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Abstract

This paper describes an experimental evaluation of the
prototype Imagine stream processor. Imagine [8] is a stream
processor that employs a two-level register hierarchy with
9.7 Kbytes of local register file capacity and 128 Kbytes
of stream register file (SRF) capacity to capture producer-
consumer locality in stream applications. Parallelism is ex-
ploited using an array of 48 floating-point arithmetic units
organized as eight SIMD clusters with a 6-wide VLIW per
cluster. We evaluate the performance of each aspect of
the Imagine architecture using a set of synthetic micro-
benchmarks, key media processing kernels, and full appli-
cations. These micro-benchmarks show that the prototype
hardware can attain 7.96 GFLOPS or 25.4 GOPS of arith-
metic performance, 12.7 Gbytes/s of SRF bandwidth, 1.58
Gbytes/s of memory system bandwidth, and accept up to
2 million stream processor instructions per second from a
host processor.

On a set of media processing kernels, Imagine sustained
an average of 43% of peak arithmetic performance. An
evaluation of full applications provides a breakdown of
where execution time is spent. Over full applications, Imag-
ine achieves 39.4% of peak performance, of the remain-
der on average 36.4% of time is lost due to load imbal-
ance between arithmetic units in the VLIW clusters and lim-
ited instruction-level parallelism within kernel inner loops,
10.6% is due to kernel startup and shutdown overhead be-
cause of short stream lengths, 7.6% is due to memory stalls,
and the rest is due to insufficient host processor bandwidth.
Further analysis included in the paper presents the impact
of host instruction bandwidth on application performance,
particularly on smaller datasets. In summary, the experi-
mental measurements described in this paper demonstrate
the high performance and efficiency of stream processing:
operating at 200 MHz, Imagine sustains 4.81 GFLOPS on
QR decomposition while dissipating 7.42 Watts.

1. Introduction

Media applications such as video processing, wire-
less communication, and 3-D graphics are pervasive and

computationally demanding. To decompress, deinter-
leave, and scale an HDTV video stream in real time, for
example, requires billions of operations per second. For-
tunately these applications are characterized by ample
parallelism. Most of these applications are served to-
day by special-purpose ASIC processors containing hun-
dreds to thousands of ALUs. While such ASIC solutions are
efficient, they lack flexibility and are not feasible for cer-
tain low-volume applications.

Imagine [8] is a programmable stream processor aimed
at media applications. Expressing an application as a stream
program, sequences of records flowing through computa-
tion kernels, exposes both parallelism and locality. Imag-
ine exploits the parallelism of a stream program with an ar-
ray of 48 32-bit floating-point units. Two levels of register
files, 9.7 KBytes of local register files and 128 KBytes of
stream register file, capture the locality of stream programs,
enabling a high ratio of arithmetic to off-chip bandwidth.
By keeping most data transfers local (over 95% of all trans-
fers are from local registers) Imagine offers efficiency ap-
proaching that of an ASIC while retaining the flexibility of
a programmable processor.

This paper describes the experimental evaluation of a
prototype Imagine processor fabricated in an 1.5 Volts, 0.18
µm CMOS process1 and packaged in a 768-pin BGA pack-
age. A set of micro-benchmarks are used to measure the per-
formance of each feature of Imagine independently. Media
kernels and applications are then used to measure the over-
all performance of Imagine on actual workloads.

Imagine achieves 7.96 GFLOPS / 25.4 GOPS ALU per-
formance on synthetic benchmarks and sustains between
16% and 60% of this peak performance on four media ap-
plications. On all of these applications, a single Imagine
chip is able to sustain greater than real-time performance.
On MPEG encoding, for example, Imagine sustains a com-
pression rate of 138 frames per second while consuming 6.8
Watts. At the kernel level, the difference between peak and
sustained performance is primarily due to idle ALUs caused
by limited ILP and load imbalance across ALUs. On three

1 The process used to fabricate Imagine has 0.18µm metal rules with
0.15µm devices.
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Figure 1. Stream and kernel diagram for stereo
depth extractor application

of the four applications, less than 10% of performance is
lost due to overhead at the application level — memory and
host interface stalls.

The remainder of this paper describes the experimental
evaluation of Imagine in detail. Section 2 describes our ex-
perimental setup including the Imagine processor and sup-
porting hardware and software infrastructure. Results of the
micro-benchmark programs, used to measure and verify the
performance and power efficiency of Imagine components,
are described in Section 3. Results from full applications,
described in Section 4, show how these components inter-
act. Section 5 highlights the effectiveness of stream process-
ing and analyzes factors causing differences in the results
between simulation and experimental measurement.

2. The Imagine Stream Processing System

The Imagine stream processing system is composed of a
programming model, architecture, compiler tools, and a de-
velopment board all organized to take advantage of the lo-
cality and parallelism inherent in media applications. This
system allows stream processors to provide the performance
of a special-purpose processor on media applications while
retaining the flexibility of a programmable engine.

2.1. Stream Programming Model
Media processing applications have considerable

producer-consumer locality, are data-parallel, and are
compute-intensive [13]. The stream programming model
exposes these characteristics by representing applica-
tions as a set of computation kernels that consume and pro-
duce data streams. Each data stream is a sequence of
data records of the same type, and each kernel is a pro-
gram that performs the same set of operation on each
input stream element, and produces one or more out-
put streams. Media applications are programmed using
this model with two languages developed for Imag-
ine:StreamCandKernelC.

A StreamC program specifies the order of kernel exe-
cutions and organizes data into sequential streams that are
passed from one kernel to the next. For example, Figure 1
shows a graphical representation of the StreamC program

for a stereo depth extractor application [5]. This applica-
tion processes images from two cameras that are positioned
at a horizontal offset from each other. The images are first
pre-processed by two convolution kernels (3x3 convolve
and 7x7 convolve). Then the Sum-of-Absolute-Differences
(SAD) kernel is called repeatedly to find the number of pix-
els of horizontal shift that minimizes the SAD of a 7x7 area
centered around each pixel. Each call to the kernel searches
a different set of horizontal offsets, or disparities. The depth
at each pixel is proportional to the inverse of the best dis-
parity match. Notice, in the example above, that data in
each output stream is destined either for the next kernel in
the application pipeline, or is consumed by the next call
to the same kernel. Furthermore, though not shown in the
diagram, the programmer can embed arbitrary C/C++ in a
StreamC program.

