
THE VLSI IMPLEMENTATION AND EVALUATION OF

AREA- AND ENERGY-EFFICIENT STREAMING MEDIA

PROCESSORS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Brucek Khailany

June 2003

c© Copyright by Brucek Khailany 2003

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

William J. Dally
(Principal Adviser)

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Mark Horowitz

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Teresa Meng

Approved for the University Committee on Graduate Stud-

ies.

iii

Abstract

Media applications such as image processing, signal processing, and graphics require tens

to hundreds of billions of arithmetic operations per second of sustained performance for

real-time application rates, yet also have tight power constraints in many systems. For

this reason, these applications often use special-purpose (fixed-function) processors, such

as graphics processors in desktop systems. These processors provide several orders of

magnitude higher performance efficiency (performance per unit area and performance per

unit power) than conventional programmable processors.

In this dissertation, we present the VLSI implementation and evaluation of stream pro-

cessors, which reduce this performance efficiency gap while retaining full programmability.

Imagine is the first implementation of a stream processor. It contains 48 32-bit arithmetic

units supporting floating-point and integer data-types organized into eight SIMD arithmetic

clusters. Imagine executes applications stream programs consisting of a sequence of com-

putation kernels operating on streams of data records. The prototype Imagine processor is

a 21-million transistor chip, implemented in a 0.15 micron CMOS process. At 232 MHz,

a peak performance of 9.3 GFLOPS is achieved while dissipating 6.4 Watts with a die size

measuring 16 mm on a side.

Furthermore, we extend these experimental results from Imagine to stream processors

designed in more area- and energy-efficient custom design methodologies and to future

VLSI technologies where thousands of arithmetic units on a single chip will be feasible.

Two techniques for increasing the number of arithmetic units in a stream processor are pre-

sented: intracluster and intercluster scaling. These scaling techniques are shown to provide

high performance efficiencies to tens of ALUs per cluster and to hundreds of arithmetic

clusters, demonstrating the viability of stream processing for many years to come.

iv

Acknowledgments

During the course of my studies at Stanford University, I have been fortunate to work with

a number of talented individuals. First and foremost, thanks goes to my research advisor,

Professor William J. Dally. Through his vision and leadership, Bill has always been an

inspiration to me and everyone else on the Imagine project. He also provided irreplacable

guidance for me when I needed to eventually find a dissertation topic. Professor Dally

provided me with the opportunity to take a leadership role on the VLSI implementation of

the Imagine processor, an invaluable experience for which I will always be grateful. I would

also like to thanks the other members of my reading committee, Professor Mark Horowitz

and Professor Teresa Meng, for their valuable feedback regarding the work described in

this dissertation and interactions over my years at Stanford.

The Imagine project was the product of the hard work of many graduate students in the

Concurrent VLSI Architecture group at Stanford. Most notably, I would like to thank Scott

Rixner, Ujval Kapasi, John Owens, and Peter Mattson. Together, we formed a team that

took the Imagine project from a research idea to a working silicon prototype. More recently,

Jung-Ho Ahn, Abhishek Das, and Ben Serebrin have helped with laboratory measurements.

Thanks also goes to all of the other team members who helped with the Imagine VLSI

implementation, including Jinyung Namkoong, Brian Towles, Abelardo Lopez-Lagunas,

Andrew Chang, Ghazi Ben Amor, and Mohamed Kilani.

I would also like to thank all of the other members of the CVA group at Stanford,

especially my officemates over the years: Ming-Ju Edward Lee, Li-Shiuan Peh, and Patrick

Chiang. Many thanks also goes to Pamela Elliot and Shelley Russell, the CVA group

administrators while I was a graduate student here.

The research described in this dissertation would not have been possible without the

v

generous funding provide by a number of sources. I would like to specifically thank the

Intel Foundation for a one-year fellowship in 2001-2002 to support this research. The

remainder of my time as a graduate student, I was supported by the Imagine project, which

was funded by the Defense Advanced Research Projects Agency under ARPA order E254

and monitored by the Army Intelligence Center under contract DABT63-96-C0037, by

ARPA order L172 monitored by the Department of the Air Force under contract F29601-

00-2-0085, by Intel Corporation, by Texas Instruments, and by the Interconnect Focus

Center Program for Gigascale Integration under DARPA Grant MDA972-99-1-0002.

Finally, I can not say enough about the support provided by my friends and family. My

parents, Asad (the first Dr. Khailany) and Laura, have been my biggest supporters and for

that I am forever grateful. Now that they will no longer be able to ask me when my thesis

will be done we will have to find a new subject to discuss on the telephone. My sister and

brother, Raygar and Sheilan, have always providing timely encouragement and advice. To

all of my friends and family members who have helped me in one way or another over the

years, I would like to say thanks.

vi

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Contributions . 3

1.2 Outline . 3

2 Background 5

2.1 Media Applications . 5

2.1.1 Compute Intensity . 6

2.1.2 Parallelism . 7

2.1.3 Locality . 8

2.2 VLSI Technology . 8

2.3 Media Processing . 9

2.3.1 Special-purpose Processors . 10

2.3.2 Microprocessors . 11

2.3.3 Digital Signal Processors and Programmable Media Processors . . 13

2.3.4 Vector Microprocessors . 13

2.3.5 Chip Multiprocessors . 14

2.4 Stream Processing . 15

2.4.1 Stream Programming . 15

2.4.2 Stream Architecture . 16

2.4.3 Stream Processing Related Work 20

vii

2.4.4 VLSI Efficiency of Stream Processors 21

3 Imagine: Microarchitecture and Circuits 26

3.1 Instruction Set Architecture . 27

3.1.1 Stream-Level ISA . 27

3.1.2 Kernel-Level ISA . 28

3.1.3 Kernel Instruction Format . 31

3.2 Microarchitecture . 31

3.2.1 Microcontroller . 32

3.2.2 Arithmetic Clusters . 34

3.2.3 Kernel Execution Pipeline . 36

3.2.4 Stream Register File . 39

3.2.5 SRF Pipeline . 39

3.2.6 Streaming Memory System . 40

3.2.7 Network Interface . 41

3.2.8 Stream Controller . 42

3.3 Arithmetic Cluster Function Units . 43

3.3.1 ALU Unit . 43

3.3.2 MUL Unit . 46

3.3.3 DSQ Unit . 49

3.3.4 SP Unit . 50

3.3.5 COMM Unit . 50

3.3.6 JB/VAL Unit . 50

3.4 Summary . 54

4 Imagine: Design Methodology 56

4.1 Schedule . 57

4.2 Design Methodology Background . 57

4.3 Imagine Design Methodology . 59

4.4 Imagine Implementation Results . 64

4.5 Imagine Clocking Methodology . 65

4.6 Imagine Verification Methodology . 67

viii

5 Imagine: Experimental Results 69

5.1 Operating Frequency . 69

5.2 Power Dissipation . 73

5.3 Energy Efficiency . 76

5.4 Sustained Application Performance . 80

5.5 Summary . 81

6 Stream Processor Scalability: VLSI Costs 82

6.1 VLSI Cost Models . 84

6.1.1 Stream Processor Cost Models . 86

6.2 VLSI Cost Evaluation . 92

6.2.1 Intracluster Scaling . 92

6.2.2 Intercluster Scaling . 93

6.2.3 Combined Scaling . 94

6.3 Custom and Low-Power Stream Processors 96

7 Stream Processor Scalability: Performance 104

7.1 Related Scalability Work . 105

7.2 Technology Trends . 106

7.2.1 Memory Bandwidth . 106

7.2.2 Wire Delay . 107

7.3 Performance Evaluation . 111

7.3.1 Kernel Inner-Loop Performance 111

7.3.2 Kernel Short Stream Effects . 123

7.3.3 Application Performance . 126

7.3.4 Bandwidth Hierarchy Scaling . 130

7.4 Improving Intercluster and Intracluster Scalability 132

7.5 Scalability Summary . 136

8 Conclusions 137

8.1 Future Work . 138

ix

Bibliography 141

x

List of Tables

2.1 Media Processor Efficiencies (Normalized to 0.13µ, 1.2 V) 11

3.1 Kernel ISA - Part 1 . 29

3.2 Kernel ISA - Part 2 . 30

3.3 JB/VAL Operation for Conditional Output Streams 51

3.4 Function Unit Area and Complexity . 54

4.1 Subchip statistics . 60

4.2 Imagine placement results . 64

4.3 Imagine timing results . 66

5.1 Energy-Efficiency Comparisons . 77

5.2 Energy-Delay Comparisons . 79

5.3 Sustained Application Performance . 80

6.1 Building Block Areas, Energies, and Delays 84

6.2 Scaling Coefficients . 85

6.3 Kernel Inner Loop Characteristics . 86

6.4 Scaling Cost Models . 89

6.5 Building block Areas, Energies, and Delays for ASIC, CUST, and LP . . . 97

6.6 ASIC, CUST, and LP performance efficiencies 98

6.7 Technology Scaling Parameters . 100

7.1 Kernels and Applications use for Performance Evaluation 112

7.2 Intercluster Scaling Performance Efficiency 122

xi

List of Figures

2.1 A Stereo Depth Extractor . 6

2.2 Stereo depth extractor as a stream program 16

2.3 Stream Processor Block Diagram . 17

2.4 Arithmetic Cluster Block Diagram . 18

3.1 Imagine Arithmetic Cluster . 28

3.2 VLIW Instruction Format . 32

3.3 Microcontroller Block Diagram . 33

3.4 Function Unit Details . 35

3.5 Local Register File Implementation . 35

3.6 Kernel Execution Pipeline Diagram . 37

3.7 Stream Register File Block Diagram . 38

3.8 SRF Pipeline Diagram . 40

3.9 Stream Controller Block Diagram . 42

3.10 ALU Unit Block Diagram . 45

3.11 Segmented Carry-Select Adder . 46

3.12 MUL Unit Block Diagram . 47

3.13 DSQ Unit Block Diagram . 49

3.14 Computing the COMM Source Index in the JB/VAL unit 53

4.1 Standard ASIC Design Methodology . 58

4.2 Tiled Region Design Methodology . 61

4.3 Tiled Region Floorplanning Details . 63

4.4 Asynchronous FIFO Synchronizer . 67

xii

5.1 Die Photograph . 70

5.2 Measured Operating Frequency . 71

5.3 Measured Ring Delay . 72

5.4 Measured Core Power Dissipation . 74

5.5 Csw distribution during Active Operation 75

5.6 Measured Energy Efficiency . 76

6.1 Scalable Grid Floorplan . 87

6.2 Intracluster Switch Floorplan . 91

6.3 Area of Intracluster Scaling . 92

6.4 Energy of Intracluster Scaling . 93

6.5 Area of Intercluster Scaling . 94

6.6 Energy of Intercluster Scaling . 95

6.7 Area of Combined Scaling . 95

6.8 Effect of Technology Scaling on Die Area and Power Dissipation 101

6.9 Effect of Technology Scaling on Energy Efficiency 102

7.1 Worst-case Switch Delay with Intracluster Scaling 108

7.2 Worst-case Switch Delay with Intercluster Scaling 109

7.3 Intracluster Scaling with no Loop Transformations 113

7.4 Intracluster Scaling with Software Pipelining 116

7.5 Intracluster Scaling with Software Pipelining and Loop Unrolling 118

7.6 Inner-Loop Performance per Area with Intracluster Scaling 120

7.7 Intercluster Kernel Speedup . 121

7.8 Kernel Short Stream Effects . 124

7.9 Application Performance . 127

7.10 Application Cycles with Intercluster Scaling (N=5) 129

7.11 Bandwidth Hierarchy with Intercluster Scaling (N=5) 131

7.12 Intercluster Switch Locality with 8x8 Cluster Grid Floorplan 134

7.13 Limited-Connectivity Inercluster Switch for 8x8 Cluster Floorplan 135

xiii

xiv

Chapter 1

Introduction

Computing devices and applications have recently emerged to interface with, operate on,

and process data from real-world samples classified as media. As media applications oper-

ating on these data-types have come to the forefront, the design of processors optimized to

operate on these applications have emerged as an important research area. Traditional mi-

croprocessors have been optimized to execute applications from desktop computing work-

loads. Media applications are a workload with significantly different characteristics, mean-

ing that the potential for large improvements in performance, cost, and power efficiency

can be achieved by improving media processors.

Media applications include workloads from the areas of signal processing, image pro-

cessing, video encoding and decoding, and computer graphics. These workloads require a

large and growing amount of arithmetic performance. For example, many current computer

graphics and image processing applications in desktop systems require tens to hundreds of

billions of arithmetic operations per second for real-time performance [Rixner, 2001]. As

scene complexity, screen resolutions, and algorithmic complexity continues to grow, this

demand for absolute performance will continue to increase. Similar examples of large and

growing performance requirements can be drawn in the other application areas, such as

the need for higher communication bandwidth rates in signal processing and higher video

quality in video encoding and decoding algorithms. As a result, media processors must be

designed to provide large amounts of absolute performance.

While high performance is necessary to meet the computational requirements of media

1

2 CHAPTER 1. INTRODUCTION

applications, many media processors will need to be deployed in mobile systems and other

systems where cost and power consumption is a key concern. For this reason, low power

consumption and high energy efficiency, or high performance per unit power (low aver-

age energy dissipated per arithmetic operation), must be a key design goal for any media

processor.

Fixed-function processors have been able to provide both high performance and good

energy-efficiency when compared to their programmable counterparts on media applica-

tions. For example, the Nvidia Geforce3 [Montrym and Moreton, 2002; Malachowsky,

2002], a recent graphics processor, provides 1.2 Teraops per second of peak performance

at 12 Watts for an energy-efficiency of 10 picoJoules per operation. In comparison, pro-

grammable digital signal processors and microprocessors are several orders of magnitude

worse in absolute performance and in energy efficiency. However, programmability is a key

requirement in many systems where algorithms are too complex or change too rapidly to

be built into fixed-function hardware. Using programmable rather than fixed-function pro-

cessors also enables fast time-to-market. Finally, the cost of building fixed-function chips

is growing significantly in deep sub-micron technologies, meaning that programmable so-

lutions also have an inherent cost advantage since a single programmable chip can be used

in many different systems. For these reasons, a programmable media processor which can

provide the performance and energy efficiency of fixed-function media processors is desir-

able.

Stream processors have recently been proposed as a solution that can provide all three

of the above: performance, energy efficiency, and programmability. In this dissertation,

the design and evaluation of a prototype stream processor, called Imagine is presented.

This 21-million transistor processor is implemented in a 5-level metal 0.15 micron CMOS

technology with a die size measuring 16 millimeters on a side. At 232 MHz, a peak per-

formance of 9.3 GFLOPS is achieved while dissipating 6.4 Watts. Furthermore, in future

VLSI technologies, the scalability of stream processors to Teraops per second of peak per-

formance is demonstrated.

1.1. CONTRIBUTIONS 3

1.1 Contributions

This dissertation makes several contributions to the fields of computer architecture and

media processing:

• The design and evaluation of the Imagine stream processor. This is the first VLSI

implementation of a stream architecture and provides experimental verification to

the VLSI feasibility and performance of stream processors.

• Analysis on the performance efficiency of stream processors. This analysis demon-

strates the potential for providing high performance per unit area and high perfor-

mance per unit power when compared to other media processor architectures.

• Analytical models for the area, power, and delay of key components of a stream

processor. These models are used to demonstrate the scalability of stream processors

to thousands of arithmetic units in future VLSI technologies.

• An analysis of the performance of media applications as the number of arithmetic

units per stream processor are increased. This analysis provides insights into the

available parallelism in media applications and explores the tradeoffs in area, power,

and performance for different methods of scaling to large numbers of arithmetic units

per stream processor.

1.2 Outline

Recently, media processing has gained attention in both commercial products and academic

research. The important recent trends in media processing are presented in Chapter 2. One

such trend which has gained prominence in the research community is stream processing.

In Chapter 2, we introduce and explain stream processing, which consists of a programming

model and architecture that enables high performance on media applications with fully-

programmable processors.

In order to explore the performance and efficiency of stream processing, a prototype

stream processor, Imagine, was designed and implemented in a modern VLSI technology.

4 CHAPTER 1. INTRODUCTION

In Chapter 3, the instruction set architecture, microarchitecture, and key arithmetic circuits

from Imagine are described. In Chapter 4, the design methodology is presented and finally,

in Chapter 5, experimental results are provided. Also in Chapter 5, the energy efficiency of

Imagine and a comparison to existing processors is presented.

This work on Imagine was then extended to study the scalability of stream processors

to future VLSI technologies when thousands of arithmetic units could fit on a single chip.

In Chapter 6, analytical models for the area, power, and delay of key components of a

stream processor are presented. These models are then used to explore how area and energy

efficiency scales with the number of arithmetic units. In Chapter 7, performance scalability

is studied by exploring the avaiable parallelism in media applications and by exploring the

tradeoffs between different methods of scaling.

Finally, conclusions and future work are presented in Chapter 8.

Chapter 2

Background

Media applications and media processors have recently become an active and important

area of research. In this chapter, background and previous work on media processing is

presented. First, media application characteristics and previous work on processors for

running these applications is presented. Then, stream processors are introduced. Stream

processors have recently been proposed as an architecture that exploits media application

characteristics to achieve better performance, area efficiency, and energy efficiency than

existing programmable processors.

2.1 Media Applications

Media applications are programs with real-time performance requirements that are used

to process audio, video, still images, and other data-intensive data. Example application

domains include image processing, computer-generated graphics, video encoding or de-

coding, and signal processing. As previous researchers have pointed out, these applications

share several important characteristics: compute intensity, parallelism, and locality [Rixner,

2001].

A flow-diagram representation of one such media application, a stereo depth extractor,

is shown graphically in Figure 2.1 [Kanade et al., 1996]. In this application, using two

images offset by a horizontal disparity as input from two cameras, each row from each

image is first filtered and then compared using a sum-of-absolute differences metric to

5

6 CHAPTER 2. BACKGROUND

Convolution
Filter

Convolution
Filter

Left Image

Center Image

Sum-of-
Absolute

Differences

Depth Map

Figure 2.1: A Stereo Depth Extractor

estimate the disparity between objects in the images. From the disparity calculated at each

image pixel, the depth of objects in an image can be approximated. This stereo depth

extractor will be used to demonstrate the three important characteristics common to most

media applications.

2.1.1 Compute Intensity

The first important characteristic is compute intensity, meaning that media applications

require a high number of arithmetic operations per memory reference when compared to

traditional desktop applications. Rixner studied application characteristics of four media

applications: the stereo depth extractor presented above, a video encoder/decoder, a poly-

gon renderer, and a matrix QR decomposition [Rixner, 2001]. On the stereo depth extractor,

473.3 arithmetic operations in the convolution filter and sum-of-absolute difference calcu-

lations were required per inherent memory reference (input, output, and other global data

accesses). The other applications ranged between 57.9 and 155.3 arithmetic operations per

memory reference. In comparison, traditional desktop integer applications have ratios of

less than 2: arithmetic operations comprise between 2% and 50% of dynamically executed

instructions whereas memory loads and stores account for 15% to 80% of instructions in the

SPECint2000 benchmark suite [KleinOsowski et al., 2000]. This difference suggests that

architectures optimized for integer benchmarks such as general-purpose microprocessors

would not be as well-suited to media applications and vice versa.

2.1. MEDIA APPLICATIONS 7

2.1.2 Parallelism

Not only do these applications require large numbers of arithmetic operations per memory

reference, but many of these arithmetic operations can be executed in parallel. This avail-

able parallelism in media applications can be classified into three categories: instruction-

level parallelism (ILP), data-level parallelism (DLP), and task-level parallelism (TLP).

The most plentiful parallelism in media applications is at the data level. DLP refers to

computation on different data elements occurring in parallel. Furthermore, DLP in media

applications can often be exploited with SIMD execution since the same computation is

typically applied to all data elements. For example, in the stereo depth extractor, all output

pixels in the depth map could theoretically be computed in parallel by the same fixed-

function hardware element since there are no dependencies between these pixels and the

computation required for every pixel is the same. Other media applications also contain

large degrees of DLP.

Some parallelism also is available at the instruction level. In the stereo depth extractor,

ILP refers to the parallel execution of individual arithmetic instructions in the convolution

filter or sum-of-absolute differences calculation. For example, the convolution filter com-

putes the product of a coefficient matrix with a sequence of pixels. This matrix-vector

product includes a number of multiplies and adds that could be performed in parallel. Such

fine-grained parallelism between individual arithmetic operations operating on one data el-

ement is classified as ILP and can be exploited in many media applications. As will be

shown later in Chapter 7, available ILP in media applications is usually limited to a few in-

structions per cycle due to dependencies between instructions. Although other researchers

have shown that out-of-order superscalar microprocessors are able to execute up to 4.2 in-

structions per cycle on some media benchmarks [Ranganathan et al., 1999], this is largely

due to DLP being converted to ILP with compiler or hardware techniques rather than the

true ILP that exists in these applications.

Finally, the stereo depth extractor and other media applications also contain task-level,

or thread-level, parallelism. TLP refers to different stages of a computation pipeline being

overlapped. For example, in the stereo depth extractor, there are four exeuction stages: load

image data, convolution filter, sum-of-absolute differences, and store output data. TLP is

8 CHAPTER 2. BACKGROUND

available in this application because these execution stages could be set up as a pipeline

where each stage concurrently processes different portions of the dataset. For example, a

pipeline could be set up where each stage operates on a different row: the fourth image rows

are loaded from memory, the convolution filter operates on the third rows, sum-of-absolute

differences is computed between the second rows, while the first output row is stored back

to memory. Note that ILP, DLP, and TLP are all orthogonal types of parallelism, meaning

that all three could theoretically be supported simultaneously.

2.1.3 Locality

In addition to compute intensity and parallelism, the other important media application

characteristic is locality of reference for data accesses. This locality can be classified into

kernel locality and producer-consumer locality. Kernel locality is temporal and refers to

reuse of coefficients or data during the execution of computation kernels such as the con-

volution filter. Producer-consumer locality is also a form of temporal locality that exists

between different stages of a computation pipeline or kernels. It refers to data which is pro-

duced, or written, by one kernel and consumed ,or read, by another kernel and is never read

again. This form of locality is seen very frequently in media applications [Rixner, 2001]. In

a traditional microprocessor, kernel locality would most often be captured in a register file

or a small first-level cache. Producer-consumer locality on the other hand is not as easily

captured by traditional cache hierarchies in microprocessors since it is not well-matched to

least-recently-used replacement policies typically utilized in caches.

2.2 VLSI Technology

Not only has the typical application domain for programmable processors shifted over the

last decade, the technology constraints of modern VLSI (Very Large Scale Integrated Cir-

cuits) has evolved as well. In the past, gates used for computation were the critical re-

source in VLSI design, but in modern technology, computation is cheap and communica-

tion between computational elements is expensive. For example, in the Imagine proces-

sor [Khailany et al., 2002], a single-precision floating-point multiply-accumulate unit in a

2.3. MEDIA PROCESSING 9

0.18 µm technology measures 0.486 mm2 and dissipates 185 pJ per multiply (0.185 mW

per MHz). A thousand of these multipliers could fit on a single die in a 0.13 µm technology.

While arithmetic itself is cheap, handling the data and control communication between

arithmetic units is expensive. On-chip communication between such arithmetic units re-

quires storage and wires. Small distributed storage elements are not too expensive com-

pared to arithmetic. In the same 0.18 µm technology, a 16-word 32-bit, one-read-port

one-write-port SRAM which is 0.0234 mm2 and dissipates 15pJ per access cycle assum-

ing both ports are active. However, as additional ports are added to this memory, the area

cost increases significantly. Furthermore, the drivers and wires for a 32-bit 5 millimeter

bus dissipate 24 pJ per transfer on average [Ho et al., 2001]. If each multiply requires

three multi-ported memory accesses and three 5 millimeter bus transfers (two reads and

one write), then the cost of the communication is very similar to the cost of a multiply.

