in the descrip- instructions is greater than the host bandwidth, the score-
tors consists of a large number of bits, these registers helgboard will ultimately empty, causing Imagine to idle wait-
to reduce the required amount of host instruction band-ing for new instructions. Second, some applications requir
width. Instead of encoding the length and location infor- that the host read the results of a previous stream instruc-
mation for streams into all stream instructions, we can in- tion before issuing the next instruction. These host depen-
stead send the information once via a descriptor write dencies can stall execution until a host read-computeswrit
and then use it multiple times by having other opera- cycle is completed.
tions simply refer to the descriptor index. Imagine cordgain We use the most demanding application, DEPTH, to
32 SDRs and 8 MARs. Data can also be transferred be-evaluate the effect of varying host interface bandwidth- Fi
tween register files (“Move”). Finally, there are other ure 14 shows how execution time is affected as host in-
stream instruction types for tasks such as loading mi-terface bandwidth is varied from 0.5 MIPS to 50 MIPS.
crocode and synchronization between different Imagine The figure shows that with a host bandwidth of 2 MIPS
components. These have been lumped into a single cateer greater, Imagine never idles waiting on the host. With
gory on the chart (“Misc.”). bandwidth less than 2 MIPS, execution time increases with

The stream instruction bandwidth used by each applica-the inverse of bandwidth. Most of the increased execution



30.0 7 benchmark, between 3x and 13x better than modern com-

— 250, £ host bandwidth mercial programmable DSPs and microprocessors targeted

E O stream controller for power efficiency in similar process technologies. For ex

o 2007 overhead ample, based on its published peak performance and power

= 1501 @ memory stalls dissipation in a 0.13m 1.2 \olt technology, the 225 MHz

2 1001 & microcode load TI C67x DSP dissipates 889 pJ/FLOP [16] while the 1.2

§ 50 H H B cluster stalls GHz Pentium M dissipates 3.6 nJ/FLOP [4]. Furthermore,

w O cluster busy the improved design methodologies and circuit designs typ-
00 20 o, 05 ' ically used in these commercial processors would provide

additional improvement in the achieved power efficiency
and performance of Imagine, demonstrating the potential of
stream processors to provide over an order of magnitude
improved power efficiency when compared to commercial
programmable processors.

Stream instruction bandwidth (MIPS)

Figure 14. Execution time breakdown on DEPTH
over different host interface bandwidth

App | Labrunning cycles ISIM running cycles 6. Conclusion and Future Direction
DEPTH 2.22M 211M

This paper has presented an experimental evaluation of

MPEG 4.33M 424 M ; .

the Imagine stream processor. A set of microbenchmarks
QRD 0.615M 0.603 M was used to characterize the performance of each compo-
RTSL 4.47M 4.24 M

) nent of Imagine. These tests show that except for host inter-
Table 6. Lab vs. ISIM running cycles face bandwidth, the Imagine components individually are
able to achieve 98% of their theoretical peak.
time is spent waiting on the host interface (“host bandwidth A set of kernelswas run to determine how these com-
stalls”). Also, with reduced host bandwidth, it is not pessi  ponents work together on small blocks of code. These tests
ble to fully overlap memory operations with kernel execu- show that Imagine achieves an average of 43% of peak per-
tion, which results in the clusters idling waiting on a mem- formance across a number of kernels. The difference be-

ory operation to complete (“memory stalls”). tween peak and achieved performance at the kernel level
. . . is due to time spent in loop prologues/epilogues and un-
5.5. Simulation versus Experiment used instruction slots due to limited ILP or load imbalance

As shown in Table 6, execution times measured in the across types of arithmetic units.
laboratory are within 6% of the results measured from the  Four full Imagine applications were evaluated to mea-
Imagine cycle accurate simulator, ISIM. In all cases, the ac sure the effects of memory operations, host bandwidth, and
tual hardware is slower than simulation. These differencesinter-kernel communication on performance. Imagine sus-
are due to small inaccuracies in the simulation model. In tains between 16% and 60% of the peak arithmetic per-
the hardware, pipeline latencies not modeled in ISIM are formance and between 21% and 50% of the peak IPC on
incurred when kernels and stream loads or stores are issuethese applications. Much of the difference between peak
from the stream controller. Furthermore, a performance bugand achieved application level performance is due to the
in the hardware implementation of the memory controller kernel issues discussed above. At the application-level a
results in lower sustained memory bandwidth under certainsmall amount of time is lost due to kernels waiting on the
memory access patterns. Finally, ISIM’s model of host pro- memory system or the host interface. For all of our applica-
cessor execution is optimistic, resulting in lower simeéat  tions except RTSL, this application-level overhead was les
execution times for host processor dependencies. The effecthan 10% of execution time. RTSL has an application-level

of these seemingly innocuous differences on overall execu-overhead of 30% due to dependences with the host proces-
tion time highlights the need to validate all simulation re- sor that serialize execution.

sults against actual hardware. Overall, our evaluation has shown that the Imag-
o ) ine stream processor can efficiently support a wide
5.6. Power Efficiency Comparison variety of applications (ranging from molecular dynam-

Imagine compares very favorably on power efficiency ics to video compression). Programming entirely in a
to other programmable floating-point processors when nor-high-level language, with no assembly performance tun-
malized to the same technology generation. As explaineding, stream and kernel compilers are able to keep an ar-
in Section 3.1, Imagine achieves a performance efficiencyray of 48 floating-point-units busy using a combination of
of 1.16 GFLOPS/W (862 pJ per floating-point operation) data-level parallelism (8-way SIMD) and instruction-leve
at 1.8 Volts on the peak cluster performance benchmark.paralellism (6-way VLIW) - achieving over 50% utiliza-
When normalized to a modern 0.13n 1.2 \Volt process tion at the kernel level (and over 80% on many inner loops).
technology, Imagine would achieve 277 pJ/FLOP on this The same compilation tools are able to efficiently ex-



ploit the two-level register hierarchy of Imagine keeping
the register to memory ratio over 350:1 across all four ap-

and imagine. Irinternational Parallel and Distributed Pro-
cessing Symposiyrpages 229-235, April 2003.

plications. [3] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Lakant’

ASICs are becoming more difficult and costly to design.
Atthe same time, many media applications demand the flex-
ibility of a programmable processor — for example to sup-
port multiple video codecs or multiple wireless air inter-  [4]
faces. Stream processors address these issues by providing
performance competitive with an ASIC while retaining the [5]
flexibility of a programmable processor.

Stream processors pose many opportunities and chal-
lenges for compilers. Our current software system addsesse
some of these — using communication scheduling [9] to
schedule kernels on clusters with partitioned LRFs and us- [6]
ing stream scheduling [6] to schedule stream operations and
allocate the SRF. Much more can be done, however, to op-
timize the mapping of programs onto a stream architecture
with an exposed register hierarchy. We expect future stream [
compilers to restructure applications by splitting anchjoi
ing kernels to better use the available LRF and SRF band-
width. Better stream scheduling algorithms will optimize
re-use in the SRF and minimize kernel stalls on memory
operations. Also, we expect techniques to be developed that
automate the extraction of kernels and streams from conven-
tional “C” code, effectively converting “C” into StreamC [l
and KernelC.

Recent work has shown that stream processing is appli-
cable to scientific computing [3]. Good performance has
been demonstrated on codes with both irregular and regular[lo]
grids. Streams have also been applied to network process-
ing [11] and software defined radios [12]. Efficient stream-
ing demands only large amounts of data paralellism and a
high arithmetic to memory ratio, not regularity. We expect [11]
many other applications of stream processing to emerge.
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