Kernels in the stream programming model are pro-
grammed in KernelC. They are structured as loops that
process element(s) from each input stream and gener-
ate output(s) for each output stream during each loop
iteration. KernelC disallows any external data accesses be-
sides input stream reads, output stream writes, and a few
scalar parameter inputs. Kernels are also written so that suc-
cessive iterations of the main loop can be executed concur-
rently using parallel hardware.

Mapping media applications to StreamC and KernelC
exposes the available parallelism and locality. Producer-
consumer locality between subsequent kernels is exposed
as the streams passing between kernels in StreamC. Local-
ity within kernels is captured in KernelC. Data-level par-
allelism is exposed by both StreamC and KernelC because
kernels perform the same computation on all of the elements
of an input stream.

2.2. Imagine Architecture
The Imagine architecture directly exploits the paral-

lelism and locality exposed by the stream programming
model to achieve high performance. As shown in Figure 2,
Imagine runs as a coprocessor to a host. The host proces-
sor executes scalar code compiled from a StreamC pro-
gram and issues stream instructions to Imagine via an
on-chip stream controller. The stream register file (SRF),
a large on-chip storage for streams, is the nexus of Imag-
ine. All stream instructions operate on data in the SRF.
Stream load and store instructions transfer streams of
data between the SRF and memory (possibly using indi-
rect (gather/scatter) addressing). Kernel-execute instruc-
tions perform a kernel (such as 7x7 convolve or SAD from
Figure 1) on input streams of data from the SRF, and gen-
erating output streams in the SRF.

The eight arithmetic clusters execute kernels in an eight-
wide SIMD manner. Each arithmetic cluster, shown in Fig-
ure 3, contains six 32-bit floating-point units (FPUs) (three
adders, two multipliers, and a divide square-root unit). Each
FPU except for the divide square-root unit is fully pipelined
to execute a single-precision floating-point, 32-bit integer,
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or multiple lower-precision integer operations per cycle.
These six FPUs execute kernel VLIW instructions issued
from a single micro-controller each clock cycle. Two-port
local register files (LRFs) feed the inputs of each FPU and
an intra-cluster switch connects the outputs of the ALUs
and external ports from the SRF to the inputs of the LRFs.
In addition, a scratchpad (SP) unit is used for small indexed
addressing operations within a cluster, and an intercluster
communication (COMM) unit is used to exchange data be-
tween clusters.

When a kernel-execute instruction is received from the
host processor, the micro-controller starts fetching and is-
suing VLIW instructions from the microcode instruction
store. For each iteration of a typical kernel’s inner loop,
the eight clusters read eight subsequent elements in paral-
lel from one or more input streams residing in the SRF,
each cluster executes an identical series of VLIW instruc-
tions on stream elements, and the eight clusters then write
eight output elements in parallel back to one or more output
streams in the SRF. Kernels repeat this process for several
loop iterations until all elements of the input stream have
been read and operated on. In this manner, data-level paral-
lelism is exploited across the eight clusters through SIMD
execution and instruction-level parallelism is exploitedwith
VLIW instructions per cluster. Locality within kernels is ex-
ploited during each loop iteration when intermediate results

are passed through the intra-cluster switch and stored in the
LRFs. Producer-consumer locality between kernels is cap-
tured by storing kernel output streams in the SRF and read-
ing input streams from the SRF during subsequent kernels
without going back to external memory. While kernel exe-
cution is ongoing, the host processor can concurrently issue
stream load and store instructions so that when the next ker-
nel is ready to start, its input data is already available in the
SRF.

In our example application, the stereo depth extractor,
each stream in the SRF is a row from an input image, and
each stream element is a pair of 16-bit pixels from that
row. For each iteration of a 7x7 convolution kernel, 16 in-
put pixels (two per cluster) are operated on, convolved with
neighboring pixels, and 16 output pixels are produced. Out-
put streams from the 7x7 convolution kernel are stored in
the SRF and passed directly to the 3x3 convolution ker-
nel. The other kernels proceed similarly. By exploiting par-
allelism and locality in this manner, stream processors are
able to achieve high performance on a range of media ap-
plications with only modest off-chip memory bandwidth re-
quirements.

2.3. Software System
The Imagine software system provides the compile-time

and run-time support necessary for running stream pro-
grams. As shown in Figure 4, the software system includes
compilers for converting StreamC and KernelC programs
into host CPU assembly code and kernel microcode, respec-
tively, and provides run-time support for issuing stream in-
structions to Imagine via the host CPU’s external memory
interface.
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Figure 4. Imagine software system

The KernelC compiler uses communication scheduling
to produce VLIW microcode from KernelC [9]. It per-
forms high-level optimizations such as copy-propagation,
loop unrolling and automatic software pipelining, schedules
arithmetic operations on functional units, specifies the data
movement between ALUs and LRFs, and performs regis-
ter allocation. All of the kernel microcode for an applica-
tion is loaded from the host CPU into the Imagine memory
space during startup. At the start of application execution,
the kernel microcode is transferred from Imagine memory
to the microcode store (2K VLIW instructions total). If all
the kernel microcode for an application does not fit in the
microcode store, the host ensures that kernels are loaded
dynamically from Imagine memory to the microcode store
before kernel execution occurs. If new kernels are being
loaded while another kernel is being executed, a perfor-
mance degradation of less than 6% occurs.

The StreamC compilation process is split into two stages.
In the first stage, a stream compiler performs a number of
high-level tasks such as dependency analysis between ker-
nels and stream load/stores, software pipelining between
stream loads or stores and kernel operations, optimal siz-
ing of stripmined streams, and allocating and managing
the SRF [6]. After these optimizations and analyses are
completed, the stream compiler generates stream instruc-
tions (stream loads or stores, kernel invocations, and Imag-
ine register reads and writes). These stream instructions are
embedded in intermediate C++ code, which preserves the
control flow of the StreamC. During the second stage, a
standard C++ compiler compiles and links the intermedi-
ate code with a stream dispatcher, generating a host proces-
sor executable (assembly code).