Architectures must therefore manage this communication effectively in order to keep its

area and energy costs from dominating the computation itself. Off-chip communication is

an even more critical resource, since there are only hundreds of pins available in large chips

today. In addition, each off-chip communication dissipates a lot of energy (typically over 1

nJ for a 32b transfer) when compared to arithmetic operations.

Although handling the cost of communication in modern VLSI technology is a chal-

lenge, media application characteristics are well-suited to take advantage of cheap com-

putation with highly distributed storage with local communications. Cheap computation

can be exploited with large numbers of arithmetic units to take advantage of both compute

intensity and parallelism in these applications. Furthermore, producer-consumer locality

can be exploited to keep communication local as much as possible, thereby minimizing

communication costs.

2.3 Media Processing

Processors can exploit application characteristics to provide both high performance and

more importantly, performance efficiency. High performance efficiency implies a high ra-

tio of performance per unit area, area efficiency, and a high ratio of performance per unit

10 CHAPTER 2. BACKGROUND

power, energy or power efficiency. These metrics are often more important than raw per-

formance in many media processing systems since higher area efficiency leads to low cost

and better manufacturability, both important in embedded systems. Energy efficiency im-

plies that for executing a fixed computation task, less energy from a power source such as a

battery is used, leading to longer battery life and lower packaging costs in mobile products.

In this section, we present previous work on fixed-function and programmable processors

for media applications, with data on both performance and performance efficiency.

2.3.1 Special-purpose Processors

Special-purpose, or fixed-function, processors directly map an application’s data-flow graph

into hardware and can therefore exploit important application characteristics. They contain

a large number of computation elements operating in parallel, exploiting both the compute

intensity and parallelism in media applications. These computation blocks are then con-

nected together by dedicated wires and memories, exploiting available producer-consumer

locality. Using dedicated wires and memories for local storage near the computation ele-

ments is very area- and energy-efficient, since it minimizes traversals of long on-chip wires

and accesses to large global multi-ported memories. As a result, a large percentage of

die area and active power dissipation is allocated to the computation elements rather than

control and communication structures.

An energy-efficiency comparison between a variety of fixed-function and programmable

processors for media applications is shown in Table 2.1. All processors have been normal-

ized to a 0.13 micron, 1.2 Volt technology. Energy efficiency is shown as energy per arith-

metic operation and is calculated from peak performance and power dissipation. Although

most processors sustain a fraction of peak performance on most applications, sustained per-

formance and power dissipation measurements are not widely available, so peak numbers

are used here.

The energy efficiency of two special-purpose media processors are listed in the first

section of Table 2.1. A polygon rendering chip, the Nvidia Geforce3 [Montrym and More-

ton, 2002; Malachowsky, 2002], and a MPEG4 [Ohashi et al., 2002] video decoder are

presented. These processors provide energy efficiencies of better than 6 pJ per arithmetic

2.3. MEDIA PROCESSING 11

Table 2.1: Media Processor Efficiencies (Normalized to 0.13µ, 1.2 V)

Processor Data-type Peak Perf Power Energy/Op

Nvidia GeForce3 8-16b 1200 GOPS 6.7 W 5.5 pJ
MPEG4 Decode 8-16b 2 GOPS 6.2 mW 3.2 pJ

Intel Pentium 4 FP 12 GFLOPS 51.2 W 4266 pJ
(3.08 GHz) 16b 24 GOPS 51.2 W 2133 pJ
SB-1250 FP 12.8 GFLOPS 8.7 W 677 pJ
(800 MHz) 64b 6.4 GOPS 8.7 W 1354 pJ

16b 12.8 GOPS 8.7 W 677 pJ

TI C67x (225 MHz) FP 1.35 GFLOPS 1.2 W 889 pJ
TI C64x (600 MHz) 16b 4.8 GOPS 720 mW 150 pJ

VIRAM FP 1.6 GFLOPS 1.4 W 875 pJ
16b 9.6 GOPS 1.4 W 146 pJ

operation when normalized to a 0.13 µm technology. The other processors in Table 2.1 are

all programmable. Although area efficiencies are not provided in the table, comparisons

between processors for energy efficiency should be similar to area efficiency. As can be

seen, there is an efficiency gap of several orders of magnitude between the special-purpose

and programmable processors. The remainder of this section will provide background into

these programmable processors and explain their performance efficiency limitations.

2.3.2 Microprocessors

The second section of Table 2.1 includes two microprocessors, a 3.08 GHz Intel Pentium

41 [Sager et al., 2001; Intel, 2002] and a SiByte SB-1250, which consists of two on-chip

SB-1 CPU cores [Sibyte, 2000]. The Pentium 4 is designed for high performance through

deep pipelining and high clock rate. The SiByte processor is targeted specifically for energy

efficient operation through extensive use low power design techniques, and has efficiencies

simiilar to other low power microprocessors, such as XScale [Clark et al., 2001]. These

1Gate length for this process is actually 60-70 nanometers because of poly profiling engineering [Tyagi et
al., 2000; Thompson et al., 2001].

12 CHAPTER 2. BACKGROUND

processors demonstrate the range of energy efficiencies typically provided by microproces-

sors, over 500 pJ per instruction when normalized to a 0.13 micron technology.

Microprocessors have markedly lower efficiencies than special-purpose processors be-

cause of deep pipelining and because of the large amount of area and power taken up by

control structures and large global memories such as caches. For example, less than 15%

of die area in the Pentium 3 [Green, 2000], the predecessor to the Pentium 4, is devoted to

the arithmetic execution units. In addition, deep pipelining with over 20 pipeline stages,

used in the Pentium 4, requires high clock power, large branch predictors, and specula-

tive hardware in order to achieve high performance at the expense of energy efficiency.

The Sibyte processor is limited to more modest pipeline lengths for energy efficiency, but

still is based around an architecture with a global register file and global communications

through a cache hierarchy. Caches in microprocessors are not optimized to directly take ad-

vantage of producer-consumer locality to increase available on-chip bandwidth, but rather

are optimized to exploit temporal and spatial locality to reduce average memory latency.

In addition to energy inefficiencies in control structures, pipelining, and caches, ex-

isting microprocessor architectures are unable to take advantage of the compute intensity

or parallelism in media applications. A single unified multi-ported register file does not

scale efficiently to tens of arithmetic units, limiting the compute intensity and parallelism

that can be exploited. Furthermore, microprocessors are mainly optimized to exploit ILP,

less plentiful than the highly available DLP in media applications. Recently, microproces-

sors have tried to exploit DLP to achieve higher performance and to overcome register file

scalability limitations by adding SIMD extensions to their instruction sets. Some example

ISA extensions include VIS [Tremblay et al., 1996], MAX-2 [Lee, 1996], MMX [Peleg

and Weiser, 1996], Altivec [Phillip, 1998], SSE [Thakkar and Huff, 1999], and others.

However, the amount of data parallelism exploited by SIMD extensions is limited to the

width of SIMD arithmetic units, typically less than 4 parallel data elements. This means

each SIMD instruction can only capture a small percentage of the DLP available in media

applications [Kozyrakis, 2002].

2.3. MEDIA PROCESSING 13

2.3.3 Digital Signal Processors and Programmable Media Processors

Digital signal processors are listed next in Table 5.1. The first DSP, the TI C67x [TI, 2003],

is an 8-way VLIW operating at 225 MHz that targets floating-point applications, and has

energy efficiency of 889 pJ per instruction. DSPs targeted for lower-precision fixed-point

operation such as the TI C64x [Agarwala et al., 2002], a 600 MHz 8-way VLIW, are able

to provide improved energy efficiency over floating-point DSPs and microprocessors when

normalized to the same technology, achieving 150 pJ per 16b operation. This improved ef-

ficiency is due to arithmetic units optimized for lower-precision fixed-point operation and

with SIMD extensions in the C64x. In addition to C6x DSPs, there are a number of other

VLIW DSPs and programmable media processors which achieve similar energy efficien-

cies such as the Analog TigerSharc [Olofsson and Lange, 2002], Trimedia [Rathnam and

Slavenburg, 1996], the Starcore DSP [Brooks and Shearer, 2000], and others.

DSPs, programmable media processors, and special-purpose processors provide an en-

ergy efficiency advantage over microprocessors because they have kept pipeline lengths

small and avoided speculative branch predictors for energy efficiency purposes. However,

VLIW DSP architectures are not able to scale to tens of ALUs per processor, because they

still rely on global register file and control structures in VLIW or superscalar microarchitec-

tures. They also only exploit ILP and limited amounts of DLP through SIMD extensions,

similar to microprocessors. As a result, they have area and energy efficiencies significantly

better than general-purpose energy-inefficient microprocessors, but are still one to two or-

ders of magntiude worse than special-purpose processors.

2.3.4 Vector Microprocessors

While SIMD extensions enable microprocessors and DSPs to exploit a small degree of DLP,

vector processors [Russell, 1978] can exploit much more data parallelism directly with vec-

tor instructions and vector memory systems. As technology has advanced, vector proces-

sors on a single chip, or vector microprocessors have been become feasible [Wawrzynek et

al., 1996]. Recently, researchers have studied the use of vector microprocessors for media

applications such as VIRAM [Kozyrakis, 2002] and others [Lee and Stoodley, 1998]. The

performance and energy efficiency of VIRAM is shown in Table 5.1. It is able to provide

14 CHAPTER 2. BACKGROUND

energy efficiencies competitive with DSPs at higher performance rates because of its ability

to efficiently exploit DLP and its embedded memory system.

Vector processors directly exploit data parallelism by executing vector instructions such

as vector adds or multiplies out of a vector register file. These vector instructions are similar

to SIMD extensions in that they exploit inner-loop data parallelism in media applications,

however, vector lengths are not constrained by the width of the vector units, allowing even

more DLP to be exploited. Furthermore, vector memory systems are suitable for media pro-

cessing because they are optimized for bandwidth and predictable strided accesses rather

than conventional processors whose memory systems are optimized for reducing latency.

For these reasons, vector processors are able to exploit significant data parallelism and

compute intensity in media applications.

2.3.5 Chip Multiprocessors

Whereas vector microprocessors use SIMD execution to exploit DLP and achieve higher

compute intensities, another approach to providing high arithmetic performance is chip

multiprocessors (CMPs). In these solutions, multiple processor cores on the same chip

each have their own thread of execution and mechanisms for on-chip communication and

synchronization are provided. Some example research CMPs include RAW [Waingold et

al., 1997], Smart Memories [Mai et al., 2000], and others. Other CMPs such as the Cradle

3SOC [Cradle, 2003] and Broadcom’s Calisto (formerly Silicon Spice) [Nickolls et al.,

2002] have been proposed to specifically target lower-precision digital signal processing

applications.

During media application execution, CMPs typically use thread-level parallelism to

achieve high arithmetic performance by statically assigning tasks to some subset of the

available on-chip cores. They can also use SIMD execution of multiple cores to exploit

data parallelism within each task. Finally, CMPs are able to exploit producer-consumer

locality by passing the output of one task directly to the input of another task without ac-

cessing global or off-chip memories. For all of these reasons, CMPs are able to provide

arithmetic performance significantly higher than current DSPs or microprocessors by ex-

ploiting thread-level parallelism.

2.4. STREAM PROCESSING 15

As shown above, there are a wide variety of processors that can be used to run media

applications. Special-purpose processors are inflexible, but are matched to both VLSI tech-

nology and media application characteristics. As a result, there is a large and growing gap

between the performance efficiency of these fixed-function processors and programmable

processors. The next section introduces stream processors as a way to bridge this efficiency

gap.

2.4 Stream Processing

Stream processors are fully programmable processors that exploit the compute intensity,

parallelism, and producer-consumer locality in media applications to provide performance

efficiencies comparable to special-purpose processors [Rixner et al., 1998; Khailany et

al., 2001; Rixner, 2001]. With stream processing, applications are expressed as stream

programs, exposing the locality and parallelism inherent in media applications. A stream

processor can then efficiently exploit the exposed locality with a bandwidth hierarchy of

register files and can exploit the exposed parallelism with SIMD arithmetic clusters and

multiple arithmetic units per cluster.

2.4.1 Stream Programming

Media applications are naturally cast as stream programs. A stream program organizes

data as streams and computation as a sequence of kernels. A stream is a finite sequence of

related elements. Stream elements are records, such as 21-word triangles, or single-word

RGBA pixels. A kernel reads from a set of input streams, performs the same computation

on all elements of a stream, and writes a set of output streams. The stereo depth extractor

when mapped into a stream program is shown in Figure 2.2. Arrows represent streams

and circles represent kernels. In this application, each stream is a row of grayscale pixels.

The convolution stage of the application is broken into two kernels: a 7x7 blurring filter

followed by a 3x3 sharpen filter. The resulting streams are sent to the SAD kernel which

computes the best disparity match in a row and outputs a row of pixels from a depth map.

16 CHAPTER 2. BACKGROUND

Figure 1: Stereo Depth Extraction

Kernel

Stream

Input Data

Output Data

Left Camera
Image

Right Camera
Image

Depth
Map

7x7
convolve

7x7
convolve

3x3
convolve

3x3
convolve

SAD

Figure 2.2: Stereo depth extractor as a stream program

Stream programs expose the locality and parallelism in the algorithm to the com-

piler and hardware. Two key types of locality are exposed: kernel locality and producer-

consumer locality. Kernel locality refers to intermediate data values that are live for only a

short time during kernel execution, such as temporaries during a convolution filter compu-

tation. Producer-consumer locality refers to streams produced by one kernel and consumed

by subsequent kernels. Finally, parallelism is exposed because a kernel typically executes

the same kernel program on all elements of an input stream. By casting media applica-

tions as stream programs, hardware is able to take advantage of the abundant parallelism,

compute intensity, and locality in media applications.

2.4.2 Stream Architecture

The Imagine stream processor architecture, which is optimized to take advantage of the ap-

plication characteristics exposed by the stream programming model is shown graphically

in Figure 2.3. A stream processor runs as a coprocessor to a host executing scalar code.

2.4. STREAM PROCESSING 17

Stream Processor

Microcontroller

ALU Cluster 7

ALU Cluster 6

ALU Cluster 5

ALU Cluster 4

ALU Cluster 3

ALU Cluster 2

ALU Cluster 1

ALU Cluster 0

Stream
Register File

Stream
Controller

Host
Processor

Streaming
Memory
System

S
D
R
A
M

Figure 2.3: Stream Processor Block Diagram

Instructions sent to the stream processor from the host are sequenced through a stream con-

troller. The stream register file (SRF) is a large on-chip storage for streams. The microcon-

troller and ALU clusters execute kernels from a stream program. As shown in Figure 2.4,

each cluster consists of ALUs fed by two local register files (LRFs) each, external ports for

accessing the SRF, and an intracluster switch that connects the outputs of the ALUs and

external ports to the inputs of the LRFs. In addition, there is a scratchpad (SP) unit, used

for small indexed addressing operations within a cluster, and an intercluster communica-

tion (COMM) unit, used to exchange data between clusters. Imagine is a stream processor

recently designed at Stanford University that contains six floating-point ALUs per cluster

(three adders, two multipliers, and one divide-square-root unit) and eight clusters [Khailany

et al., 2001], and was fabricated in a CMOS technology with 0.18 micron metal spacing

rules and 0.15 micron drawn gate length.

18 CHAPTER 2. BACKGROUND

SP COMM

Intracluster Switch
To/From

SRF

To/From
Other

Clusters

Figure 2.4: Arithmetic Cluster Block Diagram

Stream processors directly execute stream programs. Streams are loaded and stored

from off-chip memory into the SRF. SIMD execution of kernels occurs in the arithmetic

clusters. Although the stream processor in Figure 2.3 conatins eight arithmetic clusters,

in general, the stream processor architecture can contain an arbitrary number of arithmetic

clusters, represented by the variable C. For each iteration of a loop in a kernel, C clus-

ters will read C elements in parallel from an input stream residing in the SRF, perform

the exact same series of computations as specified by the kernel inner loop, and write C

output elements in parallel back to an output stream in the SRF. Kernels repeat this for

several loop iterations until all elements of the input stream have been read and operated

on. Data-dependent conditionals in kernels are handled with conditional streams which,

like predication, keep control flow in the kernel simple [Kapasi et al., 2000]. However,

conditional streams eliminate the extra computation required by predication by converting

data-dependent control flow decisions into data-routing decisions.

Stream processors exploit parallelism and locality at both the kernel level and applica-

tion level. During kernel execution, data-level parallelism is exploited with C clusters con-

currently operating on C elements and instruction-level parallelism is exploited by VLIW

execution within the clusters. At the application level, stream loads and stores can be over-

lapped with kernel execution, providing more concurrency. Kernel locality is exploited

by stream processors because all temporary values produced and consumed during a ker-

nel are stored in the cluster LRFs without accessing the SRF. At the application level,

2.4. STREAM PROCESSING 19

producer-consumer locality is exploited when streams are passed between subsequent ker-

nels through the SRF, without going back to external memory.

The data in media applications that exhibits kernel locality and producer-consumer

locality also has high data bandwidth requirements when compared to available off-chip

memory bandwidth. Stream processors are able to support these large bandwidth require-

ments because their register files provide a three-tiered data bandwidth hierarchy. The first

tier is the external memory system, optimized to take advantage of the predictable memory

access patterns found in streams [Rixner et al., 2000a]. The available bandwidth in this

stage of the hierarchy is limited by pin bandwidth and external DRAM bandwidth. Typi-

cally, during a stream program, external memory is only referenced for global data accesses

such as input/output data. Programs are strip-mined so that the processor reads only one

batch of the input dataset at a time. The second tier of the bandwidth hierarchy is the SRF,

which is used to transfer streams between kernels in a stream program. Its bandwidth is

limited by the available bandwidth of on-chip SRAMs. The third tier of the bandwidth

hierarchy is the cluster LRFs and the intracluster switch between the LRFs which forwards

intermediate data in a kernel between the ALUs in each cluster during kernel execution.

The available bandwidth in this tier of the hierarchy is limited by the number of ALUs one

can fit on a chip and the size of the intracluster switch between the ALUs.

The peak bandwidth rates of the three tiers of the data bandwidth hierarchy are matched

to the bandwidth demands in typical media applications. For example, the Imagine proces-

sor contains 40 fully-pipelined ALUs and provides 2.3 GB/s of external memory band-

width, 19.2 GB/s of SRF bandwidth, and 326.4 GB/s of LRF bandwidth. As discussed in

Section 2.1, some media applications such as the stereo depth extractor require over 400 in-

herent ALU operations per memory reference. Imagine supports a ratio of ALU operations

to memory words referenced of 28. Therefore, not only are stream processors in today’s

technology with tens of ALUs able to exploit this compute intensity, but as VLSI capac-

ity continues to scale at 70% annually and as memory bandwidth continues to increase at

25% annually, this suggests that stream processors with thousands of ALUs could provide

significant speedups on media applications without becoming memory bandwidth limited.

20 CHAPTER 2. BACKGROUND

2.4.3 Stream Processing Related Work

The stream processor architecture described above builds on previous work in data-parallel

architectures and programming models.

Stream processors share with vector processors the ability to exploit large amounts of

data paralellism and compute intensity, but they differ from vector processors in two key

ways. First, vector processors execute simple vector instructions such as vector adds and

multiplies on vectors located in the vector register file whereas stream processors execute

microcode kernels in SIMD out of the stream register file. Second, the register file storage

on a stream processor is split into the stream register file and local register files. These

optimizations allow stream processors to both capture producer-consumer locality in the

register file hierarchy and to provide improved scalability within the arithmetic clusters

with the local register files. Related work in vector processors has explored the use of

partitioned register files to improve their scalability [Kozyrakis and Patterson, 2003].

Although designing a programmable architecture to directly execute stream programs

is new, programming models similar to the stream model have been proposed in previous

work with fixed-function processors. One example of a fixed-function processor that di-

rectly executes the stream programming model is Cheops [Bove and Watlington, 1995].

It directly maps an application data-flow exposed by the stream programming model into

hardware units and consists of a set of specialized stream processors where each processor

accepts one or two data streams as input and produces one or two data streams as output.

Data streams are either forwarded directly from one stream processor to the next according

to the applications data-flow graph or transferred between memory and the stream proces-

sors.

Other researchers have proposed designing signal processing systems using signal flow

graphs specified in Simulink [Simulink, 2002] or other programming models [Lee and

Parks, 1995] that have many similarities with the stream programming model. With these

systems, signal flow graphs can be synthesized to software running on DSPs [Bhattacharyya

et al., 1996; de Kock et al., 2000] or can be mapped into fixed-function processors using

hardware generators [Davis et al., 2001]. Designing fixed-function processors with these

techniques allows for high efficiency since available parallelism and producer-consumer

2.4. STREAM PROCESSING 21

locality can easily be exploited. However, unlike programmable processors, fixed-function

processors lack the flexibility to execute a wide variety of applications.

Recently, other researchers have applied these same techniques for exploiting paral-

lelism and locality used in fixed-function processors to reconfigurable logic. Streams-

C [Gokhale et al., 2000] and others [Caspi et al., 2001] have proposed mapping arithmetic

kernels to blocks in FPGAs and mapping streams passed between kernels to FIFO-based

communication channels between FPGA blocks. These techniques enable some degree

of programmability with a high-level language and are able to exploit large amounts of

parallelism in stream programs. However, this approach is inhibited by limitations in re-

configurable logic. When compared to fixed-function transistors, large area and energy

overheads are incurred when a design is implemented in reconfigurable logic. Further-

more, since stream programs are being spatially mapped onto a fixed resource such as an

FPGA, problems arise when applications are too complex to fit onto this fixed resource.

Finally, other researchers have also studied compiling and executing the stream pro-

gramming model on chip multiprocessors. Streamit is a programming language that im-

plements the stream model on the RAW CMP [Gordon et al., 2002]. Like hardwired

stream processors, CMPs executing compiled stream programs can exploit parallelism

with threads and producer-consumer locality between processors to manage communica-

tion bandwidth effectively. Like CMPs, programmable stream processors also have the

ability to exploit parallelism and locality. However, since CMPs are targeted to run a wide

variety of applications and rely mostly on thread-level parallelism, they contain more gen-

eral control and communication structures per processor. In contrast, stream processors are

targeted specifically for media applications, and therefore can use data-parallel hardware

to efficiently exploit the available parallelism and a register file organization to efficiently

exploit the available locality.

2.4.4 VLSI Efficiency of Stream Processors

The bandwidth hierarchy provided by a stream architecture’s register file organization al-

lows stream processors to sustain a large percentage of peak performance with very modest

off-chip memory bandwidth requirements. However, the other advantage of the register

22 CHAPTER 2. BACKGROUND

file organization is the area and energy efficiency derived from partitioning the register file

storage into stream register files, arithmetic clusters, and local register files within the arith-

metic clusters. This partitioning enables stream processors to scale to thousands of ALUs

with significantly modest area and energy costs.