At run time, a command line interface is used to run a
StreamC application of user’s choice, which inturn invokes
the stream dispatcher with relevant stream instructions. The
stream dispatcher manages a 32-slot scoreboard on Imag-
ine. When a slot is free, it issues a new stream instruc-

Figure 5. Dual-Imagine development board

tion to be written into the scoreboard. The dependencies be-
tween the new stream instruction and other scoreboard en-
tries are encoded with the instruction itself by the stream
compiler. The stream controller on Imagine uses these de-
pendencies to determine the next stream instruction to is-
sue from the scoreboard when necessary resources become
available. The dispatcher performs all reads/writes from/to
Imagine registers, which are mapped to addresses in the
host memory space. For data transfers between the host
CPU and Imagine, the stream dispatcher performs memory-
mapped reads/writes to a on-chip fifo.

For many media applications such as stereo depth ex-
traction, the control-flow for the entire application is data-
independent. In these cases, the StreamC compiler takes ad-
vantage of the static control-flow by using a playback mode,
in which the intermediate C++ code is replaced by a record
of the encoded stream instructions, in order. The playback
dispatcher reads from this recorded sequence of stream in-
structions and dispatches them as scoreboard slots become
free. Although less general than running application code
on the host processor, this playback method allows for a
more lightweight efficient dispatcher implementation when
control-flow is data independent.

2.4. Development Board
The Imagine development board, shown in Figure 5, pro-

vides a platform for testing the Imagine stream processing
hardware and software tools. The board contains two Imag-
ine processors running at 200 MHz, fed by a single 150
MHz PowerPC 8240 host processor. Each Imagine proces-
sor has four SDRAM channels and is connected to eight
256Mbit SDRAMs running at 100 MHz for a total capac-
ity of 256 Mbytes per Imagine. An FPGA serves as a bridge
between the PowerPC and Imagine chips, providing a 66
MHz interface for issuing stream instructions and reading
Imagine control registers. The board is connected to a host
PC with a PCI interface, providing a command-line user in-
terface and file storage system for the PowerPC host pro-



cessor on the development board. Additional board compo-
nents are used for I/O and a multi-processor network, but
are beyond the scope of this paper.

This development board provides a platform for evalu-
ating the effectiveness of stream processing in exploiting
the parallelism and locality to achieve high performance on
media applications. The remainder of this paper presents
this detailed evaluation using experimental measurements
from this development board, except where otherwise men-
tioned.

3. Micro-Benchmark performance

In order to explore the range of achievable performance
and power efficiency2 on Imagine, a number of tests were
written in KernelC and StreamC to exercise specific com-
ponents of the Imagine stream processor. First, a set of
synthetic micro-benchmarks validate the peak performance
of Imagine subsystems. Second, key media processing ker-
nels show how actual kernel characteristics affect sustained
performance. Finally, another set of micro-benchmarks are
used to explore how Imagine performance is affected by
stream length.

3.1. Micro-benchmarks
The six micro-benchmark programs used to exercise the

peak performance of Imagine components are shown in Ta-
ble 1. The first four micro-benchmarks affect kernels and
the last two affect application performance. Peak achieved
floating-point performance while running kernels in the
arithmetic clusters occurs with a mixture of floating-point
adds and multiplies while peak achieved integer perfor-
mance occurs with four 8-bit operations on each adder and
two 16-bit operations on each multiplier. Inter-cluster com-
munication bandwidth is stressed with a kernel that sorts
32 elements of a stream, which requires a large number of
inter-cluster data exchanges, per loop iteration. Peak SRF
bandwidth is achieved with a kernel that reads multiple in-
put stream elements per loop iteration and writes the data
directly back to the SRF via output streams. Memory sys-
tem bandwidth and host interface bandwidth are stressed
with the last two micro-benchmarks. Peak memory band-
width is measured by running two memory stream loads that
hit a small range of random memory addresses simultane-
ously. Host interface bandwidth is stressed by writing a se-
ries of stream instructions which continually update control
registers.

Table 1 shows that all tested components except the host
interface achieve over 98% of the theoretical peak. The
bandwidth of the host interface is 10x lower than the the-
oretical peak because it is limited by the development board
implementation, not the host interface on Imagine. The ef-
fect of host interface bandwidth on application performance

2 These are measured at 200 MHz and 1.8 Volts throughout the paper.
3 When the chip is idle, it dissipates 4.72 W.

Component (achieved / theoretical) Power
Cluster (OPS) (25.4 / 25.7) GOPS 5.79 W

Cluster (FLOPS) (7.96 / 8.13) GFLOPS 6.88 W
Inter-cluster comm. (7.84 / 8.00) ops/cycle 8.53 W

SRF (12.7 / 12.8) GB/s 5.79 W
MEM (1.58 / 1.60) GB/s 5.42 W

Host Interface (2.03 / 20.0) MIPS 4.72 W

Table 1. Performance of Imagine components3

is discussed in detail in Section 5. The peak cluster perfor-
mance benchmarks also demonstrate Imagine’s power effi-
ciency, sustaining 4.39 GOPS/W for integer operations and
1.16 GFLOPS/W for floating point operations. All power
measurements use input data patterns that incur high tog-
gle rates on internal nets, so during applications with highly
correlated data, the average power dissipation in the stressed
components will be lower.

3.2. Kernels
Although Imagine sustains close to peak performance on

synthetic micro-benchmarks, when actual media process-
ing kernels are mapped to Imagine, limited parallelism, in-
struction mix, and stream lengths can affect sustained per-
formance substantially. Table 2 summarizes performance,
power, register bandwidth, and instructions per cycle (IPC)
for a set of kernels from the media processing and scien-
tific computing domains. All of the kernels except for RLE
and GROMACS achieve an IPC of over 35, indicating that
there is ample arithmetic intensity and parallelism in these
kernels to be exploited by the kernel compiler. The register
bandwidth data shows that more than 95% of data accessses
are to the cluster LRFs, demonstrating the large amount of
locality within kernel computations. On average, most ker-
nels require significantly less than the peak SRF bandwidth
of 12.71 GB/s, meaning that some headroom remains for
memory streams and for portions of kernels requiring bursts
of higher SRF bandwidth.

Further analysis provides insight into the differences be-
tween peak and sustained performance on kernels. Run-
time during kernel execution can be classified into the four
categories shown in Figure 6: minimum inner-loop run-time
required to execute arithmetic operations, extra run-time
within kernel inner loops incurred from ILP limitations and
load imbalance, non-main loop execution time, and cluster
stalls.

The first two categories combined from Figure 6 is the
percentage of execution time spent in kernel main loops.
‘Operations’ are what execution time would be if peak per-
formance were achieved within the main loop (operations)
and the remaining execution time is due to limited ILP
within cluster main loops and load imbalance between the
types of arithmetic units in a cluster. For example, the inner
loop of theupdate2kernel executes inner products requir-
ing one multiplication and one addition per element. Since
the Imagine clusters have 3 adders and 2 multipliers, per-



LRF BW SRF BW Power
Kernel ALU (GB/s) (GB/s) IPC (Watt)

2D DCT 6.92 GOPS 95.13 2.09 35.9 6.99 two-dimensional direct cosine transform
of 16-bit 8-by-8 pixel macroblocks

blocksearch 9.62 GOPS 98.18 0.07 35.9 7.07 search similar macroblocks for motion estimation
RLE 1.21 GOPS 54.00 0.39 19.8 6.15 apply run length encoding to macroblocks (16 bit)

conv7x7 9.76 GOPS 99.44 2.75 36.7 7.76 convolve images with a 7x7 filter (16 bit)
blockSAD 4.05 GOPS 108.7 8.87 35.2 7.79 compute SAD of two images (16 bit)

house 3.67 GFLOPS 101.4 2.26 35.3 7.05 compute the Householder matrix (float)
update2 5.82 GFLOPS 119.6 2.20 47.5 7.42 matrix-matrix multiplication (float)

GROMACS 2.24 GFLOPS 44.18 0.51 15.3 6.65 force computation between water molecules (float)

Table 2. Performance of representative kernels of media applications on Imagine
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Figure 6. Breakdown of kernel performance

formance in this case is limited by the multiplication units.
GROMACS and RLE on the other hand are two kernels
which have even worse main-loop performance relatively
because they are limited by divide/square-root and scratch-
pad bandwidth, respectively. Dependencies between arith-
metic operations limit ILP in other kernels, another cause
of degradation in main-loop performance.

The third and fourth categories in the kernel run-time
percentage are due to non-main loop cycles and cluster
stalls. Non-main loop cycles are cycles during kernel execu-
tion spent in loop prologues, epilogues, outer loop blocks,
and in additional main loop iterations used to prime soft-
ware pipelined loops. Note that when kernels are invoked to
operate on longer streams, more main loop iterations are ex-
ecuted and the percentage of run time in non-main loop cy-
cles goes down. In Figure 6, average stream lengths mea-
sured during application execution were used to measure
the run-time percentages. The effect stream length has on
kernel performance is analyzed in detail in the next section.
The last category of run-time percentage accounts for clus-
ter stalls during kernel execution when the SRF is not ready
to accept new stream read or write requests from the clus-
ters. Since the average SRF bandwidth used by these ker-
nels is significantly lower than the peak SRF bandwidth,
these cluster stalls occur during kernel startup periods when
SRF streams have not been initialized and during kernels
which have bursty SRF bandwidth requirements. However,
even in these kernels, less than 5% of kernel run-time cy-
cles are spent in stalls waiting for the SRF.

3.3. Stream Length Effects
As shown in the previous section by the percentage

of kernel runtime spent in non-main loop cycles, stream
lengths affect the average performance of kernels. Stream
lengths also affect average memory bandwidth since loads
and stores of long streams can more easily hide the la-
tency of accessing individual stream elements from exter-
nal memory. In this section, we present a set of synthetic
micro-benchmarks to analyze the effect of stream length on
both kernel performance and memory performance.

The first two sets of micro-benchmarks demonstrate the
effect of stream length on kernel performance. Both micro-
benchmarks make use of a kernel where the main loop sus-
tains 4.8 GOPS and the non-main loop portion sustains 1.6
GOPS. Furthermore, the main loop is software pipelined
in order to achieve higher arithmetic intensity and to simu-
late typical kernel conditions. Average performance is mea-
sured over a time period when this kernel is repeatedly is-
sued from the host in order to make sure host interface band-
width effects are taken into account.

The first micro-benchmark, shown in Figure 7, keeps the
prologue length fixed at 64 cycles and varies the stream
length for different sized main loops. Since this kernel reads
one stream element per cluster per loop iteration, in this
micro-benchmark the number of main loop iterations exe-
cuted per kernel invocation is 1/8 the stream length. The
ideal BW number corresponds to an infinite stream length,
when all execution time would be spent in the main loop.
As shown in the figure, shorter streams degrade the perfor-



0.1


1


10


8
 16
 32
 64
 128
 256
 512
 1024
2048
4096


Length of streams (word)


K

e


r
n

e


l
 

p


e

r
f


o

r
m


a

n


c

e


 
(

G


O

P


S

)


main loop 8 cycles


main loop 16 cycles


main loop 32 cycles


main loop 64 cycles


main loop 128 cycles


main loop 256 cycles


ideal BW


Figure 7. Kernel performance with varied stream
length - prologue fixed at 64 cycles
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Figure 8. Kernel performance with varied stream
length - main loop fixed at 32 cycles

mance of the shorter main loop kernels more severely be-
cause a larger percentage of kernel run-time is spent in non-
main-loop cycles. Also, note that there are cases when the
arithmetic performance of the kernel is less than 1.6 GOPS,
the performance of the non-main-loop portion of the ker-
nel. This is because it takes more time to send stream in-
structions from the host to run a kernel than to run a kernel
in some cases, meaning the clusters are idle waiting for the
next kernel to be issued. On the development board, it takes
about 500 ns to send a stream instruction over the host inter-
face and this kernel requires 5 stream instructions before it
can start running, so that if the kernel execution time is less
than 2.5µs, kernel performance is limited by the host inter-
face bandwidth.