The area of a register file is the product of three terms: the number of registers R, the

bits per register, and the size of a register cell. Asymptotically, with a large number of ports,

each register cell has an area that grows with p2 because one wire is needed in the word-line

direction, and another wire needed in the bit-line direction per register file port. Register

file energy per access follows similar trends. Therefore, a highly multi-ported register

file has area and power that grows asymptotically with Rp2 [Rixner et al., 2000b]. A

general-purpose processor containing N arithmetic units with a single centralized register

file requires approximately 3N ports (two read ports for the operands and one wire port

for the result per ALU). However, as N increases, working set sizes would also increase,

meaning that R should also grow linearly with N . As a result, a single centralized multi-

ported register file interconnecting N arithmetic units in a general-purpose microprocessor

has area and power that grows with N3, and would quickly begin to dominate processor

area and power. As a result, partitioning register files is necessary in order to efficiently

scale to large numbers of arithmetic units per processor.

Historically, register file partitioning has been used extensively in programmable pro-

cessors in order to improve scalability, area and energy efficiency, and to reduce wire delay

effects. For example, the TI C6x [Agarwala et al., 2002] is a VLIW architecture split

into two partitions, each containing a single multi-ported register file connected to four

arithmetic units. Even in high-performance microprocessors not necessarily targeted for

energy efficient operation, such as the Alpha 21264 [Gieseke et al., 1997], register file par-

titioning has been used. In the stream architecture, register file partitioning occurs along

three dimensions: distributed register files within the clusters, SIMD register files across

the clusters, and the stream register organization between the clusters and memory. In the

remainder of this section, we explain how the register file partition of Imagine along these

three dimensions improves area and energy efficiency and is related to previous work on

partitioned register files.

2.4. STREAM PROCESSING 23

Distributed Register Partitioning

The first register file partitioning in the stream architecture is along the ILP dimension

within a cluster. Given N ALUs per cluster, a VLIW cluster with one centralized register

file connected to all of the ALUs would grow with N3 as explained above. However,

by splitting this centralized multi-ported register file into an organization with one two-

ported LRF per ALU input within each arithmetic cluster, the area and power of the LRFs

only grows with N , and the intracluster switch connecting the ALU outputs to the LRF

inputs grows with N2 asymptotically. The exact area efficiency, energy efficiency, and

performance when scaling N on a stream architecture will be explored in more detail in

Chapter 6.

The disadvantage of this approach is that the VLIW compiler must explicitly manage

communications across this switch and must deal with replication of data across various

LRFs [Mattson et al., 2000]. However, using asymptotic models for area and energy of

register files, Rixner et al. showed that for N = 8, this distributed register organization

provides a 6.7x and an 8.7x reduction on area and energy efficiency respectively in the

ALUs, register files, and switches2 [Rixner et al., 2000b].

Partitioned register files in VLIW processors and explicitly scheduled communications

between these partitions were proposed on a number of previous processors. For example,

the TI C6x [Agarwala et al., 2002] contains two partitions with four arithmetic units per

partition. In addition, a number of earlier architectures used partitioned register files of

various granularities. The Polycyclic architecture [Rau et al., 1982], the Cydra [Rau et

al., 1989], and Transport-triggered architectures [Janssen and Corporaal, 1995] all had

distributed register file organizations.

SIMD Register Partitioning

Whereas the distributed register partitioning was along the ILP dimension and was handled

by the VLIW compiler, the next partitioning in the stream architecture occurs in the DLP

2Implementation details such as design methodology or available wiring layers would affect the efficiency
advantage of certain DRF organizations. For instance, comparing the efficiency of one four-ported LRF
per ALU rather to one two-ported LRF per ALU input would provide different results depending on these
implementation details.

24 CHAPTER 2. BACKGROUND

dimension and corresponds to the SIMD arithmetic clusters. In an architecture with C

SIMD clusters, each of these clusters requires interconnecting only N/C ALUs together.

Therefore, the area and energy in each cluster’s intracluster switch grows much more slowly

as there are many fewer ALUs per cycle. The disadvantage is that the complexity of the

intercluster switch grows as the number of clusters increases. This tradeoff will be explored

in more detail in Chapter 6.

The other efficiency advantage of SIMD processing besides register file partitioning

comes from amortizing control overhead. Only one instruction fetch unit and sequencer is

required for C clusters. The area and efficiency gains achieved through SIMD-partitioned

register files and by amortizing control over parallel vector lanes were first proposed on

vector microprocessors, and are applied to the stream architecture register file organization

as well. Furthermore, SIMD partitioning can be combined with distributed register par-

titioning, as demonstrated both in the Imagine stream processor and in the CODE vector

microarchitecture [Kozyrakis and Patterson, 2003].

Separating the SRF storage from cluster storage

The third and final partition in the stream architecture register file is a split between stor-

age for loads and stores and storage for intermediate buffering between individual ALU

operations. This is accomplished by separating the SRF storage from the LRFs within each

cluster. This splitting between the SRF and LRFs has two main advantages. First, stag-

ing data for loads and stores is capacity-limited because of long memory latencies, rather

than bandwidth-limited, meaning that large memories with few ports can be used for the

SRF whereas the capacity of the LRFs can be kept relatively small. Second, data can be

staged in the SRF as streams, meaning that accesses to the SRF will be sequential and pre-

dictable. As a result, streambuffers can be used to prefetch data into and out of the SRF,

much like streambuffers are often used to prefetch data from main memory in micropro-

cessors [Jouppi, 1990]. As explained in Section 3.2.4, these streambuffers allow accesses

to a stream from each SRF client to be aggregated into larger portions of a stream before

they are read or written from the SRF, leading to a much more efficient use of the SRF

bandwidth and a more area- and energy-efficient design.

2.4. STREAM PROCESSING 25

VLSI Efficiency Summary

The stream architecture register file organization can be viewed as a combination of the

above three register partitionings. Overall, these partitions each provide a large benefit in

area and energy efficiency. When compared to a 48-ALU processor with a single unified

register file, a C = 8 N = 6 stream processor takes 195 times less area and 430 times

less energy. A performance degradation of 8% over a hypothetical centralized register

file architecture is incurred due to SIMD instruction overheads and explicit data transfers

between partitions [Rixner et al., 2000b].

In summary, there is a large and growing gap between the area and energy efficiency

of special-purpose and programmable processors on media applications. The stream ar-

chitecture attempts to bridge that gap through its ability to exploit important application

characteristics and its efficient register file organization.

Chapter 3

Imagine: Microarchitecture and Circuits

In the previous chapter, a stream processor architecture [Rixner et al., 1998; Rixner, 2001]

was introduced to bridge the efficiency gap between special-purpose an programmable pro-

cessors. A stream processor’s efficiency is derived from several architectural advantages

over other programmable processors. The first advantage is a data bandwidth hierarchy

for effectively dealing with limited external memory bandwidth that can also exploit com-

pute intensity and producer-consumer locality in media applications. The next advantage

is SIMD arithmetic clusters and multiple arithmetic units per cluster that can exploit both

DLP and ILP in media processing kernels. Finally, the bandwidth hierarchy and SIMD

arithmetic clusters are built around a area- and energy-efficient register file organization.

Although the previous analysis qualitatively demonstrates the efficiency of the stream

architecture, in order to truly evaluate its performance efficiency, a VLSI prototype Imag-

ine stream processor [Khailany et al., 2001] was developed so that performance, power

dissipation, and area could be measured. Not only did this prototype provide a vehicle for

experimental measurements, but also, by implementing a stream processor in VLSI, key

insights into the effect of technology on the microarchitecture are gained. These insights

were then used to study the scalability of stream processors in Chapter 6 and Chapter 7.

The next few chapters discuss the Imagine prototype in detail. This chapter presents

the instruction set architecture, microarchitecture, and circuits of key components from the

Imagine stream processor. Chapter 5 discusses the design methodology used for Imagine,

and finally, in Chapter 6, experimental results for Imagine are presented.

26

3.1. INSTRUCTION SET ARCHITECTURE 27

3.1 Instruction Set Architecture

The Imagine processor runs stream programs written in KernelC and StreamC. StreamC

specifies how streams are passed between kernels and includes reads and writes from mem-

ory and I/O. KernelC contains the mathematical operations for the kernels. Software tools

then compile StreamC and KernelC for execution into instructions from the stream-level

and kernel-level instruction set architectures (ISAs). StreamC compilation involves high-

level data-flow analysis at the stream level including SRF allocation and memory man-

agement [Mattson, 2001; Kapasi et al., 2001]. KernelC compilation includes parsing, in-

struction scheduling, and managing the communication between ALUs and LRFs across

the intracluster switch [Mattson et al., 2000]. Once StreamC and KernelC have been com-

piled, the Imagine processor directly executes instructions from the stream and kernel level

ISAs described below.

3.1.1 Stream-Level ISA

There are six main stream-level instructions:

• LOAD transfers streams from off-chip SDRAM to the SRF.

• STORE transfers streams from the SRF to off-chip DRAM.

• RECEIVE transfers streams from the network to the SRF.

• SEND transfers streams from the SRF to the network.

• CLUSTER OP executes a kernel in the arithmetic clusters that reads inputs streams

from the SRF, computes output streams, and writes the output streams to the SRF.

• LOAD MICROCODE loads streams consisting of kernel microcode (576-bit VLIW

instructions) from the SRF into the microcontroller instruction store (a total of 2,048

instructions).

In addition to the six main instructions listed above, there are other instructions for

writes and reads to on-chip control registers which are inserted as needed by the stream-

level compiler. Streams must have lengths that are a multiple of eight (the number of

28 CHAPTER 3. IMAGINE: MICROARCHITECTURE AND CIRCUITS

MUL MUL DSQ SP COM

Intracluster Switch
IO Ports
(To SRF)

To/From
Other

Clusters
ADD ADD ADD JB/VAL

Figure 3.1: Imagine Arithmetic Cluster

clusters) and lengths from 0 to 8K words are supported, where each word is 32 bits. Stream

instructions are fetched and dispatched by a host processor to a scoreboard in the on-chip

stream controller. As will be described in Section 3.2.8, the stream controller issues stream

instructions to the various on-chip units as their dependencies become satisfied and their

resources become available.

3.1.2 Kernel-Level ISA

Kernel-level instructions are scheduled and assembled into VLIW instructions at compile-

time, are sequenced by a microcontroller, and then are broadcast to and executed in eight

SIMD arithmetic clusters. Each arithmetic cluster, detailed in Figure 3.1, contains eight

functional units (plus the special JB and VAL units that are used for conditional streams [Ka-

pasi et al., 2000]). A small two-ported local register file (LRF) connects to each input of

each functional unit. An intracluster switch connects the outputs of the functional units to

the inputs of the LRFs.

Each function unit from Figure 3.1 executes instructions from the kernel-level instruc-

tion set, shown in Tables 3.1 and 3.2. Instructions are grouped by supported datatypes.

A wide range of datatypes from fixed-point or integer to single-precision floating-point

are supported in order to accommodate the demands of media applications. The first two

columns in the Kernel ISA tables contain the instruction mnemonic and a brief summary

of the operation performed. The third column specifies the latency of each operation and

the fourth column specifies the supported functional unit(s). As will be explained in Sec-

tion 3.2, all functional units except the DSQ unit are fully pipelined.

In addition to the function unit operations and the stream input/output instructions,

3.1. INSTRUCTION SET ARCHITECTURE 29

Table 3.1: Kernel ISA - Part 1
Op Description T Unit

Ops for Floating-Point Data-types
FADD Add 4 ADD
FSUB Subtract 4 ADD
FABS Absolute value 1 ADD
FLT Test < 2 ADD
FLE Test ≤ 2 ADD
FTOI Convert to int (round-to-zero) 3 ADD
FFRAC Computes x-FTOI(x) 4 ADD
ITOF Convert int to floating-point 4 ADD
FMUL Multiply 4 MUL
FDIV Divide 17 DSQ
FSQRT Square root 16 DSQ
Ops for 32b, 16b, and 8b Datatypes
IADD Add 2 ADD
ISUB Subtract 2 ADD
IABD/UABD Absolute difference (integer/unsigned) 2 ADD
ILT/ULT Test < (integer/unsigned) 2 ADD
ILE/ULE Test ≤ (integer/unsigned) 2 ADD
IEQ Test == 1 ADD
NEQ Test ! = 1 ADD
AND Bitwise AND 1 ADD
OR Bitwise OR 1 ADD
XOR Bitwise XOR 1 ADD
NOT Bitwise invert 1 ADD
Ops for 32b and 16b Datatypes
IADDS/UADDS Integer/Unsigned saturating add 2 ADD
ISUBS/USUBS Integer/Unsigned saturating subtract 2 ADD
SHIFT Logical shift 1 ADD
SHIFTA Arithmetic shift 1 ADD
ROTATE Rotate 1 ADD
IMUL/UMUL Integer/Unsigned multiply 4 MUL
IMULR/UMULR Integer/Unsigned multiply & round 4 MUL
Ops for 16b Datatypes
IMULD/UMULD Integer/Unsigned multiply (32b outputs) 4 MUL
Ops for 32b Datatypes
IDIV/UDIV Integer/Unsigned divide 22 DSQ
IDIVR/UDIVR Integer/Unsigned remainder 23* DSQ

30 CHAPTER 3. IMAGINE: MICROARCHITECTURE AND CIRCUITS

Table 3.2: Kernel ISA - Part 2
Op Description T Unit

Data Movement Ops
SELECT Multiplex based on cc 1 ALL
NSELECT Multiplex based on !cc 1 ALL
CCTOI Convert CC to int 1 ALL
SHUFFLE Shuffle bytes 1 ADD
SHUFFLED Shuffle bytes (two outputs) 1 MUL
SPRD Scratchpad read 2 SP
SPWR Scratchpad write 2 SP
COMM Cluster RF - controlled permute 1 COM
COMMUCDATA Same as comm w/ UC data input 1 COM
COMMUCPERM UC-controlled permute 1 COM
Conditional Stream Ops
INIT CISTATE Initialize JBRF entry for conditional input stream 1 JB
INIT COSTATE Initialize JBRF entry for conditional output stream 1 JB
GEN CISTATE Update JBRF entry with new state 1 JB
GEN COSTATE Update JBRF entry with new state 1 JB
GEN COSTATE Update JBRF entry with new state 1 JB
SPCRD Conditional scratchpad read 2 SP
SPCWR Conditional scratchpad write 2 SP
INIT VALID Initialize valid unit for new conditional stream 1 VAL
GEN CCEND Computes CC for end of conditional stream 1 VAL
GEN CCFLUSH Computes CC for end of conditional stream 1 VAL
Stream Input/Output Ops
DATA IN Read from input stream 1 IO
COND IN R Conditional stream read - intermediate word in record 3 IO
COND IN D Conditional stream read - last word in record 3 IO
DATA OUT Write to output stream 1 IO
COND OUT R Conditional stream write - intermediate word in record 1 IO
COND OUT D Conditional stream write - last word in record 1 IO
Microcontroller Ops
LOOP Branch to new PC (if last CHK was true) 3 UC
NLOOP Branch to new PC (if last CHK was false) 3 UC
UC DATA IN Load immediate into microcontroller RF 1 UC
DEC CHK UCR Decrement and zero-check microcontroller RF value 2 UC
CHK EOS Check for end of stream 2 UC
CHK ANY Check for true cc in any cluster 2 UC
CHK ALL Check for true cc’s in all clusters 2 UC
SYNCH Synchronize with stream controller 1 UC

3.2. MICROARCHITECTURE 31

the kernel-level instructions also control register file accesses and the intracluster switch.

Register file reads are handled with an address field in the kernel-level ISA, while writes

require both an address field and a software pipeline stage field. Finally, the kernel-level

ISA controls the intracluster switch with a bus select field for each write port. This field

specifies which function unit output or input port should be written into the register file for

this instruction.

3.1.3 Kernel Instruction Format

Once KernelC is mapped into instructions from the kernel-level ISA and scheduled by

the VLIW compiler, instructions are then assembled into the 576-bit format specified in

Figure 3.2. There are fields for nine functional units (scratchpad, ALUs, MULs, DSQ,

COMM, and JBVAL), the condition code register file (CC), explained in Section 3.2, as

well as the microcontroller and eight stream input/output units (SB0:SB7). Each function

unit field is further subdivided into sub-fields, containing an opcode, a CCRF read address,

read addresses for both LRFs (LRF 0 Rd and LRF 1 Rd), write addresses for both LRFs

(LRF 0 Wr and LRF 1 Wr), a software pipelining stage field associated with each LRF write

port (LRF 0 Stg and LRF 1 Stg), and a bus select field for the LRF inputs that controls the

intracluster switch (LRF 0 Bus and LRF 1 Bus).

The location of function unit fields within the instruction word corresponds roughly to

floorplan placement of arithmetic units within an arithmetic cluster. This alignment reduces

the length of control wires as instructions are fetched from the microcode store, decoded,

and broadcast to the clusters.

3.2 Microarchitecture

In the previous chapter, the arhitecture of the Imagine stream processor, shown in Fig-

ure 2.3, and the basic execution of a stream processor was presented. In this section,

this discussion is extended with microarchitectural details from the key components of

the Imagine architecture. First, the microarchitecture and pipeline diagrams of the micro-

controller and arithmetic clusters are presented. These units execute instructions from the

32 CHAPTER 3. IMAGINE: MICROARCHITECTURE AND CIRCUITS

Scratchpad

Res

075

DSQ

76112

ALU2

113152

MUL1

153195

MUL0

196238

CC

239254

ALU1

255294

ALU0

295334

COMM

335371

JB/VAL

372413

Microcontroller

414488

SB0:SB7

489568576

Opcode

Function Unit Sub-Fields

CCRF

Rd

LRF
1

Rd

LRF
1

Stg.

LRF
0

Rd

061014182125293336

LRF
1

Wr

LRF
1

Bus

LRF
0

Wr

LRF
0

Stg.

LRF
0

Bus

Figure 3.2: VLIW Instruction Format

kernel-level ISA. Next, both the stream register file microarchitecture and its pipeline di-

agram are described. Finally, we present the stream controller and the streaming memory

system, the other major components of a stream processor.

3.2.1 Microcontroller

The microcontroller provides storage for the kernels’ VLIW instructions, and sequences

and issues these instructions to the arithmetic clusters during kernel execution. A block di-

agram of the Imagine microcontroller is shown in Figure 3.3. It is composed of nine banks

of microcode storage as well as blocks for loading the microcode, sequencing instructions

using a program counter, and instruction decode.

Each bank of microcode storage contains a single-ported SRAM where 64 bits of each

576-bit VLIW kernel instruction are stored. Since each bank contains a 128Kb SRAM, a

total of 2K instructions can be stored at one time. In order to allow for microcode to be

loaded during kernel execution without a performance penalty, two instructions are read

at one time from the SRAM array. The first of these instructions is passed directly to the

3.2. MICROARCHITECTURE 33

1024 x 128b
SRAM

Microcode Store
Bank 8

1024 x 128b
SRAM

Microcode Store
Bank 0

Microcode
Loader

From
SRF

Din A Din A

Kernel Instruction[575:512]

Instruction
Sequencer

Kernel Instruction[63:0]

Instruction Decoder

To Microcontroller, SRF, Arithmetic Clusters

From Stream
Controller

Dout Dout

UCRF

Figure 3.3: Microcontroller Block Diagram

instruction decoder. The second is stored in a register, so that it can be decoded in the next

clock cycle without accessing the SRAM array again.

The microcode loader handles the loading of kernel instructions from the SRF to the

microcode storage arrays. Since microcode is read from the SRF one word at a time,

and 1152 bits of microcode must be written at a time, the microcode loader reads words

from a stream in the SRF, then sends them to local buffers in one of the microcode store

banks. Once these buffers have all been filled, the microcode loader requests access to write

two instructions into the microcode storage banks. A controller, not shown in Figure 3.3,

handles this arbitration and also controls the reading of instructions from the microcode

storage and intermediate registers during kernel execution.

The instruction sequencer contains the program counter which is used to compute the

addresses to be read from the microcode storage. At kernel startup, the program counter

34 CHAPTER 3. IMAGINE: MICROARCHITECTURE AND CIRCUITS

is loaded with the address of the first kernel instruction, specified by the stream controller.

As kernel execution proceeds, the program counter is either incremented or, on condi-

tional branch instructions, a new address is computed and loaded into the program counter.

Conditional branches are handled with the CHK and LOOP/NLOOP instructions. CHK

instructions store a true or false value into a register inside the instruction sequencer. Based

on the value of this register, LOOP instructions conditionally branch to a relative offset

specified in the instruction field.

The final component of the microcontroller is the instruction decoder, which handles

the squashing of register file writes, a key part of the software pipeline mechanism on

Imagine. In the VLIW instruction, each register file write has a corresponding stage field,

which allows the kernel scheduler to easily implement software pipeline priming and drain-

ing without a loop pre-amble and post-amble. The kernel scheduler assigns all register file

writes to a software pipelining stage, and encodes this stage in the VLIW instruction as

the LRF Stg. sub-field from Figure 3.2. During loops, the instruction decoder keeps track

of which stages are currently active, and squashes register file writes from inactive stages.

In addition to squashing register file writes, the instruction decoder also provides pipeline

registers and buffers for each ALU and LRF’s opcodes before they are distributed to the

SIMD ALU clusters and the instruction decoder handles reads and writes from the micro-

controller register file, which is used to store constants and cluster permutations in many

kernels.

3.2.2 Arithmetic Clusters

As the microcontroller fetches and sequences VLIW instructions from the microcode stor-

age, the eight SIMD arithmetic clusters on Imagine execute these instructions. As was

shown in Figure 3.1, each cluster is composed of nine function units (3 ADDs, 2 MULs,

1 DSQ, 1 SP, 1 JB/VAL, 1 COM). A more detailed view of a function unit (FU) and its

associated register files is shown in Figure 3.4.

Most FUs have two data inputs, one condition code (cc) input, and one output bus.

Data in the arithmetic clusters is stored in the LRFs. The LRFs have one read port, one

write port, and 16 entries each, except for the multiplier LRFs, which have 32 entries.

3.2. MICROARCHITECTURE 35

FU Result Bus

Function
Unit

LRFs

FU Result
Buses

FU Result
Buses

CC Result
Buses

Local
Copy

of
CCRF

Figure 3.4: Function Unit Details

D

EN

Q

LRF Bitslice

D

EN

Q
2-level

4:1
Mux
Tree

LRF Input [0]
(from FU result

bus mux) LRF Output [0]
(To FU)

D

EN

Q

LRF Bitslice

D

EN

Q
2-level

4:1
Mux
Tree

LRF Input [31]
(from FU result

bus mux) LRF Output [31]
(To FU)

Write
Select[1]

Write
Select[15]

Figure 3.5: Local Register File Implementation

36 CHAPTER 3. IMAGINE: MICROARCHITECTURE AND CIRCUITS

Latches were used as the basic storage element for the LRFs, as shown in Figure 3.5. The

multiplexer before the LRF output flip flop enables register file bypassing within the LRFs

so that data written on one cycle can be read correctly by the FU in the subsequent cycle.

Flip flop writes can be disabled by selecting the top feedback path through the multiplexer.

Each FU also contains a copy of the condition code register file (CCRF), not shown

in Figure 3.1, but shown in the detailed view of Figure 3.4. Condition codes (CCs) are

special data values generated by comparison instructions such as IEQ and FLT and are

used with SELECT instructions and with conditional streams. Although there is only one

CCRF in the ISA, each FU contains a local copy of the CCRF. During writes to the CCRF,

data and write addresses are broadcast to each CCRF copy, whereas during reads, each FU

reads locally from its own CCRF copy. This structure allows for a CCRF with as many

read ports as there are FUs, yet does not incur any wire delay when accessing CCs shared

between all of the FUs in a cluster.

Finally, data is exchanged between FUs via the intracluster switch. This switch is

implemented as a full crossbar where each FU broadcasts its result bus(es) to every LRF

in an arithmetic cluster. A multiplexer uses the bus select field for its associated LRF write

port to select the correct FU result bus for the LRF write.

3.2.3 Kernel Execution Pipeline

The microcontroller and arithmetic clusters work together to execute kernels. As is typi-

cally done in most high-performance microprocessors, they operate in a pipelined manner

in order to achieve higher instruction throughput. The kernel execution pipeline diagram in

the microcontroller and arithmetic clusters is shown in Figure 3.6.

During the first two pipeline stages, FETCH1 and FETCH2, the microcontroller in-

struction sequencer sends the current program counter to the microcode storage banks and

the VLIW instructions are fetched from the SRAMs. During the decode and distribute stage

(DECODE/DIST), instructions are decoded and broadcast to the eight arithmetic clusters.

Branches are resolved and branch targets are computed in this stage, and the new program

counter is computed if necessary. Since this is the third pipeline stage, two branch delay

slots are added to all LOOP instructions. During REG READ, more instruction decoding

3.2. MICROARCHITECTURE 37

FETCH1 FETCH2 DECODE/
DIST

REG
READ EX 1 EX N WB

FETCH1 FETCH2
DECODE/

DIST
REG

READ EX 1 EX N WB

FETCH1 FETCH2
DECODE/

DIST
REG

READ EX 1 EX N WB

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Figure 3.6: Kernel Execution Pipeline Diagram

occurs and LRFs are accessed locally in each arithmetic cluster. This is followed by the

execute (EX) pipeline stages, which vary in length depending on the operation being exe-

cuted. The last half-cycle of each function unit’s last execute stage is used to traverse the

intracluster switch, and then in the writeback (WB) stage, the register write occurs.

Although the clusters are statically scheduled by a VLIW compiler and sequenced by

a single microcontroller, dynamic events during execution can cause the kernel execution

pipeline to stall. Stalls are caused by one of three conditions: the SRF not being ready for

a write to an output stream, the SRF not being ready for a read from an input stream, or

a SYCNH instruction being executed by the microcontroller for synchronization with the

host processor. When one of these stall conditions is encountered, all pipeline registers in

the clusters and microcontroller are disabled and writes to machine state are squashed until

a later cycle when the stall condition is no longer valid.

The microcontroller and arithmetic clusters work together to execute kernels from an

application’s stream program. They execute VLIW instructions made up of operations

from the kernel-level ISA in a six-stage (or more for some operations) execution pipeline.

The other main blocks in the Imagine processor are used to sequence and execute stream

transfers from the stream-level ISA.

38 CHAPTER 3. IMAGINE: MICROARCHITECTURE AND CIRCUITS

SB 0
Bank 0

(8 words)

SRF
Bank 0

(4K words)
4

words

SB 0
Bank 7

(8 words)

22
SBs

SRF
Bank 7

(4K words)

SRF
Control

22:1
Arbiter

SB 0
Control

SRAM Requests / Grants

Data to/from client 0

Control to/from client 0

SB 21
Bank 0

(8 words)

SB 21
Bank 7

(8 words)

SB 21
Control

Data to/from client 21

Control to/from client 21

4
words

Figure 3.7: Stream Register File Block Diagram

3.2. MICROARCHITECTURE 39

3.2.4 Stream Register File

The stream register file (SRF), provides on-chip data storage for streams. The SRF is used

during execution to stage data both between stream-level memory and kernel operations

and between subsequent kernel operations. As shown in Figure 3.7, the SRF is partitioned

into eight parallel banks, where each bank is aligned to an associated cluster. Streams are

stored in the SRF with their records strided across the eight banks: bank 0 would contain

records 0, 8, 16, . . . , bank 1 would contain records 1, 9, 17, . . . , and so on for banks 2

through 8. Each SRF bank can store up to 4K words, for a total of 32K words.

Each SRF bank contains a single-ported 128kb SRAM and 22 streambuffer (SB) banks.

The SBs are used to interface between the SRF storage and the 22 SRF clients (8 cluster,

8 network, 1 microcontroller, 1 host, 2 memory data, and 2 memory index streams)1. Us-

ing streambuffers as these clients’ interface to the SRF takes advantage of the predictable

streaming nature of accesses to enable an area- and energy-efficient SRF implementa-

tion [Rixner et al., 2000b]. Clients make requests to the streambuffers to read or write

elements from a stream. SBs in turn make requests to access the location in the SRF stor-

age where that stream resides. These requests are handled by a 22:1 arbiter in SRF control.

One SB is granted access per cycle and all eight banks from the chosen SB read or write

4 words into half of their local storage (each SB contains 8 words of storage to allow for

double buffering). Finally, the external clients can read or write data from their associ-

ated streambuffer at a lower bandwidth. In this manner, the SBs enable the SRAM’s single

physical port to function as 22 logical ports, but in a more area- and energy-efficient manner

than a multi-ported SRAM.

3.2.5 SRF Pipeline

Not only is kernel execution pipelined in order to provide higher instruction throughput,

but the SRF is also pipelined to provide high-throughput access to the SRF storage. The

pipeline diagram for the SRF is shown in Figure 3.8, and is designed to operate at half the

1Each client accesses its streambuffers in a slightly different manner. The clusters read or write 8 words
from each streambuffer in parallel from each cluster for a peak supported throughput of 8 words per cycle per
streambuffer. Although the network has 8 SBs, only 2 can be active on a given cycle, and only 2 words per
SB can be read. All of the other streambuffers support 1 word per cycle.

40 CHAPTER 3. IMAGINE: MICROARCHITECTURE AND CIRCUITS

SEL MEM WB

SEL MEM WB

SEL MEM WB

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Figure 3.8: SRF Pipeline Diagram

frequency of the kernel pipeline, in order to ease timing constraints, and therefore reduce

overall design effort.

The SRF pipeline consists of three stages: stream select (SEL), memory access (MEM),

and streambuffer writeback (WB). During the SEL stage, SBs arbitrate for access to the

SRAM array, and one of the SBs is granted access. Meanwhile the arbiter state is updated

using a last-used-last-served scheme to ensure fairness among SB access. During the MEM

stage, the SB that was granted access transfers data between its local storage and the SRAM

array. Finally, during the WB stage, which only occurs on SRF reads, data from the SRAM

array is written locally to the eight SB banks. While the SRF storage and control operates

at half speed, the SBs operate at full speed, so the WB stage only takes one additional clock

cycle to complete.

3.2.6 Streaming Memory System

The streaming memory system executes stream load and store instructions from the stream-

level ISA and supports up to two simultaneous instructions. The memory system is com-

posed of two address generators (one for each instruction being executed), four memory

banks, each with their own external DRAM interface (memory addresses are interleaved

among the four banks), and a reordering streambuffer in the SRF. Rixner provides details

3.2. MICROARCHITECTURE 41

on the memory bank and address generator microarchitecture [Rixner, 2001].

Four types of accesses are supported by the streaming memory system: sequential,

strided, indexed, and bit-reversed. The address generators issue at most one word per cycle

of memory read or write requests based on these access patterns to the appropriate memory

banks. Within the memory banks, accesses are buffered, scheduled, and reordered by a

memory controller in order to maximize utilization of the off-chip DRAM [Rixner et al.,

2000a]. While the latency of individual memory accesses could increase by this reorder-

ing, the overall latency of the stream load or store is reduced since memory bandwidth is

improved with this technique. Since memory accesses are issued to the DRAM out of or-

der, stream elements read during loads are reordered when they are written back into the

streambuffer within the SRF to ensure proper ordering later during kernel execution.

3.2.7 Network Interface

The network interface on Imagine is used to connect the SRF to other Imagine chips in

multiprocessor systems or to read or write from I/O devices. Stream send or receive in-

structions are used to transfer streams across the network using source routing. Four exter-

nal network input channels and four output channels are supported. Each channel is able

to transfer 2 bytes each clock cycle, for a total network bandwidth of 2 input words and 2

output words per cycle per node. This is matched to the total bandwidth supported by the

network streambuffers.

Destinations and routes are written from the host processor into an entry in the Network

Routing Register File. Since source routing is used, arbitrary network topologies with up to

four physical channels per node are supported. One example of a supported topology would

be a two-dimensional mesh network. Streams sent across the network are packaged into

64-bit flits and virtual channel flow control is used to manage communication across the

network [Dally, 1992]. When the network interface receives a header flit into its ejection

queue, it signals the stream controller to start an SRF transfer. As data flits are received,

they are written two words at a time into one of the eight network streambuffers. A tail

flit signals the end of the stream causing all remaining data flits in the streambuffer to

be written to the SRF storage. Sending network streams work in a similar manner but in

42 CHAPTER 3. IMAGINE: MICROARCHITECTURE AND CIRCUITS

Issue and
Decode
Logic

To Microcontroller,
SRF,

Memory System,
Network Interface

From Host
Processor SCTRF

Scoreboard

(32 entries)

Op Buffer

(32 instrs)

(Stream Ops)

(Dependencies)

Resource
Analyzer

Status bits from
Microcontroller,

SRF,
Memory System,
Network Interface

Arbiter Register transfers with
microcontroller, SRF

Figure 3.9: Stream Controller Block Diagram

reverse with data being read from the streambuffers and packaged into flits as they are sent

into the network interface injection queue.

3.2.8 Stream Controller

The above blocks from the Imagine processor execute instructions from the stream-level

ISA. These instructions are issued by the host processor during the execution of stream pro-

grams. However, since the execution time of stream instructions is dynamically dependent

on stream lengths, memory access patterns, and kernel code, dynamic scheduling of stream

instructions is important in order to provide high utilization in both the memory system

and arithmetic clusters. The stream controller handles this dynamic scheduling of stream

instructions.

A block diagram of the stream controller is shown in Figure 3.9. Stream instructions

sent by the host processor are written into one of the 32 entries in the operation buffer.

Along with the instruction, the host processor sends bitmasks that specify dependencies

between this instruction and the other 32 instructions currently in the operation buffer.

This information is separated from the actual operation and is stored in the scoreboard.

Meanwhile, a resource analyzer monitors status bits from the execution units and sends

this information to the scoreboard as well. When a stream instruction’s required resources

3.3. ARITHMETIC CLUSTER FUNCTION UNITS 43

are free and its dependencies have been satisfied, it makes a request to an arbiter to be

issued this cycle. One instruction is granted access and is sent from the operation buffer to

the issue and decode logic. The issue and decode logic converts the instruction into control

information that start the stream instruction in the individual execution units. A stream

controller register file (SCTRF) is used to transfer scalar data such as stream lengths and

scalar outputs from kernels if necessary. Once the stream instruction execution completes,

its scoreboard entry is freed and subsequent instructions dependent on it can be issued.

By using dynamic scheduling of stream instructions, the stream controller ensures that

stream execution units can stay highly utilized. This allows Imagine to exploit task-level

parallelism by efficiently overlapping memory operations and kernel operations. Further-

more, the 32-entry operation buffer also allows the host processor to work ahead of the

stream processor since the host can issue up to 32 stream instructions until it is forced to

stall waiting for more scoreboard entries to be free. This buffering mitigates any effect the

latency of sending stream instructions to the stream processor would have on performance.

3.3 Arithmetic Cluster Function Units

In this section, the design of the arithmetic cluster function units will be discussed. These

function units execute the kernel-level instruction set from Table 3.1 and Table 3.2 and were

developed with a number of design goals in mind, including low area, high throughput, low

design complexity, low power, and low operation latency.

3.3.1 ALU Unit

Each cluster contains three ALU units that execute the addition, shift, and logical instruc-

tions listed in Table 3.1. Many of these instructions include support for floating-point,

32-bit integer, dual 16-bit, and quad 8-bit instructions. A block diagram of the ALU is

shown in Figure 3.10. It is divided into three major functional sub-blocks, corresponding

to pipeline stages in the execution of four-cycle operations. The ALU X1 sub-block ex-

ecutes integer shifts, logical operations, and the alignment shift portion of floating-point

44 CHAPTER 3. IMAGINE: MICROARCHITECTURE AND CIRCUITS

additions. The ALU X23 sub-block contains two pipeline stages and implements inte-

ger additions and the addition portion of floating-point adds. Rounding also occurs in the

ALU X23 stage during floating-point adds. Finally, the ALU X4 sub-block executes a

normalizing shift operation.

Operations requiring floating-point additions, such as FADD, FSUB, and others, are 4-

cycle operations and therefore use all three major sub-blocks. The ALU supports floating-

point arithmetic adhering to the IEEE 754 standard, although only the round-to-nearest-

even rounding mode and limited support for denormals and NaNs are supported [Coonen,

1980]. Additions supporting this standard can be implemented with an alignment shifter,

a carry-select adder for summing the mantissas and doing the rounding, and a normalizing

shifter [Goldberg, 2002; Kohn and Fu, 1989]. This basic architecture was used in the ALU

unit.

Floating-point operands are comprised of a sign bit, eight bits for an exponent, and

23 bits for a fraction with an implied leading one. In the ALU X1 block, a logarithmic

shifter [Weste and Eshraghian, 1993] is used to shift the operand with the smaller exponent

to the right by the difference between the two exponents. If the sign bits of the two operands

are different, then the shifted result is also bitwise inverted, so that subtraction rather than

addition will be computed in the ALU X23 stage. Furthermore, both the unshifted and

shifted fractions are then shifted to the left by two bits such that the leading one of the

unshifted operand is at bit position 25 in the datapath (there are 32 bit positions numbering

0 to 31). This is necessary because guard, round, and sticky bits must also be added into

the two operands in the ALU X23 stage [Goldberg, 2002; Santoro et al., 1989].

In the ALU X23 stage, the shifted and unshifted operands are added together using a

carry-select adder [Goldberg, 2002]. A block diagram of this adder is shown in Figure 3.11.

For each byte in the result, the adder computes two additions in parallel, one assuming the

carry-in to the byte was zero and the other assuming it was one. Meanwhile, a two-level

tree computes the actual carry-ins to each byte. For integer additions, the carry-ins are

based on the results of the group PGKs, the operation type, and the result sign bits. For

floating-point adds, the carry-ins are based on the group PGKs and the overflow bit.

32-bit integer and lower-precision subword data-types also use the carry-select adder in

3.3. ARITHMETIC CLUSTER FUNCTION UNITS 45

Shifter

X1 sub-block

Logical
Unit

A B

Alignment
Shifter

A B

Integer
Adder

X23 sub-block

Saturation/
Rounding

X4 sub-block

Output
Buffers

Result

X2 stage

X3 stage

Figure 3.10: ALU Unit Block Diagram

46 CHAPTER 3. IMAGINE: MICROARCHITECTURE AND CIRCUITS

Global Carry Chain

Conditional SumConditional SumConditional Sum

Group PGKGroup PGKGroup PGKGroup PGK

A[0]
B[0]

A[31]
B[31]

A[7]
B[7]

A[8]
B[8]

A[15]
B[15]

A[16]
B[16]

A[23]
B[23]

A[24]
B[24]

SUM[7:0]SUM[15:8]SUM[23:16]SUM[31:24]

0
1

0
1

0
1

COUT

A[31:24],B[31:24] A[23:16],B[23:16] A[15:8],B[15:8]

CIN

A[7:0],B[7:0]

Conditional Sum 1
0

Figure 3.11: Segmented Carry-Select Adder

the ALU X23 stage to compute fast additions, subtractions and absolute difference com-

putations. During these operations, the adder also computes two additions in parallel for

each byte, but the global carry chain takes into account both the data-type and the opera-

tion being executed to determine whether the carry-in to each byte should be zero or one.

Furthermore, when an subtraction occurs, the B operand must be inverted (not shown in the

figure). Using this carry-select adder architecture, it was possible to design one adder that

could be used for floating-point, 32-bit, 16-bit, and 8-bit additions and subtractions with

little additional area or complexity over an adder that supports only integer additions.

3.3.2 MUL Unit

Like the ALU, the MUL unit also executes both floating-point and integer operations. A

block diagram of the MUL unit is shown in Figure 3.12. There are two MUL units per

cluster. Each unit has four pipeline stages and uses radix-4 booth encoding [Booth, 1951].

Since operands are up to 32 bits long, with radix-4 encoding, 16 partial products must be

summed together. These partial products are summed using an architecture based around

two half arrays [Kapadia et al., 1995] followed by a 7:2 combiner.

In the first pipeline stage, the multiplier operand is analyzed by the booth encoder and

3.3. ARITHMETIC CLUSTER FUNCTION UNITS 47

Booth
Encoder

A
(multiplier)

Lower
Half

Array

Output
Buffers

Result

B
(multiplicand)

Lower
Half

Array

B
(multiplicand)

Shifting/
Buffering

Shifting/
Buffering

Sign
Extension /

Two's
Complement

7:2 Combiner

64-bit Carry-Select Adder

Saturation / Rounding

X1 stage

X2 stage

X3 stage

X4 stage

Figure 3.12: MUL Unit Block Diagram

48 CHAPTER 3. IMAGINE: MICROARCHITECTURE AND CIRCUITS

control information is sent to the two half arrays. Based on this control information, each

partial product contains a shifted version of -2, -1, 0, 1, or 2 times the multiplicand, which

can easily be computed with a few logic gates per bit and a 1-bit shifter within the half

arrays. Once the partial products have been computed, each half array sums eight of the

partial products with 6 rows of full adders. The first row combines 3 of the partial products

and each of the other 5 rows add in one more partial product. Three of these additions

occur in the X1 pipeline stage and the other three occur in the X2 stage.

Once the half arrays have summed the 8 products, each half array sends two 48-bit out-

puts to a 7:2 combiner. This combiner sums these four values with three other buses from

the sign extension and two’s complement logic. These three buses ensure a correctly sign

extended result and also add a one into the lsb location of partial products that were -2 or -1

times the multiplicand during booth encoding. To keep the half arrays modular and simple,

this occurs here rather than in the half arrays. The 7:2 combiner is implemented with 5

full adders: three of the adders are in the X2 stage and two are in the X3 stage. The 7:2

combiner outputs two 64-bit buses that are converted back into non-redundant form with

a 64-bit carry-select adder. Its architecture is similar to the 32-bit integer adder shown in

Figure 3.11, but is extended to 64 bits. The adder spans two pipeline stages: the actual

additions and carry propagation occurs in X3 while the carry select and final multiplexing

occurs in X4. This result is then analyzed and sent through muxes which handle alignment

shifting during floating-point operations and saturation during some integer operations be-

fore it is buffered and broadcast across the intracluster switch.

Like the ALU unit, the MUL unit is also designed to execute 16-bit, 32-bit, and floating-

point additions. 8-bit multiplications were not implemented to reduce design complexity.

During floating-point or 32-bit multiplications, the multiplier operates as described above.

However, during 16-bit multiplications, some parts of the multiplier half array must be

disabled, otherwise partial products from the upper half-word would be added into the

result from the lower half-word and vice versa. To avoid this problem, a mode bit is sent

to both half arrays so that during 16-bit operation, the upper 16 bits of the multiplicand are

set to zero in the lower half array and the lower 16 bits of the multiplicand are set to zero

in the upper half array. Although lower-latency 16-bit multiplications could be achieved by

summing less partial products together, this optimization was not made in order to minimize

3.3. ARITHMETIC CLUSTER FUNCTION UNITS 49

Result

A

Radix-4
SRT
Core

DSQ Post Processing

13 to 17 cycles Radix-4
SRT
Core

DSQ Pre Processing

B

1 to 2 cycles

2 to 5 cycles

Figure 3.13: DSQ Unit Block Diagram

unnecessary design complexity and wiring congestion.

3.3.3 DSQ Unit

The DSQ unit supports floating-point divide and square root operations, as well as integer

divide and remainder functions. Its block diagram is shown in Figure 3.13 and is based

around a radix-4 SRT iterative divide algorithm [Goldberg, 2002]. The DSQ unit is split

into four parts: a pre-processor, two cores, and a post-processor. In the pre-processor,

operands are converted to internal formats used by the core, requiring 1 cycle for floating-

point operations and 2 cycles for integer operations. These results are then passed to one

of two cores, which takes 13 to 17 cycles depending on the operation and the data-type to

execute the iterative SRT algorithm. Each cycle, the core processes 2 bits of the operands

starting with the most significant bits, and continues to iterate until it has processed the least

significant bits. Its output is sent in carry-save redundant form to the post-processor which

performs several additions in order to compute the final quotient2. Unlike the ALU and

2An alignment shift is also required when computing the remainder is necessary.

50 CHAPTER 3. IMAGINE: MICROARCHITECTURE AND CIRCUITS

MUL units, the DSQ is not fully pipelined, but more than one operation can be executed

concurrently because once an operation has passed through the pre-processor and into one

of the cores, a new operation can be issued and executed in the other core as long as the

operations will not conflict in the post-processor stage.

3.3.4 SP Unit

While the ALU, MUL, and DSQ units support all of the arithmetic operations in a cluster,

several important non-arithmetic operations are supported by the SP, COMM, and JB/VAL

units. The scratchpad (SP) unit provides a small indexable memory within the clusters.

This 256-word memory contains one read port and one write port and supports base plus

index addressing, where the base is specified in the VLIW instruction word and the index

comes from a local LRF. This allows small table lookups to occur in each cluster without

using LRF storage or sacrificing SRF bandwidth.

3.3.5 COMM Unit

The next non-arithmetic function unit is the COMM unit. It is used to exchange data

between the clusters when kernels are not completely data parallel. The COMM unit is

implemented with 9 32-bit repeatered buses that transmit data broadcast from all eight

clusters and the microcontroller. Each cluster COMM unit then contains a 9:1 multiplexer

which selects which of these buses should be selected and output across the intracluster

switch.

3.3.6 JB/VAL Unit

The last cluster function unit is the JB/VAL unit. It is used in coordination with the SP and

COMM units to execute conditional streams [Kapasi et al., 2000]. During the execution

of conditional input or output streams, condition codes in each cluster specify whether that

cluster should execute a conditional input or output on this loop iteration. The COMM

unit is used to route data between clusters so that a cluster requesting the next element of

a conditional stream will read or write from the correct streambuffer bank. The SP unit is

3.3. ARITHMETIC CLUSTER FUNCTION UNITS 51

Table 3.3: JB/VAL Operation for Conditional Output Streams

Clusters
7 6 5 4 3 2 1 0

Loop Iteration 1
Condition codes 0 1 1 0 1 1 1 0

COMM source cluster X X X 6 5 3 2 1
Next cluster pointer 5

Ready bit 0

Loop Iteration 2
Condition codes 1 0 0 1 1 0 1 0

COMM source cluster 4 3 1 X X X X 7
Next cluster pointer 1

Ready bit 1

Loop Iteration 3
Condition codes 0 0 0 0 0 1 0 1

COMM source cluster X X X X X 2 0 X
Next cluster pointer 3

Ready bit 0

used as a double buffer in order to stage data between the streambuffers and the COMM

unit. Finally, the JB/VAL functional unit manages the control wires that are sent to the

streambuffers, the COMM unit, and the SP unit in each cluster during conditional streams.

To explain the operation of conditional output streams, consider the example shown in

Table 3.3. In this example, single-word records are assumed, so there are five instructions

involved with each conditional output stream during each loop iteration: GEN COSTATE,

COMM, SPCWR, SPCRD, and COND OUT D. During the first iteration through the loop,

condition codes specify that only five clusters have valid data to send to the output stream.

In each cluster, the GEN COSTATE instruction in the JB/VAL unit reads these condition

codes and computes a COMM source cluster, a next cluster pointer, and a ready bit (the

values for the next cluster pointer and the ready bit are the same across all eight clusters).