In the second micro-benchmark, shown in Figure 8, the
main loop cycles are fixed and the effect of stream length
is measured for different prologue lengths. In this case, for
stream lengths of 64 elements or less, kernel performance is
dominated by limited host bandwidth. As a result, kernels
with shorter prologues have worse performance because the
clusters spend a larger percentage of time idle waiting for
the next kernel to be issued. For stream lengths greater than
64, performance is dominated by the percentage of run time
in main-loop vs. non-main-loop cycles, so shorter prologues
have higher performance.
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Figure 9. Memory system performance from a
single AG with varied stream lengths
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Figure 10. Memory system performance from
two AGs with varied stream lengths

The next two micro-benchmarks demonstrate the ef-
fect of stream length on the memory system perfor-
mance. On Imagine, there are two address generators
(AGs) in the memory system, allowing two concur-
rent stream load or store instructions to be executed. The
first micro-benchmark, shown in Figure 9, plots the mem-
ory system performance as stream length is varied when
only one of these AGs is used at a time. In this ex-
periment, six different memory access patterns - unit
stride with record size one, stride 2 with record size
one, stride 12 with record size 4, indexing random ad-
dresses over the range of 16 words to 2K words and 4M
words - are used since external DRAM bandwidth is heav-
ily influenced by the sequences of addresses received.

For stream lengths of less than 64, on most access pat-
terns the memory system bandwidth is still limited by the
host interface bandwidth, even though each memory ac-
cess has 30 to 40 cycles of latency. As streams get longer,
the achieved memory bandwidth approaches the limits of
the external DRAM. The indexed random with range of
16 words pattern is a special case where all memory ac-
cesses are captured in a small on-chip cache in the Imag-
ine memory controller, thus stressing the on-chip maximum
AG bandwidth rather than the maximum external DRAM
bandwidth. The second memory system micro-benchmark



Appli- Performance Power
cation ALU IPC Summary (Watts)

DEPTH 4.91 GOPS 33.3 90 frames/s 7.49
MPEG 7.36 GOPS 31.7 138 frames/s 6.80
QRD 4.81 GFLOPS 40.1 326 QRD/s 7.42
RTSL 1.30 GOPS 17.7 44 frames/s 5.91

Table 3. Application Performance

is shown in Figure 10. It is similar to the above micro-
benchmark, but with two simultaneously active AGs. As a
result, higher bandwidth is achieved in some patterns when
there are no DRAM bank conflicts between the two mem-
ory streams.

Note that although indexed memory addresses over a
small range approach the theoretical peak of 1.6 GB/s
asymptotically, the unit stride case is approximately 20%
lower than was expected from simulation. This discrepancy
is due to a performance bug in the on-chip memory con-
troller which causes unnecessary DRAM precharges be-
tween some accesses to the same DRAM row.

In summary, the micro-benchmarkspresented in this sec-
tion show how Imagine is able to achieve near peak per-
formance with synthetic micro-benchmarks. However, both
the characteristics of typical media processing kernels and
stream length effects lead to a difference between sustained
performance and peak performance during the execution of
real applications.

4. Application Performance

The previous section studied the performance of specific
components of Imagine in isolation. In this section we will
study the performance of entire applications, which depends
on all of these components working together.

4.1. Overview
Table 3 lists the overall performance for four applica-

tions: DEPTH is the stereo depth extractor first presented
in Section 2; MPEG encodes three frames of 360x288 24-
bit video images according to the MPEG-2 standard; QRD
converts a 192x96 complex matrix into an upper triangu-
lar and an orthogonal matrix, and is a core component of
space-time adaptive processing [1]; and RTSL renders the
first frame of the SPECviewperf 6.1.1 advanced visual-
izer benchmark using the Stanford Real-Time Shading Lan-
guage [10].

The first column in the table, which lists the number
of arithmetic operations executed per second, shows that
Imagine sustains up 7.36 GOPS and 4.81 GFLOPS. If we
consider all operations, not just arithmetic ones, then Imag-
ine is able to sustain over 40 instructions per cycle on QRD.
In fact, for all three video applications, Imagine can easily
meet real-time processing demands of 24 or 30 fps. These
high absolute performance numbers are a result of carefully
managing bandwidth, both in the programming model and
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Figure 11. Execution time breakdown of applica-
tions obtained from cycle-accurate simulation.

in the architecture, as discussed in Section 2. Imagine dis-
sipates between 5.9W and 7.5W while executing these ap-
plications at their highest performance levels. Furthermore,
as shown in [7], voltage and frequency scaling allow the
same Imagine chip to execute the MPEG and QRD applica-
tions at about half the performance but only one-fourth the
power (< 2W).

4.2. Analysis of Overheads
When compared to the peak capabilities of Imagine, the

applications achieve between 16% to 60% of the maximum
arithmetic performance, and between 21% to 50% of the
maximum IPC. The difference between the peak perfor-
mance of Imagine and the achieved performance is due to
several factors, shown graphically in Figure 11. The first
four categories account for kernel run-time in the clus-
ters, comprising 90% of the execution time for all appli-
cations except RTSL. The kernel run-time, as discussed in
Section 3.2, is affected by operation mix, limited ILP, av-
erage stream lengths, and required SRF bandwidth in the
kernels. During the remaining execution cycles, the clus-
ters idle waiting for a new kernel invocation due to one of
four overheads: stalls waiting for a microcode load opera-
tion to complete, memory stalls (waiting for a stream load
or store to complete), stream controller issue overhead in-
curred once per stream instruction, and stalls due to inade-
quate host interface bandwidth. If more than one of these is
responsible for delaying a kernel at any given time, the ex-
tra cycles are attributed to the overhead earliest in the list.