In this case, the five clusters with valid data (clusters 1, 2, 3, 5, and 6) will send their data

to the first five clusters (0 through 4). When the COMM is executed, each cluster uses its

52 CHAPTER 3. IMAGINE: MICROARCHITECTURE AND CIRCUITS

COMM source cluster value to read the appropriate data from the intercluster switch and

buffers this data locally in its scratchpad using SPCWR. The next cluster pointer keeps

track of where the next valid element should be written during subsequent loop iterations.

The ready bit keeps track of whether eight new valid elements have been accumulated and

should be written to the output streambuffer from the scratchpad. During the first loop

iteration, since only five valid elements have been stored in the scratchpad, the next cluster

pointer is set to 5 and the ready bit is set to zero. When the SPCRD and COND OUT D

are executed this loop iteration, the write to the streambuffer is squashed because the ready

bit was set to zero.

During the second iteration, four clusters have valid data. In this case, when the JB/VAL

unit executes GEN COSTATE, it uses the next cluster pointer (set to 5 by the previous

iteration) and new condition codes to compute the source clusters to be used during the

COMM. Again, the data is buffered locally in the scratchpad with SPCWR. However, this

time since eight valid elements have been accumulated across the clusters (five from the first

iteration and three from the second), the ready bit is set to one. When the COND OUT D

instruction is executed, these eight values stored in the scratchpad are written to the output

streambuffer. Double buffering is used in the scratchpad so that the values written into

cluster 0 during the first two iterations do not conflict. The third and final iteration in the

example contains only two valid elements from clusters 0 and 2, and in this case, those

elements are written into clusters 1 and 2.

Subsequent iterations continue in a similar manner, with the JB/VAL unit providing the

control information for the streambuffers, COMM unit, and SP unit. Figure 3.14 shows

the circuit used in the JB/VAL unit to compute the COMM source cluster. Each cluster

computes this by subtracting the next cluster pointer from its cluster number, then using

that difference to select one of the source clusters with a valid CC. For example, if the

difference were three, then this cluster is looking for the third cluster starting from cluster

0 with a CC set to 1. The selection occurs by converting the 3-bit difference into a one-hot

8-bit value, then using each CC to conditionally shift this one-hot value by one position.

Once enough valid CCs have been encountered, the lone one in the one-hot value will

have been shifted off the end. Since only one row will shift a one off the end, the COMM

source index can be easily computed by encoding the bits shifted off the end back into

3.3. ARITHMETIC CLUSTER FUNCTION UNITS 53

Next
Cluster
Pointer

3:8 Decoder

-

Cluster
Number

3

CC from
Cluster 0

0

CC from
Cluster 1

0

8:
3

E
n

co
de

r
COMM
Source
Cluster

CC from
Cluster 2

0

CC from
Cluster 3

0

CC from
Cluster 4

0

CC from
Cluster 5

0

CC from
Cluster 6

0

CC from
Cluster 7

0

Figure 3.14: Computing the COMM Source Index in the JB/VAL unit

54 CHAPTER 3. IMAGINE: MICROARCHITECTURE AND CIRCUITS

Table 3.4: Function Unit Area and Complexity

Unit Quantity Area Area Standard Cell Area
(mm2) (grids) Cells (NAND2s)

16-word LRF 176 0.046 116K 1197 4356
CCRF 64 0.042 106K 1168 2687

ALU 24 0.329 829K 10079 20955
MUL 16 0.486 1224K 10741 33755
DSQ 8 0.455 1146K 12953 34390

SP 8 0.393 990K N/A N/A
Cluster Crossbar 8 0.566 1426K 4572 31078
COMM Switch 1 1.805 4548K 39456 240536

SB Bank 176 0.110 277K 1160 5262
SRF Bank 8 0.835 2104K N/A N/A

Microcode Store 1 7.149 18012K N/A N/A

a 3-bit value. The computations required for the next cluster pointer and ready bit are not

shown in Figure 3.14, but they can be computed by simply adding the eight 1-bit CC values

together.

In addition to computing the COMM source index, next cluster pointer, and ready bit,

the JB/VAL unit also keeps track of when the stream ends. This is necessary for padding

streams when the total number of valid elements in a conditional stream is not a multiple of

the number of clusters. Conditional input streams function similarly to conditional output

streams, except buffering in the scratchpad occurs before traversing the intercluster switch

rather than vice versa.

3.4 Summary

The six function units described above along with the LRFs, CCRFs, and intracluster switch

are the components of an arithmetic cluster on the Imagine stream processor. The main de-

sign goals for these arithmetic units were low design complexity, low area, high throughput,

and low power. Although latency was important to keep limited to a reasonable value, it

3.4. SUMMARY 55

was not a primary design goal. As described in the next chapter, these arithmetic clus-

ter components were implemented in a standard cell CMOS technology with 0.15 micron

drawn gate length transistors and five layers of Aluminum with metal spacing typical to a

0.18 micron process. For a number of these arithmetic units and other key compoments,

Table 3.4 shows their silicon area (both in mm2 and in wire grids3), number of standard

cells, and total standard cell area if additional area required for wiring between standard

cells is discounted(normalized to the area of a NAND2 standard cell).

In summary, the ISA, microarchitecture, and functional unit circuits from the Imagine

stream processor are designed for directly executing the stream programs in an area- and

energy-efficient manner. The next two chapters will describe the design methodology and

performance efficiency results achieved when this microarchitecture was implemented in

modern VLSI technology.

3A wire grid in this process is 0.40 square microns

Chapter 4

Imagine: Design Methodology

To demonstrate the applicability of the Imagine stream processor to modern VLSI tech-

nology, a prototype Imagine processor was designed by a collaboration between Stanford

University and Texas Instruments (TI). Stanford completed the microarchitecture specifi-

cation, logic design, logic verification, and did the floorplanning and cell placement. TI

completed the layout and layout verification. Imagine was implemented in a standard cell

CMOS technology with 0.15 micron drawn gate length transistors and five layers of Alu-

minum with metal spacing typical to a 0.18 micron process.

The key challenge with the VLSI implementation of Imagine was working with the

limited resources afforded by a small team of less than five graduate students, yet with-

out sacrificing performance. In total, the final Imagine design included 701,000 unique

placeable instances and had an operating frequency of 45 fan-out-of-4 inverter delays, as

reported by static timing analysis tools. This was accomplished with a total design effort

of 11 person-years on logic design, floorplanning and placement, significantly smaller than

the design effort typical to comparable industrial designs [Malachowsky, 2002].

This chapter provides an overview of the design process and experiences for the Imag-

ine processor. Section 4.1 presents the design schedule for Imagine followed by back-

ground on the standard-cell design methodologies typically used for large digital VLSI

circuits in Section 4.2. Section 4.3 introduces a tiled region design methodology, the ap-

proach used for Imagine, where the designer is given fine-grained control over placement

of small regions of standard cells in a datapath style. Finally, the clocking and verification

56

4.1. SCHEDULE 57

methodologies used for Imagine are presented.

4.1 Schedule

By summer 1998, the Imagine architecture specification had been defined and a cycle-

accurate C++ simulator for Imagine was completed and running. In November 1998, logic

design had begun with one Stanford graduate student writing the RTL for an ALU cluster.

By December 2000, the team working on Imagine implementation had grown to five grad-

uate students and the entire behavioral RTL model for Imagine had been completed and

functionally verified.

The Imagine floorplanning, placement, and layout was carried out by splitting the de-

sign into five unique subchips and one top-level design. In November 2000, the first trial

placement of one of these subchips, an ALU cluster, was completed by Stanford. By Au-

gust 2001, the final placement of all five subchips and the full-chip design was complete

and Stanford handed the design off to TI for layout and layout verification. In total, between

November 1998 when behavioral RTL was started and August 2001 when the placed de-

sign was handed off to TI, Stanford expended 11 person-years of work on the logic design,

floorplanning, and placement of the Imagine processor. Imagine parts entered a TI fab in

February 2002. First silicon was received in April, 2002 and full functionality was verified

in the laboratory in subsequent months.

4.2 Design Methodology Background

Typically, with a small design team, an ASIC design methodology is used. This is in con-

trast to a full-custom design methodology, which is used for more aggressive designs target-

ing higher clock rates. Although there can be a greater than a factor-of-3 difference in both

area and performance between custom and ASIC designs [Dally and Chang, 2000] [Chin-

nery and Keutzer, 2000] [Chang, 1998], with the small size of the Stanford design team,

using a full-custom design methodology was not possible. Hence, logic design was re-

stricted to using gates and register elements from a standard-cell library.

58 CHAPTER 4. IMAGINE: DESIGN METHODOLOGY

RTL Netlist

LibraryWire
Models

Place &
Route

Synthesis Layout

ExtractorR & CTiming
Analysis

Slow
Paths

Manual
Design

Figure 4.1: Standard ASIC Design Methodology

Figure 4.1 shows the typical ASIC tool flow. RTL is written in a hardware description

language such as Verilog and is mapped to a standard-cell library with a logic synthesis tool

such as Synopsys Design Compiler [Synopsys, 2000a]. Wire lengths are estimated from

statistical models and timing violations are fixed by resynthesizing with new timing con-

straints or by restructuring the logic. After pre-placement timing convergence, designs are

then passed through an automatic place and route tool, which usually uses a timing-driven

placement algorithm. After placement, wire lengths from the placed design are extracted

and back-annotated to a static timing analysis (STA) tool. However, when actual wire

lengths do not match predicted pre-placement statistical-based wire lengths, this can cause

a timing problem and can lead to costly design iterations, shown in the bottom feedback

loop.

Recent work in industry and academia has addressed many of the inefficiencies in ASIC

flows. This work can be grouped in two categories: improving timing convergence and

incorporating datapath-style design in ASIC flows.

Physically-aware synthesis approaches [Synopsys, 2000b] attempt to address the short-

comings of timing convergence in traditional flows by concurrently optimizing the logical

and physical design, rather than relying on statistically-based wire-length models. The

principal benefit of these techniques is to reduce the number of iterations required for tim-

ing convergence, and as a result, deliver modest improvement in timing performance and

area.

Datapaths are examples of key design structures that ASIC flows handle poorly. There

are three limitations. First, aggregating many simple standard cells to create a complex

4.3. IMAGINE DESIGN METHODOLOGY 59

function is inefficient. Second, the typical logical partitions (functional) often differ from

the desirable physical partitions (bit-slices). Finally, since the “correct” bit-sliced datap-

ath solution is very constrained, small errors in placement and routing during automated

optimization can result in spiraling congestion and can quickly destroy the inherent reg-

ularity. When developing the design methodology for Imagine, the goal was to keep the

inherent advantages of standard-cell design, but to eliminate some of the inefficiencies of

ASIC methodologies by retaining datapath structure.

Many researchers have demonstrated that identifying and exploiting regularity yields

significant improvements in density and performance for datapath structures in comparison

to standard ASIC place and route results [Chinnery and Keutzer, 2002]. In particular,

researchers have shown numerous automated techniques for extracting datapath structures

from synthesized designs and doing datapath-style placement [Kutzschebauch and Stok,

2000] [Nijssen and van Eijk, 1997] [Chowdhary et al., 1999]. However, widespread

adoption of these techniques into industry-standard tools had not yet occurred by the time

the VLSI design for the Imagine processor was started.

4.3 Imagine Design Methodology

Given the small size of the Stanford design team and the need to interface with industry-

standard tools, the design methodology for Imagine was constrained to use the basic tool

flow shown in Figure 4.1. However, a large percentage of logic from Imagine are struc-

tured arrays and arithmetic units that could benefit from datapath-style placement. To take

advantage of this datapath regularity and to expedite timing convergence, this tool flow was

modified. Physical-aware synthesis techniques were not available while the VLSI design

was carried out, so a tiled region design methodology was used. This methodology pro-

vides similar advantages in gate density to the techniques presented in Section 4.2 for doing

datapath-style design in a standard cell technology.

The total Imagine design contains 1.78 million standard cells. However, many of these

standard cells are parts of large blocks which are repeated many times, such as arithmetic

units or register files. In order to leverage this modularity, and to reduce the maximum de-

sign size handled by the CAD tools, the Imagine design was partitioned into five subchips

60 CHAPTER 4. IMAGINE: DESIGN METHODOLOGY

Table 4.1: Subchip statistics

Instances Gate Area #
CLUST 130,000 304K 8
UC 27,000 27K 1
SRF 314,000 1.31M 1
HISCNI 98,000 320K 1
MBANK 57,000 169K 4
Top Level 75,000 351K 1
Full Chip 701,000 5.12M 1

and one top-level design. In the ASIC methodology used on Imagine, flat placement within

a subchip is used, where all of the standard cells in each subchip are placed at once. This

is in contrast to hierarchical placement techniques where subcomponents of a subchip are

placed first and larger designs are built from smaller sub-designs. After routing each sub-

chip, the top-level design then includes instances of the placed and routed subchips as well

as additional standard cells. Table 4.1 shows the number of instances, area, and gate area

in equivalent NAND2 gates for each of the five subchips: the ALU cluster (CLUST), the

micro-controller (UC), the stream register file (SRF), the host interface / stream controller

/ network interface (HISCNI), and the memory bank (MBANK). Each of these subchips

corresponds directly to units in Figure 2.3 except the MBANK. The streaming memory sys-

tem is composed of 4 MBANK units: 1 per SDRAM channel. Also shown is the top-level

design, which includes glue logic between subchips and I/O interfaces.

In addition to the gates listed in Table 4.1, some of the subchips also contain SRAM’s

instantiated from the TI ASIC library. The UC contains storage for 2048 576-bit VLIW

instructions organized as 9 banks of single-ported, 1024-word, 128-bit SRAM’s. The SRF

contains 128 KBytes of storage for stream data, organized as 8 banks of single-ported,

1024-word, 128-bit SRAM’s. There is a dual-ported, 256-word, 32-bit SRAM in each ALU

cluster for scratchpad memory. Finally, the HISCNI subchip contains SRAM’s for input

buffers in the network interface and for stream instruction storage in the stream controller.

Several of the subchips listed above benefit from using datapath-style design. Specifi-

cally, each ALU cluster contains six 32-bit floating-point arithmetic units and fifteen 32-bit

4.3. IMAGINE DESIGN METHODOLOGY 61

Floorplan

Local
Netlists

Library

Short
Wire

Models

Place &
Route

Structure

Layout

ExtractorR & C
Timing

Analysis
Slow
Paths

Manual
Design

RTL
Structured

RTL

Regions

Wire plan Key Wires
Placement
& Loads

Synthesis

Figure 4.2: Tiled Region Design Methodology

register files. Exploiting the datapath regularity for these units keeps wire lengths within

a bitslice very short, which in turn leads to smaller buffers, and therefore a more compact

design. In addition, control wires are distributed across a bitslice very efficiently since cells

controlled by the same control wires can be optimally aligned. The SRF, which contains

22 8-entry 256-bit streambuffers, also benefits from the use of datapaths. The 256 bits in

the streambuffers align to the 8 clusters’ 32-bit-wide datapath, keeping wires predictable

and short and allowing for efficient distribution of control wires.

The tiled-region basic flow used on Imagine is shown in Figure 4.2. It is similar to the

typical ASIC methodology shown previously in Figure 4.1. However, several key addi-

tional steps, shown in gray, have been added in order to allow for datapath-style placement

and to reduce costly design iterations. First, in order to make sure that datapath structure

is maintained all the way through the flow, two RTL models were used. A second RTL

model, labeled structured RTL, was written. It is logically equivalent to the behavioral

RTL, but contains additional logical hierarchy in the RTL model. Datapath units such as

adders, multipliers, and register files contain submodules that correspond to datapath bit-

slices. These bitslices correspond to a physical location along the datapath called a region.

Regions provide a hard boundary during placement, meaning cells assigned to that region

will only be placed within the associated datapath bitslice. Regions are often used in typical

62 CHAPTER 4. IMAGINE: DESIGN METHODOLOGY

ASIC design methodologies in order to provide constraints on automatic place and route

tools, but the tiled-region flow has a much larger number of smaller regions (typically 10

to 50 instances per region) when compared to timing-driven placement flows.

In addition to the floorplanning of regions, the subchip designer also must take into

account the wire plan for a subchip. The wire plan involves manually annotating all wires

of length greater than one millimeter with an estimated capacitance and resistance based

on wire length between regions. By using these manual wire-length annotations during

synthesis and timing analysis runs, statistical wire models generated during synthesis are

restricted to short wires. Manual buffers and repeaters were also inserted in the structured

RTL for long wires. With wire planning, pre-placement timing more closely matches post-

placement timing with annotated wire resistance and capacitance.

A more detailed view of the floorplanning and placement portion of the tiled-region

methodology is shown in Figure 4.3. Consider an 8-bit adder. It would be modeled with

the statement y = a + b in behavioral RTL. However, the structured RTL is split up by hand

into bitslices as shown in Figure 4.3. The structured RTL is then either mapped by hand

or synthesized into a standard-cell netlist using Synopsys Design Compiler [Synopsys,

2000a].

In conjunction with the netlist generation, before placement can be run, floorplanning

has to be completed. In the tiled-region design methodology, this is done by writing a

tile file. An example tile file containing two 8-bit adders is shown in the upper right of

Figure 4.3. The tile file contains a mapping between logical hierarchy in the standard cell

netlist and a bounding box on the datapath given in x-y coordinates. The example tile file

shows how the eight bitslices in each adder would be tiled if the height of each bitslice

was 30 units. Arbitrary levels of hierarchy are allowed in a tile file, allowing one to take

advantage of modularity in a design when creating the floorplan. In this example, two levels

of hierarchy are used, so cells belonging to the adder 1/slice5 region would be placed in

the bounding box given by 40 < x < 80 and 150 < y < 180.

Once the floorplan has been completed using a tile file, it is then passed through a tool

developed by Stanford called tileparse. Tileparse flattens the hierarchy of the tile file and

outputs scripts which are later run by the placer to set up the regions. Once the regions

have been set up, but before running placement, the designer can look at the number of

4.3. IMAGINE DESIGN METHODOLOGY 63

 module adder (a,b,y);
 input [7:0] a,b;
 output [7:0] y;
 wire [6:0] c;
 …
 adder_slice slice2
 (a[3],b[3],c[2],c[3],y[3]);
 adder_slice slice3
 (a[4],b[4],c[3],c[4],y[4]);
 ….
 endmodule

 module adder_slice(a,b,ci,co,y)
 input a,b,ci;
 output co,y;
 assign y=a^b^ci;
 assign co=(a&b)|(a&ci)|(b&ci);
 endmodule

 Module adder {
 region slice0 x1=0 x2=40 y1=0 y1=30
 region slice1 x1=0 x2=40 y1=30 y1=60
 region slice2 x1=0 x2=40 y1=60 y1=90
 region slice3 x1=0 x2=40 y1=90 y1=120
 region slice4 x1=0 x2=40 y1=120 y1=150
 region slice5 x1=0 x2=40 y1=150 y1=180
 region slice6 x1=0 x2=40 y1=180 y1=210
 region slice7 x1=0 x2=40 y1=210 y1=240
 }

 inst adder adder_0 x=0 y=0
 inst adder adder_1 x=40 y=0

Synthesis

Structured
RTL

Tile File

Floorplan

Standard Cell
Netlist

Tileparse

Create_groups.scr
Place_groups.scr

Region-Based
Placement

Figure 4.3: Tiled Region Floorplanning Details

64 CHAPTER 4. IMAGINE: DESIGN METHODOLOGY

Table 4.2: Imagine placement results

Occ mm2 # Regions Placement
CLUST 65.1% 5.1 × 0.8 1,556 Tiled-Region

UC 56.3% 6.2 × 1.4 102 Tiled-Region
SRF 54.5% 9.0 × 4.0 6,640 Tiled-Region

HI/SC/NI 38.9% 8.0 × 1.4 237 Tiled-Region
MBANK 69.1% 1.2 × 1.8 15 Timing-Driven
Top Level 63.3% N/A 1,095 Tiled-Region

cells in a region and iterate by changing region sizes and shapes until a floorplan that fits

is found. Finally, the Avant! Apollo-II automatic placement and global route tool [Chen,

1999] is used to generate a trial placement on the whole subchip. These steps are then

iterated until a floorplan and placement with satisfactory wiring congestion and timing has

been achieved. The steps following placement in the tiled-region design methodology do

not differ from the typical ASIC design methodology.

4.4 Imagine Implementation Results

Table 4.2 shows the placement results for the subchips and top level design. Standard

cell occupancy is given as a ratio of standard cell area to placeable area. Area devoted to

large power buses or SRAMs is not considered placeable area. Tiled-region placement was

used on all of the subchips except for the smaller MBANK subchip, which did not have

logic conducive to datapath-style placement. It is important to note that occupancy is most

dependent on the characteristics of the subchip such as overall wire utilization and floorplan

considerations. For example, high wiring congestion contributed to the lower occupancies

of the HISCNI subchip and low wiring congestion allowed for high occupancies in the

MBANK subchip. The SRF has regions of low occupancy for interfacing with the SRAM’s

and other subchips that reduce its overall occupancy. However, in regions where large

numbers of datapaths were used and the designs were less wire-limited such as in the

streambuffer datapaths, occupancy was over 80%.

4.5. IMAGINE CLOCKING METHODOLOGY 65

By using tiled-regioning, large subchips such as the SRF and CLST with logic con-

ducive to datapath-style placement were easily managed by the designer. For example,

placement runs for the SRF, which contained over 300,000 instances took only around one

hour on a 450 MHz Ultrasparc II processor. This meant that when using tiled-region place-

ment on these large subchips, design iterations proceeded very quickly. Furthermore, the

designer had fine-grained control over the placement of regions to easily fix wiring con-

gestion problems. For example, the size and aspect ratio of datapath bitslices could be

modified as necessary to provide adequate wiring resources.

Timing results for each of these subchips are included in Table 4.3. Maximum clock

frequency and critical path for each clock domain in fan-out-of-4 inverter delays (FO4s) are

shown. Results were measured using standard RC extraction and STA tools at the typical

process corner.

4.5 Imagine Clocking Methodology

Most ASIC’s use a tree-based clock distribution scheme. This approach was also used on

Imagine, but distributing a high-speed clock with a large die size and many clock loads

with low skew was challenging. Typical high-performance custom designs use latch-based

design to enable skew tolerance and time-borrowing. However, a large variety of high-

performance latches were not available in Imagine’s standard cell library, so an edge-

triggered clocking scheme where clock skew affects maximum operating frequency was

used. Latches, instead of flip-flops, were used in some register file structures in the ALU

clusters in order to reduce area and power dissipation.

In order to distribute a clock to loads in several subchips while minimizing skew be-

tween the loads, the standard flow in the TI-ASIC methodology was used. First, after each

subchip was placed, a clock tree was expanded within each subchip using available loca-

tions in the floorplan to place clock buffers and wires. Skew between the clock loads was

minimized using Avant! Apollo [Chen, 1999]. Later, when all of the subchips were instan-

tiated in the full-chip design, delay elements were inserted in front of the clock pins for the

subchips so that the insertion delay from the inputs of the delay elements to all of the final

clock loads would be matched for the average insertion delay case. Next, the same flow

66 CHAPTER 4. IMAGINE: DESIGN METHODOLOGY

Table 4.3: Imagine timing results

Clock Max Freq Tcycle (FO4s) Clock Loads
iclk 296 MHz 46.3 160K
sclk 148 MHz 92.6 8.8K
hclk 175 MHz 78.3 2.7K
mclk 233 MHz 58.6 19K
nclkin 296 MHz 46.3 166
nclkout 296 MHz 46.3 55

used on the subchips was used to synthesize a balanced clock tree to all of the inputs of the

delay elements and the leaf-level clock loads for clocked elements in the top-level design.

Imagine must interface with several different types of I/O each running at different

clock speeds. For example, the memory controller portion of each MBANK runs at the

SDRAM clock speed. Rather than coupling the SDRAM clock speed to an integer multiple

of the Imagine core clock speed, completely separate clock trees running at arbitrarily dif-

ferent frequencies were used. In total, Imagine has 11 clock domains: the core clock (iclk),

a clock running at half the core clock speed (sclk), the memory controller clock (mclk), the

host interface clock (hclk), four network input channel clocks (nclkin n, nclkin s, nclkin e,

nclkin w), and four network output channel clocks (nclkin n, nclkout s, nclkout e, nclk-

out w). These clocks and the loads for each clock are shown in Table 4.3, but for clarity,

only one of the network channel clocks is shown. The maximum speed of the network

clocks were architecturally constrained to be the same speed as iclk, but can operate slower

if needed in certain systems. Mclk and hclk are also constrained by the frequency of other

chips in the system such as SDRAM chips, rather than the speed of the logic on Imagine.

Sclk was used to run the SRF and stream controller at half the iclk speed. The relaxed

timing constraints significantly reduced the design effort in those blocks and architectural

experiments showed that running these units at half-speed would have little impact on over-

all performance.

The decoupling provided by Imagine’s 11 independent clock domains reduces the com-

plexity of the clock distribution problem. Also, non-critical timing violations within one

clock domain can be waived without affecting performance of the others. To facilitate these

4.6. IMAGINE VERIFICATION METHODOLOGY 67

FIFO

Read
Ptr

Write
Ptr

Shift Out
Read Clock

Write Enable
Write Clock

Data In Data Out

Sync

Com-
pare

Empty

Sync
Com-
pare

Full

Figure 4.4: Asynchronous FIFO Synchronizer

many clock domains, a synchronizing FIFO was used to pass data back and forth between

different clock domains. Figure 4.4 shows the FIFO design used [Dally and Poulton, 1998].

In this design, synchronization delay is only propagated to the external inputs and outputs

when going from the full to non-full state or vice versa, and similarly with the empty to

non-empty state. Brute force synchronizers were used to do the synchronization. By mak-

ing the number of entries in the FIFO large enough, write and read bandwidths are not

affected by the FIFO design.

4.6 Imagine Verification Methodology

Functional verification of the Imagine processor was a challenge given the limited resources

available in a university research group. A functional verification test suite was written and

run on the behavioral RTL. The same test suite was subsequently run on the structured RTL.

Tests in the suite were categorized either as module-level or chip-level tests. Standard

industry tools performed RTL-to-netlist and netlist-to-netlist comparisons for functional

equivalency using formal methods.

Module-level tests exercised individual modules in isolation. These tests were used

on modules where functionality was well-defined and did not rely on large amounts of

complex control interaction with other modules. Module-level tests that exercised specific

68 CHAPTER 4. IMAGINE: DESIGN METHODOLOGY

corner cases were used for testing Imagine’s floating-point adder, multiplier, divide-square-

root (DSQ) unit, memory controller, and network interface. In each of these units, signifi-

cant random testing was also used. For example, in the memory controller, large sequences

of random memory reads and writes were issued. In addition, square-root functionality in

the DSQ unit was tested exhaustively.

Chip-level tests were used to target modules whose control was highly coupled to other

parts of the chip and for running portions of real applications. Rather than relying only on

end-to-end correctness comparisons in these chip-level tests, a more aggressive compari-

son methodology was used for these tests. A cycle-accurate C++ simulator had already

been written for Imagine. During chip-level tests, a comparison checker verified that the

identical writes had occurred to architecturally-visible registers and memory in both the

C++ simulator and the RTL model. This technique was very useful due to the large number

of architecturally-visible registers on Imagine. Also, since this comparison occurred every

cycle, it simplified debugging since any bugs would be seen immediately as a register-write

mismatch. A number of chip-level tests were written to target modules such as the stream

register file and microcontroller. In order to generate additional test coverage, insertion

of random stalls and timing perturbations of some of the control signals were included in

nightly regression runs.

In total, there were 24 focused tests, 10 random tests, and 11 application portions run

nightly as part of a regression suite. Some focused tests included random timing perturba-

tions. Every night 0.7 million cycles of focused tests, 3.6 million cycles of random tests,

and 1.3 million cycles of application portions were run as part of the functional verification

test suite on the C++ simulator, the behavioral RTL and the structured RTL. These three

simulators ran at 600, 75, and 3 Imagine cycles per second respectively when simulated on

a 750 MHz UltrasparcIII processor.

In summary, the design, clocking, and verification methodologies used on Imagine en-

abled the design of a 0.7M-instance ASIC without sacrificing performance, and with a

considerably smaller design team than comparable industrial designs.

Chapter 5

Imagine: Experimental Results

In this chapter, experimental results measured from the Imagine stream processor are pre-

sented. Imagine was fabricated in a Texas Instruments CMOS process with metal spacing

typical to a 0.18 micron process and with 0.15 micron drawn-gate-length transistors.

Figure 5.1 shows a die photograph of the Imagine processor with the five subchips pre-

sented in Chapter 4 highlighted. Its die size is 16 mm × 16 mm. The IO’s are peripherally

bonded in a 792-pin BGA package. There are 456 signal pins (140 network, 233 memory

system, 45 host, 38 core clock and debug), 333 power pins (136 1.5V-core, 158 3.3V-IO,

39 1.5V-IO), and 3 voltage reference pins. The additional empty area in the chip plot is

either glue logic and buffers between subchips or is devoted to power distribution.

5.1 Operating Frequency

The operating frequency for Imagine was tested on a variety of applications and a range

of core supply voltages. As presented in Chapter 4, static timing analysis tools predicted

Imagine to be fully functional with a clock period of 46 fan-out-of-4 inverter delays, corre-

sponding to 296 MHz operation at the typical process corner at 1.5V and 25◦C. (188 MHz

at the slow process corner, 1.35V, and 125◦C). As shown in Figure 5.2, laboratory mea-

surements for the Imagine processor show significantly slower operation, with a maximum

clock speed of 288 MHz at 2.1V, and a clock speed of only 132 MHz at 1.5V. Package

temperature was monitored during these measurements, and stayed under 40◦C with the

69

70 CHAPTER 5. IMAGINE: EXPERIMENTAL RESULTS

SRF

UC

HI NISC

M
B

A
N

K
0

M
B

A
N

K
1

M
B

A
N

K
2

M
B

A
N

K
3

CLUST1

CLUST0

CLUST3

CLUST2

CLUST5

CLUST4

CLUST7

CLUST6

Figure 5.1: Die Photograph

5.1. OPERATING FREQUENCY 71

50

100

150

200

250

300

1 1.2 1.4 1.6 1.8 2 2.2

Voltage (V)

F
re

q
ue

n
cy

 (
M

H
z)

Predicted

Typical

Worst-case

Measured

Figure 5.2: Measured Operating Frequency

aid of a heat sink and air cooling provided by a fan.

At 288 MHz, Imagine provides a peak performance of 11.5 GFLOPS or 23 16-bit

GOPS, and is able to sustain over 60% of peak performance on some key media processing

applications. However, at 1.5V operation, its clock speed of 132 MHz is less than half as

fast as the 296 MHz typical-corner operation and 30% slower than the slow-corner oper-

ation predicted by static timing analysis tools. Further analysis provides insight into the

source of this discrepancy between predicted and measured performance.

Process variation in both transistors and metal interconnect causes some of the discrep-

ancy. While in an idle state with clocks disabled, an on-chip ring oscillator located near the

periphery of the Imagine die had a measured frequency of 3.13 MHz at 1.5V. In contrast,

timing analysis tools predicted a frequency of 3.48 MHz at the typical process corner and

1.5 V. Since power supply noise and IR drop to the ring oscillator during this measure-

ment would be negligible, this difference suggests there is a frequency degradation of 11%

due solely to process variation in the transistors themselves. However, process variation

in the resistance of metal interconnect and via layers can also exist in modern technology.

This variation is more difficult to measure, but variation in these parameters could also

contribute to a small amount of additional performance degradation.

72 CHAPTER 5. IMAGINE: EXPERIMENTAL RESULTS

0

5

10

15

20

25

30

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

Voltage (V)

D
el

ay
 (n

s)
Cycle Time Scaled Ring Delay

Figure 5.3: Measured Ring Delay

Further insight into reasons for a lower-than-predicted operating frequency can be pro-

vided by comparing the voltage dependence of Imagine’s cycle time to the voltage depen-

dence of the ring oscillator delay. This data is graphed in Figure 5.3. The scaled ring

oscillator delay, shown in the curve on the left, is the ring oscillator delay multiplied by a

constant factor, so that at 1.5 Volts, it equals 3.79ns (for a frequency of 264 MHz). This

delay is what would be expected from static timing analysis given the 11% performance

degradation due to process variation measured on the ring oscillator. Therefore, the scaled

ring oscillator delay shows the cycle time predicted by static timing analysis across a range

of supply voltages.

As other researchers have shown [Chen et al., 1997], the effect supply voltage has on

gate delay in modern CMOS processes where transistors are typically velocity saturated

can be modeled by:

td = kC
V

(V − Vth)1.25
(5.1)

The measured delay through the ring oscillator follows this gate delay model closely if a

threshold voltage, Vth, of 0.38 Volts is assumed.

5.2. POWER DISSIPATION 73

On the other hand, the measured cycle time, shown in the curve on the right in Fig-

ure 5.3, shows voltage adversely affecting delay at significantly higher voltages and in fact,

Imagine stops functioning correctly below 1.2 Volts. At 1.5 Volts, the actual cycle time

is twice the delay predicted by the scaled ring oscillator delay. However, this relative dif-

ference is greater for lower voltages and smaller for higher voltages. For example, at 1.2

Volts, the difference is 3x and at 2.0 Volts, the difference is 1.28x.

Several factors could explain the discrepancies between predicted and measured cy-

cle times. First, internal IR drop across large wire resistances in the the core power supply

could contribute to significantly lower voltages at standard cells located on critical paths. In

addition, if IR drop led to low supply voltages for gates with feedback elements or circuits

that have delays not accurately modeled by (5.1), then their performance at low voltages

could be degraded more severely than the ring oscillator, and they could even stop function-

ing correctly. Finally, the lack of sufficient bypass capacitance on the power supply in areas

of the chip with highly varying current draw could lead to additional supply degradation not

modeled by IR drop and could further degrade performance. These factors could explain

the measured cycle time’s steep slope at voltages significantly higher than that predicted

by the ring oscillator delay measurements. Unfortunately, without sophisticated measure-

ment techniques, it is difficult to conclusively verify the exact factors contributing to this

behavior. Nevertheless, if thorough analysis and careful re-design of the on-chip power

distribution network were able to solve the discrepancy between predicted and measured

operating frequency, at worst-case operating conditions a 1.42x performance improvement

without increasing voltage or degrading energy efficiency would be observed. By improv-

ing to typical operating conditions, a 2x performance improvement over current behavior

would be achieved.

5.2 Power Dissipation

In addition to performance, a processor’s power dissipation is a very important charac-

teristic in many media processing systems. Figure 5.4 shows Imagine’s core total power

dissipation as the core power supply is varied from 1.2 to 2.1 Volts, assuming operating

74 CHAPTER 5. IMAGINE: EXPERIMENTAL RESULTS

0

2

4

6

8

10

12

14

1 1.2 1.4 1.6 1.8 2 2.2

Voltage (V)

P
o

w
er

(W
)

Figure 5.4: Measured Core Power Dissipation

frequencies from Figure 5.2. The core power dissipation was measured during a test appli-

cation written to keep Imagine fully occupied with floating-point arithmetic instructions.

Imagine’s power dissipation is dominated by dynamic power dissipation, given by:

P = CswV 2f

where Csw is the average capacitance switched per clock cycle. At 1.5 Volts and 132 MHz,

a power dissipation of 3.07 Watts was observed, meaning that Csw, the average capacitance

switched per clock cycle, was measured to be 10.3 nF.

Although it is difficult to determine exactly how this 10.3 nF of Csw is distributed

throughout Imagine, estimates can be made with Synopsys Design Compiler [Synopsys,

2000a] using exact capacitances and resistances extracted from actual layout and toggle

rates captured from a test application. These estimates are presented in the pie chart in

Figure 5.5 and sum to the 10.3 nF measured experimentally. Total power dissipation is

separated into three major categories: clock, arithmetic clusters, and other. Clock power

includes capacitance switched during idle operation when only the Imagine core clock is

toggling, and is further subdivided into three categories: Csw in the clock tree, Csw in the

loads of the clock tree, and Csw internally within the flip flops. Together, clock power

5.2. POWER DISSIPATION 75

Clock Tree
11%

Clock Loads
14%

Flip Flop Internal
Power
29%

Cluster ALUs
19%

Cluster RFs, Wires,
and Control

21%

SRF, UC, Mbanks
6%

Figure 5.5: Csw distribution during Active Operation

comprises around 55% of the total core power, verified experimentally by idle power mea-

surements. The arithmetic cluster power is also subdivided into two categories: capac-

itance switched in the ALUs and capacitance switched elsewhere in the cluster such as

in the LRFs and intracluster switch. The final remaining category labeled SRF, UC, and

Mbanks includes the switched capacitance not accounted for in the arithmetic clusters or

clock network.

Note that on Imagine, a large percentage of power dissipation is devoted to arithmetic

units. Not only is 20% of active power dissipated in the ALUs, but over one third of

the internal flip flop clock power and clock load power is in pipeline registers within the

ALUs. In total, nearly 40% of the chip power is spent directly on providing high-bandwidth

arithmetic units. Furthermore, power dissipation could be significantly reduced by lower-

ing clock power. Lowering the number of pipeline registers or using latch-based clocking

methodologies and more efficient clock trees as would typically be done with custom de-

sign methodologies would help to greatly reduce Imagine’s core power dissipation.

76 CHAPTER 5. IMAGINE: EXPERIMENTAL RESULTS

0

200

400

600

800

1 1.2 1.4 1.6 1.8 2 2.2

Voltage (V)

E
n

er
g

y
E

ff
ic

ie
n

cy
 (p

J/
O

p
)

Figure 5.6: Measured Energy Efficiency

5.3 Energy Efficiency

Although absolute power dissipation for a processor is important since processors in em-

bedded systems often have fixed power budgets, another important metric is energy effi-

ciency, evaluated here as GOPS per Watt or Joules per operation. This metric corresponds

to the energy which must be provided by an external source such as a battery in order to

accomplish a fixed task, such as encoding one frame of video.

The sustained energy efficiency on Imagine, as picoJoules per arithmetic operation,

is shown in Figure 5.6. At the nominal 1.5 Volt supply, Imagine dissipates 363 pJ per

operation (2.4 GFLOPS/W). However, by operating Imagine at lower frequencies and lower

supply voltages, its energy efficiency is improved [Chandrakasan et al., 1994; Horowitz

et al., 1994; Burd and Brodersen, 1995]. Since energy efficiency is given by the ratio

of performance to power (GOPS/W), as supply voltage approaches transistor threshold

and delay increases, operating frequency and performance decrease. However, power is

decreasing at a much faster rate, given by the product of voltage squared and operating

frequency. At its most energy-efficiency condition (1.2 Volt supply), Imagine is 27% more

energy-efficient than at the nominal supply voltage, dissipating only 265 pJ per operation.

Below 1.2 Volts, the chip stops functioning correctly.

5.3. ENERGY EFFICIENCY 77

Table 5.1: Energy-Efficiency Comparisons

Processor Volts Tech Data- Peak Power Energy/Op
type Performance (W) (pJ)

Intel Pentium 4 1.5 0.13µ FP 12 GFLOPS 80 6700
(3.08 GHz) 16b 24 GOPS 80 3350
SB-1250 1.2 0.15µ FP 12.8 GFLOPS 10 780
(800 MHz) 64b 6.4 GOPS 10 1560

16b 12.8 GOPS 10 780

TI C67x (225 MHz) 1.2 0.13µ FP 1.35 GFLOPS 1.2 889
TI C64x (600 MHz) 1.2 0.13µ 16b 4.8 GOPS 0.72 150

Nvidia GeForce3 1.5 0.15µ 8-16b 1200 GOPS 12 10

Imagine 1.5 0.15µ FP 5.3 GFLOPS 3.1 587
(132 MHz) 32b 5.3 GOPS 3.1 587

16b 10.6 GOPS 3.1 293
Imagine Low-Voltage 1.2 0.15µ FP 2.5 GFLOPS 1.1 423
(66 MHz) 32b 2.5 GOPS 1.1 423

16b 5.0 GOPS 1.1 220
Imagine Normalized 1.2 0.13µ FP 6.1 GFLOPS 2.0 328
to 0.13µ (150 MHz) 32b 6.1 GOPS 2.0 328

16b 12.2 GOPS 2.0 164

To put these numbers in perspective, an energy-efficiency comparison between Imag-

ine and some of media processors presented earlier in Section 2.1 is shown in Table 5.1.

Energy efficiency is shown as energy per arithmetic operation and is calculated from peak

performance and power dissipation. Unlike Section 2.1, here in Table 5.1, energy efficien-

cies are not normalized to the same technology, but rather each processor’s technology and

voltage is listed in the table.

The first section includes two microprocessors, a 3.08 GHz Intel Pentium 41 [Sager

et al., 2001; Intel, 2002] and a Sibyte SB-1250, which consists of two on-chip SB-1 CPU

cores [Sibyte, 2000]. The Pentium 4 is designed for high performance through deep pipelin-

ing and high clock rate. The SiByte processor is targetted specifically for energy efficient

1Gate length for this process is actually 60-70 nanometers because of poly profiling engineering [Tyagi et
al., 2000; Thompson et al., 2001].

78 CHAPTER 5. IMAGINE: EXPERIMENTAL RESULTS

operation through extensive use of clock gating and other design techniques for low power.

These processors demonstrate the range of energy efficiencies typically provided by micro-

processors, over 500 pJ per instruction in a 0.13 micron technology.

Digital signal processors are listed next in Table 5.1. The first DSP, the TI C67x [TI,

2003], an 8-way VLIW operating at 225 MHz targets floating-point applications, and has

energy efficiency of 889 pJ per instruction, similar to the SB-1250 when normalized to the

same technology and voltage. The TI C64x [Agarwala et al., 2002], a 600 MHz 8-way

VLIW DSP targeted for lower-precision fixed-point operation, is able to provide improved

energy efficiency over floating-point DSPs at 150-250 pJ per 16b operation. This improved

efficiency is due to arithmetic units optimized for 16b operation and with architectures

designed to efficiently exploit parallelism, such as SIMD operations in the C64x.

Although fixed-point DSPs are able to provide significant improvements over micro-

processors in energy efficiency, special-purpose processors are still one to two orders of

magnitude better, as demonstrated by the Nvidia Geforce3 [Montrym and Moreton, 2002;

Malachowsky, 2002] at 10pJ per operation, or 5 pJ per operation when scaled to 0.13 µm

technology. The energy efficiency of graphics processors is due to their highly parallel ar-

chitectures that provide a large amount of arithmetic performance with low VLSI overhead.

In addition, graphics processors are able to exploit producer-consumer locality by feeding

the output of one stage of the graphics pipeline directly to the next stage of the pipeline,

avoiding global data transfers.

Finally, we present the energy efficiency of Imagine in Table 5.1. When normalized to

the same voltage, Imagine dissipates nearly half the energy per floating-point op per 16-bit

op dissipated by the SB-1250, the most energy efficient fully-programmable floating-point

processor listed. When normalized to the same technology, Imagine provides energy ef-

ficiencies 2.7x better than the C67x on floating-point operations. On 16-bit operations,

Imagine is comparable to the C64x, even though Imagine contains arithmetic units opti-

mized for floating-point and 32-bit performance and a less aggressive design methodology.

In the next section, we will explore the energy efficiency of stream processors optimized for

16-bit fixed-point applications rather than floating-point performance. In addition, we will

demonstrate the potential of stream processors to achieve much higher energy efficiency by

employing more-aggressive custom design methodologies rather than standard cells and by

5.3. ENERGY EFFICIENCY 79

Table 5.2: Energy-Delay Comparisons

Processor Volts Tech Data- Energy-Delay
type

Intel Pentium 4 1.5 0.13µ FP 558
(3.08 GHz) 16b 140
SB-1250 1.2 0.15µ FP 61
(800 MHz) 32b 244

16b 611

TI C67x (225 MHz) 1.2 0.13µ FP 658.5
TI C64x (600 MHz) 1.2 0.13µ 16b 31
Broadcom Calisto 1.2 0.13µ 16b 42.6

Nvidia GeForce3 1.5 0.15µ 8-16b 0.008

Imagine 1.5 0.15µ FP 110
(132 MHz) 32b 110

16b 27.6
Imagine Normalized 1.2 0.13µ FP 54
to 0.13µ (150 MHz) 32b 54

16b 13

using low-power circuit techniques. This would also provide a more fair comparison to the

DSPs and microprocessors listed here, which also use custom design methodologies.

Some researchers have proposed using the energy-delay product as an alternate met-

ric for energy efficiency [Horowitz et al., 1994]. Since processors designed to operate at

slower performance rates can reduce their energy per task with techniques such as smaller

transistor sizing and less pipelining to reduce clock power (at the cost of higher delay per

task), the energy-delay product metric allows one to compare the energy efficiency of two

processors operating at different performance rates.

We evaluated energy-delay product on the same range of processors as shown in Ta-

ble 5.2 (lower energy-delay product is better). As with energy efficiency, energy-delay is

estimated from peak performance and power dissipation, given by the ratio of energy per

operation to the peak performance on that operation type.

The energy-delay product is affected more than energy efficiency or performance alone

by design methodologies and technology scaling. That is because the advantages in raw

80 CHAPTER 5. IMAGINE: EXPERIMENTAL RESULTS

Table 5.3: Sustained Application Performance

Application Operation Performance Core Power
types (GOPS) (W)

MPEG-2 Encode 32b/16b/8b 4.9 3.6
QR Decomposition Floating-point 3.4 4.4

Coherent Side-lobe Cancellation Floating-point 2.3 4.5

performance and energy efficiency provided by smaller device sizes and custom circuits

are compounded with energy-delay product. Nevertheless, when normalized to the same

technology, Imagine still is less than half the energy-delay of the most energy-efficient

DSPs on 16b operations. However, on floating-point, it is slightly worse than the SB-1250.

Several factors in the Imagine implementation lead to higher energy-delay products and

energy efficiency than possible with a more optimal implementation of the Imagine archi-

tecture. First, as described in Section 5.1, if at 1.5V Imagine operated at the worst-case

operating conditions predicted by static timing analysis of 188 MHz rather than the mea-

sured frequency of 132 MHz, it would see a 1.42x improvement in performance, without

affecting energy efficiency. This would translate directly to a reduction in energy-delay

product. Furthermore, by using more aggressive design methodologies and low-power

circuit techniques, Imagine could easily operate at much higher frequencies, and could

therefore provide additional reductions in its energy-delay product.

5.4 Sustained Application Performance

In addition to the peak numbers presented above for performance and power dissipation,

Imagine is able to sustain a large percentage of its peak performance on most media ap-

plications. Using a PCI board containing an Imagine processor running at 144 MHz and

1.5 Volts2, a PowerPC host processor running at 150 MHz, and a 66 MHz bus between

the host processor and Imagine, Imagine sustained the application performance and power

dissipation shown in Table 5.3. Imagine is able to sustain between 40% and 60% of peak

2This frequency is achievable at 1.5 Volts using the software workaround to the worst critical paths.