While these four non-kernel overheads occupy less than
10% of the total execution time for the first three applica-
tions, they occupy over 30% of the time for RTSL. The two
biggest culprits are memory stalls and host interface stalls.
The large overhead caused by memory stalls may come as
a surprise since RTSL actually requires the least DRAM
bandwidth of any of the presented applications (see Sec-
tion 5.1). It turns out that the problem is not pure band-
width. Instead, there are periods in the application where
kernels are required to wait until a memory load or store fin-
ishes, either because the kernel needs to use the data still be-
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Figure 12. Average sustained performance of Imagine components on applications

ing loaded or because it needs to use the SRF space that is
occupied by a stream being stored to memory. The stream
compiler does not do as good a job on scheduling memory
operations and kernel operations concurrently for RTSL as
it does with the other applications, mainly because stream
lengths in RTSL are less predictable from batch to batch.
The other major non-kernel overhead for RTSL, host inter-
face stalls, arises when control-flow decisions on the host
processor are serialized on kernel results, causing Imag-
ine to idle during a Imagine-host processor round-trip de-
lay. While certain portions of these non-kernel overheads
are probably inherent to the RTSL application, future re-
search can produce superior compilation strategies to over-
lap Imagine operations and improve kernel occupancy to
higher than 70%.

Further insight into application performance is provided
by measuring the average performance of Imagine com-
ponents during application execution. Figure 12 shows the
percentage of peak GOPS, host interface (HI) bandwidth,
memory bandwidth, SRF bandwidth, and LRF bandwidth
sustained on the four applications plotted on a logarithmic
scale. This data demonstrates a range of application char-
acteristics typical to media applications and shows that dif-
ferent applications stress different components of Imagine.
The effect that these four components - the host interface,
the memory system, SRF, and LRFs - have on arithmetic
performance are explored in more detail in the next section.

5. Discussion

5.1. Arithmetic to Memory Bandwidth Ratio
Imagine’s arithmetic to memory bandwidth ratio

for floating point computation is over 20:1. It can per-
form over 20 floating point operations for each 32-bit
word transferred over the memory interface. This is5×
higher than the 4:1 ratio typical of conventional micro-
processors and DSPs [14, 16]. Yet Imagine is still able to
sustain half of peak performance on a variety of applica-
tions. Many conventional processors do not do as well even
with their greater memory bandwidth.

Imagine is able to achieve good performance with rela-
tively low memory bandwidth for two reasons. First, expos-
ing a large register set with two levels of hierarchy to the
compiler enables considerable locality (kernel locality and
producer-consumer locality) to be captured that is not cap-
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Figure 13. Bandwidth hierarchy of applications

tured by a conventional cache. This locality is evidenced by
the LRF to memory bandwidth ratio of over 350:1 across
four applications shown in Figure 13.

Second, by scheduling stream loads and stores to hide la-
tency, the Imagine memory system can be designed to pro-
vide theaveragebandwidth required by applications with-
out loss of performance. In contrast, conventional proces-
sors are highly sensitive to memory latency and hence pro-
viding memory bandwidth well in excess of the average is
required to avoidserialization latencyon each memory ac-
cess. Although the memory system of a conventional pro-
cessor is idle much of the time, reducing its bandwidth
would increase memory latency (by the additional cycles re-
quired to transfer a cache line across the lower bandwidth
interface) and hence increase execution time.

5.2. Kernel versus Application Evaluation
Some previous studies of stream processors [15, 2]

showed relatively low performance. These results were
due to evaluating the performance of a single kernel ac-
cessing its input and output streams from memory. The
bandwidth demands of many kernels exceed the sustain-
able memory bandwidth of Imagine (see the SRF BW
column of Table 2). Thus, if run from memory, these ker-
nels would be memory bound. However, in actual applica-
tions, most kernels run from the SRF, not from memory,
and the scheduler uses software pipelining to hide the la-
tency of the few required memory operations under the ex-
ecution time of many kernels. The results in Figure 13
show conclusively that for real applications, a stream pro-
cessor is not memory bound.



Stream Ops Register Ops
Kernel SDR MAR UCR SDR References BW

Application + Restart Memory Write Write Write Move Misc. (Reuse) Total (MIPS)
DEPTH 5344 3629 45 3608 4635 0 11 32263 (717×) 17272 1.6
MPEG 489 407 182 412 528 108 428 2744 (15.1×) 2554 0.12
QRD 252 103 215 93 36 0 6 664 (3.09×) 705 0.23
RTSL 2835 1535 6477 1536 1733 927 1643 15166 (2.34×) 16685 0.75

Table 4. Histogram of stream operation lists of media applications

Avg kernel Avg kernel Avg memory
duration stream length stream length

DEPTH 374.5 cycles 606.3 words 188.6 words
MPEG 8244 cycles 1191 words 2543 words
QRD 2234 cycles 2087 words 1261 words
RTSL 1022 cycles 585.8 words 520.0 words

Table 5. Cluster characteristics of applications

There is a serious pitfall involved in evaluating proces-
sors, and in particular stream processors, using just kernels.
As described in Section 5.1, much of the efficiency of a
stream processor derives from its ability to (a) forward re-
sults from kernel to kernel via the SRF, and (b) to hide mem-
ory latency by overlapping memory references with the ex-
ecution ofseveralkernels, not just one. Both of these ad-
vantages are lost in a kernel-only evaluation.

5.3. Stream Instruction Analysis
The different stream instruction types supported by

Imagine are shown in Table 4 in the form of an his-
togram per application. “Stream Ops” either transfer or
process entire data streams. This includes kernel op-
erations, memory loads and stores, as well as cluster
“Restart” operations that are used to sequence multiple fi-
nite streams between the SRF and clusters while presenting
the abstraction of a single longer stream to the kernel. “Reg-
ister Ops” read or write control registers. These can be
used to pass parameters to kernels (“UCR Write”) and ac-
cess descriptor registers that hold length and location in-
formation for streams in the SRF (“SDR Write”) and in
DRAM (“MAR Write”). Since the data held in the descrip-
tors consists of a large number of bits, these registers help
to reduce the required amount of host instruction band-
width. Instead of encoding the length and location infor-
mation for streams into all stream instructions, we can in-
stead send the information once via a descriptor write
and then use it multiple times by having other opera-
tions simply refer to the descriptor index. Imagine contains
32 SDRs and 8 MARs. Data can also be transferred be-
tween register files (“Move”). Finally, there are other
stream instruction types for tasks such as loading mi-
crocode and synchronization between different Imagine
components. These have been lumped into a single cate-
gory on the chart (“Misc.”).