5.5. SUMMARY 81

performance on these applications.

5.5 Summary

A prototype Imagine processor has been shown to provide a peak performance of 11.5

GFLOPS at its maximum frequency and to dissipate 423 pJ per floating-point operation

at its most energy-efficient operating condition, more than twice as efficient as other pro-

grammable floating-point processors when normalized to the same technology. However,

there is still a large gap in performance, area efficiency, and energy-efficiency of stream

processors when compared to special-purpose processors, typically less than 10 pJ per op-

eration in a 0.13 µm technology. Stream processors have the potential to further close this

gap by utilizing more aggressive custom design methodologies and utilizing low-power

circuit techniques and energy-efficient ALU designs for 16-bit operations. In the next sec-

tion, we extend stream processors to custom design methodologies and stream processors

tailored for low-power embedded systems, demonstrating the potential for highly area- and

energy-efficient stream processors.

Chapter 6

Stream Processor Scalability: VLSI

Costs

The previous chapters in this thesis describe the VLSI implementation and evaluation of

the Imagine stream processor, and demonstrated its capability of efficiently supporting 48

ALUs in a 0.15 µm standard cell technology. In the following chapters, we extend this work

by exploring the capability of scaling stream processors to many more ALUs per chip in

future technologies and by exploring efficiency improvements with more aggressive design

methodologies.

With CMOS technology scaling and improved design methodologies, increasing num-

bers of ALUs can fit onto one chip. On the Imagine stream processor, a multiplier support-

ing single-precision floating-point, 32-bit integer, and dual 16-bit integer multiplies has an

area of 0.486 mm2 (1224K grids) and an average energy per multiply of 185 pJ, includ-

ing internal flip-flop power in pipeline registers. In comparison, custom implementations

of similar multipliers scaled to the same technology would have an area of less than 0.26

mm2 (655K grids) and energy of less than 50 pJ per multiply [Huang and Ercegovac, 2002;

Nagamatsu et al., 1990]. By only supporting 16-bit data-types, this custom multiplier area

and energy could be further reduced to less than 15pJ [Goldovsky et al., 2000]. Other com-

ponents, such as register files, scale similarly to custom methodologies. This demonstrates

the potential for large area and energy savings by employing custom design methodologies,

rather than standard cells, and by tailoring datapaths to smaller widths if that is all that is

82

83

required by the application. Furthermore, available on-chip arithmetic bandwidth increases

by 70% each year [Dally and Poulton, 1998]. In a 45 nanometer technology, expected to

be available by the end of the decade [SIA, 2001], the Imagine multiplier would scale to

0.044 mm2. In this technology, over two thousand of these multipliers could fit on a single

1 cm2 chip and could be easily pipelined to operate at over 1 GHz. At this speed, these

multipliers could provide 2 Teraops per second of arithmetic bandwidth.

Although technology scaling and custom design methodologies provide the potential

for thousands of ALUs per processor in the future technologies, conventional proces-

sor architectures do not scale effectively. Agarwal et al. studied the scaling of general-

purpose microprocessors and showed that the performance of conventional superscalar mi-

croprocessors will be limited by wire delay and large global structures in future technolo-

gies [Agarwal et al., 2000]. As a result, these microprocessors, which historically have

been scaling at 50-60% annually, will be limited to 12.5% annual performance improve-

ments when scaling from a 250 nanometer to 35 nanometer technology.

Furthermore, Rixner et al. studied the VLSI efficiencies of the register organizations in

a variety of processors [Rixner et al., 2000b]. A conventional processor with a inefficient

single unified register file, for example, would have a support structure that would dwarf

the area and power of the ALUs themselves. Stream processors, on the other hand, are area-

and energy-efficient, primarily due to their partitioned register file structure, as described

in Section 2.4.4.

In the remainder of this chapter, the feasibility of scaling stream processors to thousands

of ALUs is explored. We develop a cost model that estimates the area, delay, and energy of

a stream processor as a function of C the number of clusters and N the number of ALUs per

cluster. We use these models to evaluate intercluster scaling (increasing C) and intracluster

scaling (increasing N). Our analysis shows that scaling to hundreds of clusters with tens

of ALUs per cluster incurs only modest penalties for energy and area. For example, a 640-

ALU C = 128 N = 5 stream processor requires only 2% more area per ALU and only 7%

more energy per ALU operation than a 40-ALU C = 8 N = 5 stream processor.

84 CHAPTER 6. STREAM PROCESSOR SCALABILITY: VLSI COSTS

Table 6.1: Building Block Areas, Energies, and Delays

Param Description Value
ASRAM Area of 1 bit of SRAM used for SRF or Microcontroller

(grids)
16.1

ASB Area per SB width (grids) 2200
wALU Datapath width of an ALU (tracks) 880
wLRF Datapath width of LRFs required per ALU (tracks) 440
wSP Scratchpad datapath width (tracks) 710
h Cluster datapath height (tracks) 1400
v0 Wire propagation velocity in tracks per FO4 1400
tcyc FO4s per clock 45
tmux Delay of 2:1 mux in FO4s 2
Ew Normalized wire propagation energy per track 1

EALU Energy of ALU operation (normalized to Ew) 2.0 × 106

ESRAM SRAM access energy per bit (normalized to Ew) 8.7
ESB SB access energy per bit (normalized to Ew) 1900
ELRF LRF access energy (normalized to Ew) 8.9 × 105

ESP SP access energy (normalized to Ew) 1.6 × 106

T Memory latency (cycles) 55
b Data width of the architecture 32

6.1 VLSI Cost Models

The area, delay, and energy of a stream processor can be modeled by constructing a pro-

cessor from a small set of basic building blocks: four types of on-chip memory (SRAMs,

SPs, LRFs, and streambuffers), ALUs, and switches (wires). The SRAM area and energy

is taken from a large single-ported SRAM macro whereas the SP memory is taken from

a dual-ported memory. The LRFs and streambuffers were implemented with standard-cell

latches and flip flops. The ALUs were implemented with standard-cell logic functions.

The area, delay, and energy of these basic building blocks, measured from the Imagine

processor, are presented in Table 6.1. Area and energy measurements are normalized to

process-independent values. For example, area values are normalized to units of minimum

wire grids (0.40 square microns in the 0.18 micron technology used for Imagine). Energy

values are normalized to Ew, the propagation energy for a minimum-width wire per wire

6.1. VLSI COST MODELS 85

Table 6.2: Scaling Coefficients

Param Description Value
GSRF Width of SRF bank per N (words) 0.5
GSB Average number of SB accesses per ALU operation in typical kernels 0.2

GCOMM COMM units required per N 0.2
GSP SP units required per N 0.2
I0 Initial width of VLIW instructions (bits) 196
IN Additional VLIW instruction width per function unit 40
LO Required number of non-cluster SBs 6
LC Initial number of cluster SBs 6
LN Additional SBs required per N 0.2
rm SRF capacity needed per ALU for each cycle of memory latency

(words)
20

ruc Number of VLIW instructions required in microcode storage 2048

C Arithmetic clusters —
N Number of ALUs per cluster —

track of length (0.093 fJ per wire track in a 0.18 micron technology1). Measured delays

for on-chip wire propagation and key gates which will be used to construct large switches

are presented in fan-out-of-4 inverter delays (FO4s), a process-independent measure of

device speed. As technology scales, wire propagation velocity v0 stays relatively constant

with optimal repeatering [Ho et al., 2001]. A clock cycle of 45 FO4s, measured from

the Imagine stream processor, was used. Typical microprocessors designed with custom

methodologies have clock cycles closer to 20 FO4s [Agarwal et al., 2000]. Adapting the

cost analysis to results for custom processors will be addressed in Section 6.3.

A stream processor can be constructed from the building blocks in Table 6.1. However,

appropriate sizes and bandwidths must be chosen for structures such as the local register

files, stream register file, microcontroller, and others. The values shown in Table 6.2 were

used to govern how such structures should scale. These values were empirically determined

from the inner loop characteristics of a variety of key media processing kernels, shown in

1Calculated from an assumed wire capacitance of 0.26 fF per micron including repeater capacitance [Ho
et al., 2001] with a 25% 1-to-0 transition probability.

86 CHAPTER 6. STREAM PROCESSOR SCALABILITY: VLSI COSTS

Table 6.3: Kernel Inner Loop Characteristics

Kernel ALU SRF Intercluster SP
Ops Accesses Comms Accesses

Blocksad 59 28 (0.47) 10 (0.17) 4 (0.07)
Convolve 133 14 (0.11) 5 (0.04) 2 (0.02)

Update 61 4 (0.07) 16 (0.26) 32 (0.52)
FFT 145 64 (0.44) 40 (0.28) 72 (0.50)

DCT 150 16 (0.11) 7 (0.05) 32 (0.21)

Table 6.3 with the number of accesses per ALU operation shown in parentheses. Based on

these inner loop characteristics, reasonable values for GSRF , GSB , GSP , and GCOMM were

used to ensure that average application performance was not limited from microarchitec-

tural assumptions. Also included in Table 6.2 are C and N , variables that will be varied

throughout the chapter as the number of ALUs are scaled.

6.1.1 Stream Processor Cost Models

The total area and energy of a stream processor is subdivided into the SRF, the microcon-

troller, the C SIMD arithmetic clusters, and the intercluster switch. Other components such

as the stream controller and memory system are not significantly scaled with the number

of ALUs and contribute a small constant factor to total area, so are not considered in this

study. Analytical cost models for the SRF, microcontroller, clusters, and switches are pre-

sented in Table 6.4 [Khailany et al., 2003]. The first section contains dependent variables

used for clarity, followed by formulae for area, delay, and energy. These models have been

adapted from formulae presented by Rixner et al. on the Stream/SIMD/DRF register orga-

nization [Rixner et al., 2000b]. However, Rixner et al. only considered the register files

and the switches between register files and fixed C at 8 in their analysis. In this work,

we extend the models to include the microcontroller, intercluster switches, and scratchpad

units, and treat C as an independent variable.

A grid floorplan of arithmetic clusters shown in Figure 6.1 is assumed. The SRF is

partitioned into C banks, where each bank corresponds to an element from a stream that

6.1. VLSI COST MODELS 87

ClusterSRFClusterSRF

ClusterSRFClusterSRF

ClusterSRFClusterSRF

Micro-Controller

C1/2NCOMMb

C
1

/2
N

C
O

M
M
b

Figure 6.1: Scalable Grid Floorplan

a cluster will read during SRF reads and writes. The only communication between the

clusters or SRF banks is in the memory system ports to the SRF (not shown) and the

intercluster switch, with buses and cross-point switches represented as lines and dots in

Figure 6.1.

Stream Register File

The area of the SRF, ASRF , contains two components: the stream storage and the stream-

buffers (SBs). The SRF is used to stage streams passed between kernels. A SB automati-

cally prefetches sequential data for its associated stream out of the stream storage. All SBs

share a single port into the stream storage, allowing that single port to act as many logi-

cal ports. The stream storage is a large single-ported on-chip SRAM, organized as rmTN

88 CHAPTER 6. STREAM PROCESSOR SCALABILITY: VLSI COSTS

blocks of C banks, for a total capacity of rmTNC words. This capacity is necessary to

cover external memory latency. In a fixed technology, since the area and access energy of

the stream storage grow linearly with the capacity, both the area and energy grow linearly

with the number of ALUs in a stream processor.

Each SB contains storage for two blocks of the SRF to act as a double-buffer for cov-

ering the latency of block reads and writes from the stream storage. Each SRF bank has

a block width of GSRF Nb, requiring 2GSRF Nb bits of storage per SB. A total of NSB

streambuffers are required for a given stream processor configuration. As shown in Ta-

ble 6.4, three factors determine the total number of SBs. LO SBs are required for memory,

host, and microcontroller transfers. LC cluster SBs are required to provide an ample num-

ber of input and output streams for typical kernels. Finally, as N increases, more bandwidth

is often required between some of the SBs and the ALUs. This is accounted for with a third

term, LNN . Input or output streams with multi-word records that require more bandwidth

must be split into multiple streams and utilize these additional SBs to keep from becoming

a performance bottleneck2. Asymptotically, the area of the SBs grows with N2, but for

N < 64, the linear term accounts for the majority of the area. The energy dissipated in the

SBs is related to the number of SB accesses per ALU operations, GSB . Half of the accesses

are assumed to be reads and require a traversal of the intracluster switch.

Microcontroller

The microcontroller, listed next in Table 6.4, provides storage for the kernels’ VLIW in-

structions, and sequences and issues these instructions during kernel execution. The mi-

crocode storage is a large single-ported memory. The microcontroller area is comprised of

the microcode storage area and area for control wire distribution between the microcon-

troller and the clusters. The microcode storage requires ruc VLIW instructions for kernel

storage in typical applications. Although as is shown in Section 7.3, increasing N results in

higher inner-loop performance, the number of instructions in a kernel stays relatively con-

stant with N since more loop unrolling is often used with higher N to provide more ILP and

2Splitting multi-word-record streams into multiple streams was done by hand to optimize performance
for the experiments in Section 7.3.

6.1. VLSI COST MODELS 89

Table 6.4: Scaling Cost Models

Element Equation
COMMs per NCOMM = GCOMMN
Cluster
SPs per cluster NSP = GSP N
FUs per cluster NFU = N + NSP + NCOMM

Cluster SBs NCLSB = LC + LNN
Total SBs NSB = LO + NCLSB

External Pe = NCLSB

Cluster Ports

Total Area ATOT = CASRF + AUC + CACLST + ACOMM

SRF Bank Area ASRF = rmTNASRAMb + (2GSRF N)NSBASBb
Microcontroller AUC = ruc(I0 + INNFU)ASRAM+
Area (INNFU)

√
ASRF + ACLST + ACOMM

Cluster Area ACLST = NFUwLRF h + NwALUh + NSP wSP h + ASW

Intracluster ASW = NFU(
√

NFUb)(2
√

NFUb + h + 2wALU + 2wLRF)+
Switch Area

√
NFU(3

√
NFUb + h + wALU + wLRF)Peb

Intercluster ACOMM = CNCOMMb
√

C(NCOMMb
√

C + 2
√

ACLST + ASRF)
Switch Area

Intracluster tintra =
√

NFU(h + 2
√

NFUb + wALU + wLRF +
√

NFUb)/v0+
Wire Delay tmux(log2

√
NFU +

√
NFU)

Intercluster tinter = tintra + 2
√

CACLST + CASRF + ACOMM/v0+

Wire Delay tmux(log2

√
CNCOMM +

√
C)

Total Energy ETOT = CESRF + EUC + CECLST + GCOMMNCbEinter

SRF Bank ESRF = rmTNbESRAMGSB/GSRF + (GSBNb)(ESB + Eintra/2)
Energy
Microcontroller EUC = ruc(I0 + INNFU)ESRAM+

Energy (INNFU)Ew(
√

C
√

CASRF + CACLST + ACOMM)
Cluster Energy ECLST = NFUELRF + NEALU + GSP NESP + NFUbEintra

Intracluster Eintra = Ew

√
NFU((h + 2

√
NFUb) + 2(wALU + wLRF +

√
NFUb))

Switch Energy
Intercluster Einter = Ew(2

√
C)(

√
ACLST + ASRF + NCOMMb

√
C)

Switch Energy

because loop prologues and epilogues in kernels are critical-path limited, not arithmetic-

bandwidth limited. The width of each VLIW instruction is given by I0 + INNFU bits.

90 CHAPTER 6. STREAM PROCESSOR SCALABILITY: VLSI COSTS

I0 bits are required for microcontroller instruction sequencing, conditional stream instruc-

tions, immediate data, and for interfacing with the SRF. IN bits per ALU per cluster are

required to encode ALU operations, to control LRF read and writes, and to control the

intracluster switch. Area and energy for distributing the instructions from the microcode

storage to the grid of clusters is accounted for in the second term in both formulae in Ta-

ble 6.4. In addition, repeaters and pipeline registers are required within the cluster grid for

more instruction distribution, but this area is accounted for in the area measured for the

components in Table 6.2.

Arithmetic Clusters

Each cluster is comprised of area devoted to the LRFs, ALUs, a scratchpad, and the intra-

cluster switch. This switch is a full crossbar that connects the outputs of the FUs and the

streambuffers to the inputs of the LRFs and the streambuffers. In this study, the ALUs are

assumed to be arranged in a square grid as shown in Figure 6.2, where each row contains

a bus for each ALU output in that row and each column contains a bus for each LRF in-

put in that column. The row-column intersections contain program-controlled cross-point

switches that connect rows to columns. This grid structure minimizes the area and wire

delay of the intracluster switch when the number of ALUs per cluster is large3. The area

devoted to the intracluster switch includes wire tracks for the wires and repeaters in the

rows and columns of the grids and the cross-points between the rows and columns, as

shown in Figure 6.2. Additional area for the external ports from the cluster streambuffers is

included as well. Area from the control wires for the crosspoints is ignored for simplicity

since it is small when compared to the area for the data wires.

Table 6.4 also includes equations for the energy dissipated in an arithmetic cluster4 and

the intracluster wire delay. For wire delay, the first term in Eintra models the worst-case

wire propagation delay incurred in the intracluster switch (width + height of a cluster)/v0

and a term for the logic delay through the cross points. The logic delay includes a
√

NFU :1

mux for each row-column to select which ALU to read from on that row, followed by

3For smaller numbers of ALUs per cluster, a linear floorplan has comparable area and delay, but for
simplicity, only grid floorplans are considered in this study.

4ECLST from Table 6.4 includess a correction from [Khailany et al., 2003] for the term modeling energy
dissipated in the scratchpad.

6.1. VLSI COST MODELS 91

ALU

RF
RF

ALU

RF
RF

wALU

h

wLRF

Peb

NFU
1/2b

2NFU
1/2bPeb

Figure 6.2: Intracluster Switch Floorplan

an additional 2:1 mux delay at each additional row in the column to choose between the

current row or the adjacent rows. As N increases, the VLSI costs of the arithmetic clusters

are dominated by the N
3/2
FU term in the intracluster switch area.

Intercluster Switch

The final component of the stream processor area is the intercluster switch, shown in Fig-

ure 6.1. Each cluster has NCOMM buses it broadcasts to in the rows and NCOMM buses

it reads from in the columns. Since each cluster can only access stream elements from

its SRF bank, the intercluster switch allows kernels that aren’t completely data parallel to

communicate data with each-other without going back to memory. It is also used by condi-

tional streams to route data to and from the SRF [Kapasi et al., 2000]. A two-dimensional

grid structure similar to the intracluster switch is also assumed for the floorplan of the

arithmetic clusters. This layout minimizes the area, delay, and energy overhead of the in-

tercluster switch when the number of arithmetic clusters becomes large. Each cluster has

NCOMM buses it writes to in each row and reads from in each column, so there is a bus

width of NCOMMb
√

C between each arithmetic cluster. As shown in ECOMM , on average,

92 CHAPTER 6. STREAM PROCESSOR SCALABILITY: VLSI COSTS

Intercluster
Switch

Microcontroller

Clusters

SRF

0.0

1.0

2.0

0 16 32 48 64 80 96 112 128

ALUs per cluster

A
re

a
p

er
 A

L
U

 (
n

o
rm

al
iz

ed
 t

o
 5

 A
L

U
s

p
er

 c
lu

st
er

)

Figure 6.3: Area of Intracluster Scaling

GCOMMNC intercluster communications will occur for every NC ALU operations, where

each intercluster communication switches the capacitance for a bus in its row and in its

destination’s column.

6.2 VLSI Cost Evaluation

In this section, the area and energy costs of increasing the number of ALUs in a stream

processor will be evaluated using the models presented above. The two scaling methods

that will be explored are intracluster scaling, increasing the number of ALUs per arithmetic

cluster, and intercluster scaling, increasing the total number of arithmetic clusters.

6.2.1 Intracluster Scaling

As N increases, the size and bandwidth of the SRF, clusters, micro-controller, and inter-

cluster switch are all scaled according to the formulae presented in section 6.1. Figure 6.3

shows the area per ALU for intracluster scaling with C fixed at 8. Average energy dissi-

pated per ALU operation is shown in Figure 6.4. Both charts are normalized to the values

6.2. VLSI COST EVALUATION 93

Intercluster
Switch

Microcontroller

Clusters

SRF

0.0

1.0

2.0

3.0

0 16 32 48 64 80 96 112 128

ALUs per cluster

E
n

er
g

y
d

is
si

p
at

ed
 p

er
 A

L
U

 o
p

er
at

io
n

(n
o

rm
al

iz
ed

 t
o

 5
 A

L
U

s
p

er
 c

lu
st

er
)

Figure 6.4: Energy of Intracluster Scaling

for N = 5, the most area- and energy-efficient configuration. For small N , the overhead

from the I0 bits of microcode storage and the COMM and SP units contributes to larger

area per ALU. The area per ALU then stays within 16% of the minimum up to 16 ALUs

per cluster, at which point the intracluster and intercluster switch start to reduce the area

efficiency. The energy efficiency follows a similar trend, although by 16 ALUs per cluster

the energy per ALU op has grown to 1.22x of the minimum, due to the intracluster switch

and microcontroller instruction distribution to the large arithmetic clusters.

6.2.2 Intercluster Scaling

Compared to intracluster scaling, intercluster scaling incurs more modest VLSI costs be-

cause the intercluster switch grows more slowly than the intracluster switch as the number

of ALUs per processor are increased. Figure 6.5 shows the area per ALU as C is increased

from 8 to 256, assuming a constant cluster size of N = 5. The area per ALU is normal-

ized to the C = 8 N = 5 processor for comparison to stream processors feasible in today’s

technology. The C = 32 processor actually has 3% improved area per ALU over the C = 8

processor as the cost of the micro-code storage is amortized over more clusters. However

94 CHAPTER 6. STREAM PROCESSOR SCALABILITY: VLSI COSTS

Intercluster
Switch

Microcontroller

Clusters

SRF

0.0

1.0

2.0

8 16 32 64 128 256

Number of Clusters

A
re

a
p

er
 A

L
U

 (
n

o
rm

al
iz

ed
 t

o
 8

cl

u
st

er
s)

Figure 6.5: Area of Intercluster Scaling

at C = 128, the area per ALU is 2% worse than for C = 8, mostly due to area in the inter-

cluster switch. As shown in Figure 6.6, energy overhead grows slightly faster than area. A

C = 128 dissipates 7% more energy per ALU operation than for C = 8.

6.2.3 Combined Scaling

By combining intercluster and intracluster scaling, configurations with thousands of ALUs

are feasible, as shown in Figure 6.7. The area per ALU is graphed for 2, 5, and 16 ALUs per

cluster with the number of clusters shown on the x-axis. These results show that by scaling

to N = 5, then employing intercluster scaling provides the most area- and energy-efficient

configurations over the range of C from 8 to 128. This is because the additional cost of

supporting more than one port into the intercluster switch hurts area and energy efficiency

standpoint for N > 5. However, it is not prohibitively expensive: the additional cost of

scaling from N = 5 to N = 10 is only 5-11% and 8-13% worse for area and energy per

ALU depending on C.