The stream instruction bandwidth used by each applica-

tion is shown in the last column in Table 4. DEPTH required
the most bandwidth, 1.6 MIPS, because it operates on rel-
atively short streams (see Table 5). Other applications re-
quire less than half the 2 MIPS maximum bandwidth pos-
sible in our current setup. It is interesting to note the num-
ber of times each SDR is reused. If it were not for the717×
reuse of SDRs, it is likely that DEPTH would exceed the
maximum possible host bandwidth. For example, if only
the minimum amount of SDR reuse was achieved, i.e.,2×,
then the total number of stream instructions would increase
by 1.9x. DEPTH does so well at reusing SDRs because all
possible SDR values fit within the 32 entries in the SDR
file, reducing the necessary host interface bandwidth. How-
ever, a change in the implementation of DEPTH might re-
quire more SDR values than can fit in the SDR file, resulting
in performance losses due to insufficient host bandwidth.
To alleviate this host bandwidth bottleneck, a new evalua-
tion board is being built that is expected to achieve closer to
the peak theoretical host bandwidth of 20 MIPS. This im-
pact of host bandwidth is quantified in the following sub-
section.

5.4. Host Processor Bandwidth
Each kernel execution, memory operation, or scalar reg-

ister update on Imagine requires that the host proces-
sor transfer a stream instruction to the stream controller.
The 32-entry scoreboard in the stream controller acts as a
buffer, allowing the host processor to run ahead of Imag-
ine, buffering up instructions for future use. Limited
host interface bandwidth can affect Imagine perfor-
mance in two ways. First, if the average demand for stream
instructions is greater than the host bandwidth, the score-
board will ultimately empty, causing Imagine to idle wait-
ing for new instructions. Second, some applications require
that the host read the results of a previous stream instruc-
tion before issuing the next instruction. These host depen-
dencies can stall execution until a host read-compute-write
cycle is completed.

We use the most demanding application, DEPTH, to
evaluate the effect of varying host interface bandwidth. Fig-
ure 14 shows how execution time is affected as host in-
terface bandwidth is varied from 0.5 MIPS to 50 MIPS.
The figure shows that with a host bandwidth of 2 MIPS
or greater, Imagine never idles waiting on the host. With
bandwidth less than 2 MIPS, execution time increases with
the inverse of bandwidth. Most of the increased execution
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Figure 14. Execution time breakdown on DEPTH
over different host interface bandwidth

App Lab running cycles ISIM running cycles
DEPTH 2.22 M 2.11 M
MPEG 4.33 M 4.24 M
QRD 0.615 M 0.603 M
RTSL 4.47 M 4.24 M

Table 6. Lab vs. ISIM running cycles

time is spent waiting on the host interface (“host bandwidth
stalls”). Also, with reduced host bandwidth, it is not possi-
ble to fully overlap memory operations with kernel execu-
tion, which results in the clusters idling waiting on a mem-
ory operation to complete (“memory stalls”).

5.5. Simulation versus Experiment
As shown in Table 6, execution times measured in the

laboratory are within 6% of the results measured from the
Imagine cycle accurate simulator, ISIM. In all cases, the ac-
tual hardware is slower than simulation. These differences
are due to small inaccuracies in the simulation model. In
the hardware, pipeline latencies not modeled in ISIM are
incurred when kernels and stream loads or stores are issued
from the stream controller. Furthermore, a performance bug
in the hardware implementation of the memory controller
results in lower sustained memory bandwidth under certain
memory access patterns. Finally, ISIM’s model of host pro-
cessor execution is optimistic, resulting in lower simulated
execution times for host processor dependencies. The effect
of these seemingly innocuous differences on overall execu-
tion time highlights the need to validate all simulation re-
sults against actual hardware.

5.6. Power Efficiency Comparison
Imagine compares very favorably on power efficiency

to other programmable floating-point processors when nor-
malized to the same technology generation. As explained
in Section 3.1, Imagine achieves a performance efficiency
of 1.16 GFLOPS/W (862 pJ per floating-point operation)
at 1.8 Volts on the peak cluster performance benchmark.
When normalized to a modern 0.13µm 1.2 Volt process
technology, Imagine would achieve 277 pJ/FLOP on this

benchmark, between 3x and 13x better than modern com-
mercial programmable DSPs and microprocessors targeted
for power efficiency in similar process technologies. For ex-
ample, based on its published peak performance and power
dissipation in a 0.13µm 1.2 Volt technology, the 225 MHz
TI C67x DSP dissipates 889 pJ/FLOP [16] while the 1.2
GHz Pentium M dissipates 3.6 nJ/FLOP [4]. Furthermore,
the improved design methodologies and circuit designs typ-
ically used in these commercial processors would provide
additional improvement in the achieved power efficiency
and performance of Imagine, demonstrating the potential of
stream processors to provide over an order of magnitude
improved power efficiency when compared to commercial
programmable processors.

6. Conclusion and Future Direction

This paper has presented an experimental evaluation of
the Imagine stream processor. A set of microbenchmarks
was used to characterize the performance of each compo-
nent of Imagine. These tests show that except for host inter-
face bandwidth, the Imagine components individually are
able to achieve 98% of their theoretical peak.

A set of kernelswas run to determine how these com-
ponents work together on small blocks of code. These tests
show that Imagine achieves an average of 43% of peak per-
formance across a number of kernels. The difference be-
tween peak and achieved performance at the kernel level
is due to time spent in loop prologues/epilogues and un-
used instruction slots due to limited ILP or load imbalance
across types of arithmetic units.

Four full Imagine applications were evaluated to mea-
sure the effects of memory operations, host bandwidth, and
inter-kernel communication on performance. Imagine sus-
tains between 16% and 60% of the peak arithmetic per-
formance and between 21% and 50% of the peak IPC on
these applications. Much of the difference between peak
and achieved application level performance is due to the
kernel issues discussed above. At the application-level a
small amount of time is lost due to kernels waiting on the
memory system or the host interface. For all of our applica-
tions except RTSL, this application-level overhead was less
than 10% of execution time. RTSL has an application-level
overhead of 30% due to dependences with the host proces-
sor that serialize execution.

Overall, our evaluation has shown that the Imag-
ine stream processor can efficiently support a wide
variety of applications (ranging from molecular dynam-
ics to video compression). Programming entirely in a
high-level language, with no assembly performance tun-
ing, stream and kernel compilers are able to keep an ar-
ray of 48 floating-point-units busy using a combination of
data-level parallelism (8-way SIMD) and instruction-level
paralellism (6-way VLIW) - achieving over 50% utiliza-
tion at the kernel level (and over 80% on many inner loops).
The same compilation tools are able to efficiently ex-



ploit the two-level register hierarchy of Imagine keeping
the register to memory ratio over 350:1 across all four ap-
plications.

ASICs are becoming more difficult and costly to design.
At the same time, many media applications demand the flex-
ibility of a programmable processor — for example to sup-
port multiple video codecs or multiple wireless air inter-
faces. Stream processors address these issues by providing
performance competitive with an ASIC while retaining the
flexibility of a programmable processor.

Stream processors pose many opportunities and chal-
lenges for compilers. Our current software system addresses
some of these — using communication scheduling [9] to
schedule kernels on clusters with partitioned LRFs and us-
ing stream scheduling [6] to schedule stream operations and
allocate the SRF. Much more can be done, however, to op-
timize the mapping of programs onto a stream architecture
with an exposed register hierarchy. We expect future stream
compilers to restructure applications by splitting and join-
ing kernels to better use the available LRF and SRF band-
width. Better stream scheduling algorithms will optimize
re-use in the SRF and minimize kernel stalls on memory
operations. Also, we expect techniques to be developed that
automate the extraction of kernels and streams from conven-
tional “C” code, effectively converting “C” into StreamC
and KernelC.

Recent work has shown that stream processing is appli-
cable to scientific computing [3]. Good performance has
been demonstrated on codes with both irregular and regular
grids. Streams have also been applied to network process-
ing [11] and software defined radios [12]. Efficient stream-
ing demands only large amounts of data paralellism and a
high arithmetic to memory ratio, not regularity. We expect
many other applications of stream processing to emerge.

7. Acknowledgements

We would like to thank Scott Rixner, John Owens, Peter
Mattson, and Ben Serebrin, as well as all past members of
the Imagine team. We also thank Jinwoo Suh, Chen Chen,
Li Wang and Steve Crago of USC-ISI East for their collab-
oration on the Imagine development board.

This research was supported by a Sony Stanford Grad-
uate Fellowship, an Intel Foundation Fellowship, the De-
fense Advanced Research Projects Agency under ARPA or-
der E254 and monitored by the Army Intelligence Cen-
ter under contract DABT63-96-C0037 and by ARPA order
L172 monitored by the Department of the Air Force under
contract F29601-00-2-0085.

References
[1] K. C. Cain, J. A. Torres, and R. T. Williams. RTSTAP: Real-

time space-time adaptive processing benchmark. Technical
Report MTR 96B0000021, MITRE, February 1997.

[2] S. Chatterji, M. Narayanan, J. Duell, and L. Oliker. Perfor-
mance evaluation of two emerging media processors: Viram

and imagine. InInternational Parallel and Distributed Pro-
cessing Symposium, pages 229–235, April 2003.

[3] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labont´e,
J. H. Ahn, N. Jayasena, U. J. Kapasi, A. Das, J. Gummaraju,
and I. Buck. Merrimac: Supercomputing with streams. In
SC2003, November 2003.

[4] Intel R©. Intel R© pentiumR© m processor. http://www.intel.
com/design/mobile/datashts/25261202.pdf.

[5] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka. A
stereo machine for video-rate dense depth mapping and its
new applications. InProceedings of the 15th Computer Vi-
sion and Pattern Recognition Conference, pages 196–202,
San Francisco, CA, June 18–20, 1996.

[6] U. J. Kapasi, P. Mattson, W. J. Dally, J. D. Owens, and
B. Towles. Stream scheduling. Concurrent VLSI Architec-
ture Tech Report 122, Stanford University, Computer Sys-
tems Laboratory, March 2002.

[7] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn,
P. Mattson, and J. D. Owens. Programmable stream proces-
sors.IEEE Computer, pages 54–62, August 2003.

[8] B. Khailany, W. J. Dally, S. Rixner, U. J. Kapasi, P. Matt-
son, J. Namkoong, J. D. Owens, B. Towles, and A. Chang.
Imagine: Media processing with streams.IEEE Micro, pages
35–46, Mar/Apr 2001.

[9] P. Mattson, W. J. Dally, S. Rixner, U. J. Kapasi, and J. D.
Owens. Communication scheduling. InProceedings of the
ninth international conference on Architectural support for
programming languages and operating systems, pages 82–
92, November 2000.

[10] K. Proudfoot, W. R. Mark, S. Tzvetkov, and P. Hanrahan.
A real-time procedural shading system for programmable
graphics hardware. InProceedings of ACM SIGGRAPH,
pages 159–170, August 2001.

[11] J. S. Rai. A feasibility study on the application of stream ar-
chitectures for packet processing applications. Master’sthe-
sis, North Carolina State University, Raleigh, NC, 2003.

[12] S. Rajagopal, S. Rixner, and J. R. Cavallaro. A pro-
grammable baseband processor design for software defined
radios. In 45th IEEE International Midwest Symposium
on Circuits and Systems, volume 3, pages 413–416, August
2002.

[13] S. Rixner.Stream Processor Architecture. Kluwer Academic
Publishers, Boston, MA, 2001.

[14] D. Sager, G. Hinton, M. Upton, T. Chappell, T. D. Fletcher,
S. Samaan, and R. Murray. A 0.18µm CMOS IA32 micro-
processor with a 4GHz integer execution unit. In2001 IEEE
International Solid-State Circuits Conference Digest of Tech-
nical Papers, pages 324–325, February 2001.

[15] J. Suh, E.-G. Kim, S. P. Crago, L. Srinivasan, and M. C.
French. A performance analysis of pim, stream processing,
and tiled processing on memory-intensive signal processing
kernels. In30th Annual International Symposium on Com-
puter Architecture, pages 410–421, June 2003.

[16] Texas Instruments.TMS320C6713 Floating-Point Digital
Signal Processors, 2003.03 edition.