6.2. VLSI COST EVALUATION 95

Intercluster
SwitchMicrocontroller

Clusters

SRF

0.0

1.0

2.0

8 16 32 64 128 256

Number of Clusters

E
n

er
g

y
d

is
si

p
at

ed
 p

er
 A

L
U

 o
p

er
at

io
n

(n
o

rm
al

iz
ed

 t
o

 8
 c

lu
st

er
s)

Figure 6.6: Energy of Intercluster Scaling

0.0

1.0

2.0

0 256 512 768 1024

Total ALUs

A
re

a
p

er
 A

L
U

 (
n

o
rm

al
iz

ed
 t

o
 3

2
cl

u
st

er
s,

 5
 A

L
U

s
p

er
 c

lu
st

er
)

N=5

N=16
N=2

Figure 6.7: Area of Combined Scaling

96 CHAPTER 6. STREAM PROCESSOR SCALABILITY: VLSI COSTS

As technology enables more ALUs to fit on a single chip, architectures must efficiently

utilize bandwidth in order to achieve large performance gains. Intracluster scaling was

shown to be effective from a cost standpoint up to 10 ALUs per cluster, although was

most area- and energy-efficient at 5 ALUs per cluster. Intercluster scaling was shown to be

effective up to 128 clusters with a slight decrease in area and energy efficiency, although

was most area-efficient at 32 clusters. Together, these two scaling techniques enable area-

and energy-efficient stream processors with thousands of ALUs.

6.3 Custom and Low-Power Stream Processors

Although the preceding analysis used technology parameters typical to a less-aggressive

standard-cell design methodology, the results would be similar for a full-custom design.

Full-custom processors have clock cycles of less than 20 FO4s [Agarwal et al., 2000], but

also have smaller functional units and register files, leading to higher absolute performance

and lower absolute area and energy.

In this section, we demonstrate the effect of design methodologies and operand types

on area and energy efficiency by considering three stream processor types, each with dif-

ferent area, energy, and ALU types, but the same underlying stream architecture. The first

type, ASIC, assumes a standard-cell design methodology, and uses measurements of area,

delay, and energy of key components taken directly from the Imagine stream processor.

The second type, CUST, is functionally equivalent to ASIC, but assumes custom design

methodologies for key blocks, leading to improved area and energy efficiency and clock

frequency. Finally, the third type, LP, is a stream processor targeted for low-power em-

bedded systems that only requires lower-precision fixed-point data-types. It also assumes

full-custom circuits similar to CUST. However, rather than supporting both 32-bit mixed

floating-point/integer ALUs and dual 16-bit operations, LP only supports dual 16-bit fixed-

point fused multiply-add units similar to the DOTP instructions in the Texas Instruments

C64x instruction set [Golston, 2000].

The analytic models presented in the previous section can be used to study the area and

energy efficiency of the ASIC, CUST, and LP configurations. Note that this only models

the area and power in the arithmetic clusters, SRF, and microcontroller. The analysis for

6.3. CUSTOM AND LOW-POWER STREAM PROCESSORS 97

Table 6.5: Building block Areas, Energies, and Delays for ASIC, CUST, and LP

Param Description ASIC CUST LP

wALU Datapath width of an 876.9 1447 (Aggr) 515
ALU (tracks) 1918 (Cons)

wLRF Datapath width of LRFs re-
quired per ALU (tracks)

437.0 92.1 92.1

wSP Scratchpad datapath width
(tracks)

708.9 1551 1551

ASB Area per SB width (grids) 2161.8 230.3 230.3
h Cluster datapath height

(tracks)
1400 640 640

EALU Average energy of ALU 2.0 × 106 6.8 × 105 (Aggr) 6.3 × 105

operation (normalized) 2.0 × 106 (Cons)
ELRF LRF access energy (normal-

ized)
8.9 × 105 7.9 × 104 7.9 × 104

ESB SB access energy per bit (nor-
malized)

1936 155 155

tcyc FO4s per clock 45 20(Aggr) 45
45(Cons)

T Memory latency (cycles) 55 80(Aggr) 55
55(Cons)

these units suggests improvements applicable to the full stream processor design through

custom circuit methodologies, however, the analysis is simplified by only studying these

units, which comprise over 70% of the active chip area and power dissipation.

In order to model area and energy costs across the various configurations, it suffices

to vary the area and energy of the building block parameters across the configurations and

then use the analytical models presented it Section 6.1. The parameters that were varied are

presented in Table 6.5, again normalized to technology-independent units. For the ASIC

configuration, the above values are those presented in Table 6.1 taken from the Imagine

stream processor. For the CUST configuration, there are two configurations considered.

The aggressive (Aggr) numbers assume custom cells for ALUs and register files (LRFs

and SBs) whereas the conservative (Cons) only assumes custom cells for register files with

98 CHAPTER 6. STREAM PROCESSOR SCALABILITY: VLSI COSTS

Table 6.6: ASIC, CUST, and LP performance efficiencies

ASIC CUST CONS CUST AGGR LP
Area mm2 39.7 32.4 28.4 18.2

(1.2x) (1.4x) (2.2x)
Frequency MHz 340 340 770 340
Peak Perf GFLOPS 13.7 13.7 30.8 N/A

16b GOPS 27.4 27.4 61.6 54.7
Power W 2.8 5.1 3.2 1.2
Energy FP pJ/Op @1.2 V 208 161 105 N/A
Efficiency 16b pJ/Op @1.2 V 104 81 52 21.5

FP pJ/Op @0.8 V 93 72 47 N/A
16b pJ/Op @0.8 V 46 36 23 10

(1.3x) (2.0x) (4.8x)
Energy pJ/Op/GFLOPS 15.2 11.8 3.4 N/A
Delay pJ/Op/16b GOPS 3.8 3.0 0.85 0.39
Product (1.2 V) (1.3x) (4.5x) (9.7x)

the ASIC ALUs. Register file area and energies were taken from custom register files im-

plemented in the same technology as Imagine. ALU data was taken from published 32b

multiplier designs [Huang and Ercegovac, 2002; Nagamatsu et al., 1990]. Note that the

width of various units also changed since a smaller datapath height is assumed with the

custom configuration. Although memories and register files are well documented, it is dif-

ficult to predict exact area and energy of custom ALU designs due to lack of published data,

so carrying out an analysis with both the CUST AGGR and CUST CONS configurations

demonstrates the sensitivity of area and energy to individual ALU designs.

For the LP processor, custom cells were also assumed for both custom ALUs and reg-

ister files. A dual 16b fused-multiply-adder is used with area and energy taken from pub-

lished 16b multipliers [Goldovsky et al., 2000]. Finally, the CUST AGGR configuration is

assumed to have a clock cycle of 20 FO4 inverter delays per cycle, more typical of custom

processors [Agarwal et al., 2000]. This difference in clock cycle time also affects mem-

ory latency, although not exactly by 2.5x since much of the memory latency is incurred

through cycles in the on-chip memory controller. The LP configuration is less aggressively

pipelined than CUST AGGR at 45 FO4 delays per cycle in order to reduce power overhead

6.3. CUSTOM AND LOW-POWER STREAM PROCESSORS 99

in pipeline registers.

Using the models presented in Section 6.1, estimates for area and energy per operation

in the clusters, SRF, and microcontroller were generated. These results are shown in Ta-

ble 6.6, assuming a 1.2 Volt, 0.13 µm technology. In this technology, the minimum wire

pitch is 0.46 µm and a FO4 inverter has a delay of 65 ps. The CUST CONS configuration

is 80% the size of ASIC, due to the smaller LRFs and SBs. Further area reduction occurs

when moving to custom ALUs in the CUST AGGR configuration. The LP configuration

has an additional 36% improvement in area over CUST AGGR because wALU is signif-

icantly smaller, since the 16-bit multiply-add unit only is required to sum half as many

partial products as the multiplier in CUST AGGR. Supporting multiply-add instructions

in the LP configuration also enables twice the peak 16b performance when compared to

CUST CONS.

The energy efficiency savings from moving to custom design methodologies can be

seen when comparing the power of ASIC and CUST AGGR. Although it has 14% higher

power dissipation, CUST AGGR is operating at more than twice the frequency, meaning

that significantly less energy is dissipated per clock cycle. Furthermore, the LP configura-

tion is more than twice as energy-efficient as CUST because each multiply-add operation

consumes less energy but is doing twice the GOPS. Additional energy-efficiency improve-

ments can be achieved in all configurations by operating at a lower voltage. Note that the

energy-efficiencies in Table 6.6 can not be compared directly to other processors, since

they do not take into account other sources of power dissipation in a processor, such as

the clock tree. However, the 4.8x improvement in energy-efficiency suggests that similar

energy savings could be achieved in the clock tree and other parts of the chip by employing

custom design methodologies and using other custom circuit techniques.

These results for custom and low power processors can be further extended by combin-

ing them with the scalability models from Section 6.1 and the technology scaling parame-

ters shown in Table 6.7. The parameters in the top part of the table are based on projections

for future technologies [Ho et al., 2001; SIA, 2001]. The wire capacitance printed assumes

no miller capacitance from adjacent wires, the assumption used for calculating average

case power dissipation. Architectural scaling assumptions are shown in the bottom part of

the table. Since intercluster scaling enables scaling with near-constant area-efficiency, each

100 CHAPTER 6. STREAM PROCESSOR SCALABILITY: VLSI COSTS

Table 6.7: Technology Scaling Parameters

Ldrawn 0.18µm 0.13µm 0.09µm 0.65µm 0.45µm

Volts 1.5 1.2 1.0 0.9 0.9
FO4 Delay (ps) 90 65 45 33 23

Wire cap (fF/µm) 0.220 0.212 0.207 0.191 0.178

ALU Clusters 8 16 32 64 128
ALUs 40 80 160 320 640

ASIC, LP, CUST CONS 0.25 0.34 0.49 0.68 0.99
Frequency (GHz)

CUST AGGR 0.56 0.77 1.1 1.5 2.2
Frequency (GHz)

ASIC, CUST CONS 9.9 27.4 79.0 219 632
Peak Performance (GFLOPS)

CUST AGGR 22.2 61.6 178 492 1422
Peak Performance (GFLOPS)

LP Peak Perf (16b GOPS) 39.5 109 316 875 2528

technology generation allows for a doubling in the number of arithmetic clusters. ALUs

per cluster in Table 6.7 are held constant at 5, the most area- and energy-efficient organiza-

tion. The increase in ALU count with each technology generation can be coupled with an

increase in clock frequency due to decreasing gate delay, allowing for a total improvement

in peak performance of 64x across 5 generations of technology scaling.

The results for area and power scaling across technology generations are shown in Fig-

ure 6.8. Note that the area stays relatively constant for all configurations. With each gen-

eration, approximately twice the number of transistors can fit into the same die area. Since

area-efficiency stays near constant with intercluster scaling, area also stays near constant.

In contrast, power dissipation increases gradually with technology. Although energy effi-

ciency stays near constant with intercluster scaling in the same technology, voltage is not

projected to scale aggressively enough to counteract the additional switched capacitance

with a larger number of clusters.

Energy efficiency scaling is shown in Figure 6.9. For both floating-point and 16b op-

erations, energy efficiency shows dramatic improvements. Since energy-efficiency stays

6.3. CUSTOM AND LOW-POWER STREAM PROCESSORS 101

20

30

40

50

60

70

80

180 130 90 65 45

Technology (nanometers)

A
re

a
(s

q
u

ar
e

m
il

li
m

et
er

s)

ASIC

CUST_CONS

CUST_AGGR

LP

0

5

10

15

180 130 90 65 45

Technology (nanometers)

P
o

w
er

 D
is

si
p

at
io

n
 (

W
)

ASIC

CUST_CONS

CUST_AGGR

LP

Figure 6.8: Effect of Technology Scaling on Die Area and Power Dissipation

102 CHAPTER 6. STREAM PROCESSOR SCALABILITY: VLSI COSTS

0

40

80

120

160

200

240

180 130 90 65 45

Technology (nanometers)

p
J

p
er

 1
6b

 o
p

er
at

io
n ASIC

CUST_CONS

CUST_AGGR

LP

0

50

100

150

200

250

300

350

400

450

500

180 130 90 65 45

Technology (nanometers)

p
J

p
er

 f
lo

at
in

g
-p

o
in

t
o

p
er

at
io

n

ASIC

CUST_CONS

CUST_AGGR

Figure 6.9: Effect of Technology Scaling on Energy Efficiency

6.3. CUSTOM AND LOW-POWER STREAM PROCESSORS 103

near constant with the number of clusters, this improvement is due solely to technology

advances. And since energy efficiency is independent of frequency, it is improving by CV 2

scaling, allowing for an improvement of 29x across five future technology generations.

In summary, by utilizing custom methodologies and fixed-point arithmetic units com-

monly found in DSPs, area and energy efficiency of stream processors can be greatly im-

proved. SRF, microcontroller, and cluster area was shown to be reduced by 30% when

using custom methodologies, while energy efficiency was improved by 2.0x. Energy is

further reduced with dual-16b multiply-add units for an average energy savings of 4.8x

per operation. These area and energy efficiency improvements suggest that total stream

processor efficiency would scale accordingly and would therefore be an order of magni-

tude better in raw performance, performance per unit area, and energy per operation than

current programmable architectures.

Chapter 7

Stream Processor Scalability:

Performance

As presented in the previous chapter, the efficiency of the stream processor register or-

ganization enables scaling to thousands of ALUs providing Teraops per second of peak

performance with only a small degradation in area and power efficiency. However, peak

performance and VLSI efficiency alone does not prove that a stream processor can scale

effectively. Performance efficiency (performance per unit power or performance per unit

area) is achieved by combining VLSI efficiency with high sustained performance.

In this chapter, we evaluate how sustained application and kernel performance scales as

the number of ALUs per stream processor are increased with intracluster and intercluster

scaling. First, we explore how the technology trends of limited off-chip memory bandwidth

and increasing on-chip wire delay affect microarchitecture and performance. Then, we

demonstrate how a stream processor is able to effectively exploit both instruction-level and

data-level parallelism in key media processing kernels and applications to take advantage

of both intracluster and intercluster scaling.

104

7.1. RELATED SCALABILITY WORK 105

7.1 Related Scalability Work

Before presenting the scalability of stream processors, it is worth noting that stream pro-

cessors, like vector processors, are able to exploit both instruction-level and data-level par-

allelism. Therefore, previous work on the scalability of vector processors with media ap-

plications will have some similarities to the studies carried out in this chapter.

Although stream and vector processors share the ability to exploit both instruction-level

and data-level parallelism, they do so with different execution models. Vector microproces-

sors [Kozyrakis, 2002; Wawrzynek et al., 1996] directly execute vector instructions such

as vector adds or multiplies out of a vector register file. This differs from stream proces-

sors, which execute VLIW instructions from a kernel in a SIMD fashion out of a SRF and

contain LRFs to store intermediate results.

Related scalability work in vector processors consists of cost models and sustained

performance on media applications as the number of arithmetic units per processor are

increased. Several authors have analyzed the VLSI costs of components of vector micro-

processors as the number of function units per vector lane is increased [Asanovic, 1998;

Kozyrakis, 2002; Rixner et al., 2000b]. Kozyrakis also analyzed the natural vector lengths

in media benchmarks and the performance of vector microprocessors as the number of

FUs per vector lane are increased [Kozyrakis and Patterson, 2002]. These studies demon-

strate the scalability of vector processors on media applications to tens of arithmetic units

per processor using 8 vector lanes. However, to our knowledge, no previously published

studies explore VLSI costs or performance as vector microprocessors are scaled to greater

than 8 or 16 vector lanes. In the remainder of this chapter, similar scalability studies are

applied to the stream processor model, demonstrating the scalability of stream processors

to hundreds of arithmetic units per processor and leading to different tradeoffs between

instruction-level and data-level parallelism.

106 CHAPTER 7. STREAM PROCESSOR SCALABILITY: PERFORMANCE

7.2 Technology Trends

7.2.1 Memory Bandwidth

In order for a stream processor to effectively scale to hundreds of arithmetic units by the

end of the decade, there must be enough memory bandwidth available for media application

requirements. Fortunately, due to the advent of high-bandwidth memory systems and high

compute intensity in media appliations, hundreds of arithmetic units could be supported in

future technologies without media applications becoming memory limited.

While available on-chip arithmetic bandwidth is increasing at 70% annually, off-chip

pin bandwidth is only increasing by 25% each year [Dally and Poulton, 1998] if only

standard scaling techniques are used. As explained in Section 2.4, Imagine deals with

this bandwidth gap by mapping stream programs onto a three-tiered bandwidth hierarchy

and by efficiently exploiting locality. Producer-consumer locality is exploited by passing

streams between kernels through the second tier of the bandwidth hierarchy, the SRF. Ker-

nel locality is exploited by keeping all temporary data accesses during kernel execution in

the LRFs within the arithmetic clusters, the third tier of the hierarchy. Using these tech-

niques, Imagine is able to sustain high arithmetic performance with significantly lower

off-chip bandwidth. Imagine contains 40 fully-pipelined ALUs and at 232 MHz, provides

2.3 GB/s of external memory bandwidth, 19.2 GB/s of SRF bandwidth, and 326.4 GB/s of

LRF bandwidth. This bandwidth hierarchy on Imagine provides a ratio of ALU operations

to memory words referenced of 28.

Although Imagine can execute applications with compute intensities of greater than

28 without becoming memory-bandwidth limited, this threshold would increase for future

stream processors as off-chip bandwidth grows more slowly than arithmetic bandwidth.

Assuming the scaling factors for arithmetic and off-chip bandwidth above, this threshold

will grow at 36% annually, meaning if stream processors arithmetic performance increased

at 70% annually, in five years, applications with compute intensities of less than 130 would

be memory-bandwidth limited. Fortunately, with the advent of memory systems optimized

for bandwidth and the large and growing compute intensity of media applications, this

7.2. TECHNOLOGY TRENDS 107

problem can be mitigated. For example, a stream processor with a 16 GB/s memory sys-

tem, achievable with eight Rambus channels [Rambus, 2001], could support 400 1 GHz

arithmetic units without being memory-bandwidth limited on applications requiring greater

than 100 operations per memory reference. This suggests that the bandwidth hierarchy in

stream processors should be able to scale effectively to hundreds of ALUs and provide

large speedups without becoming memory bandwidth limited.

7.2.2 Wire Delay

Not only is memory bandwidth becoming even more of a scarce resource in modern VLSI

technology, but another issue facing modern microarchitecture is on-chip wire delay. As

technology has scaled, wire resistance per unit length has been increasing while gate delay

has been decreasing [Ho et al., 2001]. These trends are projected to continue in future

technologies. As a result, when scaling to hundreds and thousands of ALUs per processor,

large wire delays will be incurred across both the intercluster and intracluster switches

and therefore these delays must be explicitly handled by the microarchitecture. Using the

scaling models presented in Section 6.1, the wire delays through both the intracluster and

intercluster switches can be measured.

For intracluster scaling, the worst-case switch delays of intracluster and intercluster

communications are shown in Figure 7.1. As N increases, intercluster wire delay grows

considerably. This delay is dominated by the wire delay between the large clusters. The

intracluster delay grows at a lower rate, and includes significant components of both logic

and wire delay. A clock cycle of 45 FO4 delays is assumed, the same clock rate measured

on the Imagine processor, so it is visible from the graph when cycles of latency would need

to be added as N is increased.

Worst-case switch delays with intercluster scaling are shown in Figure 7.2. Intracluster

delay stays constant because the size of each cluster does not change. Increased intercluster

delay is incurred mostly from wire delay and not logic delay.

Although both scaling techniques lead to greater switch delays, the grid layout of both

the intracluster and intercluster switches can be fully pipelined, meaning that scaling in-

curs additional switch traversal latency, but does not affect overall processor clock rates.

108 CHAPTER 7. STREAM PROCESSOR SCALABILITY: PERFORMANCE

0.0

45.0

90.0

135.0

180.0

225.0

270.0

0 16 32 48 64 80 96 112 128

ALU's per cluster

D
el

ay
 (

F
O

4s
)

Intercluster
Delay

Intracluster
Delay

Figure 7.1: Worst-case Switch Delay with Intracluster Scaling

With the two-dimensional grid floorplan for the intercluster switches shown in Figure 6.1,

fully pipelined operation can be supported with the insertion of pipeline registers under the

wires (along with buffers and repeaters) and a few control wires, not shown in the figure.

Within each row, each cluster broadcasts its data across the row, for a total of NCOMMC

buses. If more than one cycle is required to account for wire delay within a row, then

pipeline registers must be inserted at this stage. Meanwhile, each destination cluster read

port broadcasts its associated source cluster across its column (not shown in the figure).

Again, if this traversal requires more than one cycle, pipeline registers must also be in-

serted for these control wires. Furthermore, additional pipeline registers may be required

at some cross points in order to make all switch delays equal to the worst-case pipeline

delay. The vertical control and horizontal data wires then meet at the cross points and the

appropriate row buses are muxed onto the vertical data buses. Similarly, pipeline registers

along vertical wires may also be required for various configurations. In this manner, a fully

pipelined crossbar between clusters is achievable. Similar pipelined operation can also be

7.2. TECHNOLOGY TRENDS 109

0.0

45.0

90.0

135.0

180.0

225.0

270.0

8 16 32 64 128 256

 Number of clusters

D
el

ay
 (

F
O

4s
)

Intercluster
Delay

Intracluster
Delay

Figure 7.2: Worst-case Switch Delay with Intercluster Scaling

implemented in the intracluster switch. For simplicity, it can be assumed that the area and

power of these pipeline registers are small when compared to the buffers and repeaters

required for the switches.

With pipelining, longer switch delays do not have an effect on clock rate, but these de-

lays do have a significant effect on microarchitecture. Additional delay in the intracluster

switch affects operation latency during kernel operation. On the Imagine processor, ap-

proximately one half of each execution unit’s last pipeline stage clock cycle was allocated

for traversing the intracluster switch. As shown in Figure 7.1, when N increases to greater

than 14 ALUs, the worst-case delay across the intracluster switch is greater than half of a

clock cycle. For N > 14, additional pipeline stages must be added to all ALU operations in

order to account for this wire delay in the intracluster switch. In Section 7.3, the effect this

operation latency has on performance will be presented. Note that in configurations with

multi-cycle worst-case switch traversals, ideally the VLIW kernel compiler could exploit

locality in the placement of operations onto the ALUs so that most communications would

110 CHAPTER 7. STREAM PROCESSOR SCALABILITY: PERFORMANCE

take place in a single clock cycle and only rarely will data have to be communicated all the

way across the cluster. However, this compiler optimization was not available at the time

of this study, so was not considered in the performance analysis.

Wire delay in intercluster communications also has an effect on microarchitecture. At

C = 128 in Figure 7.2, the worst case delay between clusters requires three clock cycles to

traverse the switch. As these multi-cycle worst-case intercluster switch traversals become

necessary, three types of instructions must be modified to account for this delay. First, all

COMM unit instructions must include additional latency. Second, latency must be also

added to many of the instructions used to implement conditional streams. For example, la-

tency must be added to the GEN CISTATE and GEN COSTATE instructions executed by

the JB since they require communicating 1-bit CC values between all C clusters. Finally,

the CHK ANY and CHK ALL instructions executed by the microcontroller require addi-

tional latency for broadcasting 1-bit CC’s from all C clusters to the microcontroller. These

changes can easily be handled without affecting instruction throughput by adding execu-

tion unit pipeline stages to the microarchitecture, a change easily supported by the VLIW

kernel scheduler. In addition to increased operation latency, additional pipeline stages must

be added to the instruction distribution (DECODE/DIST) stage in the kernel execution

pipeline shown in Figure 3.6. The performance impact for both increased operation latency

and pipeline depths will be presented in Section 7.3.

In summary, communication delay across switches must be accounted for as intracluster

and intercluster scaling are used. With a 45 FO4 delay clock cycle and using the analytical

models presented in Section 6.1, these delays are shown to be manageable with pipelined

switches and by managing this switch latency with the VLIW kernel compiler. For exam-

ple, when scaling to a C = 128N = 5 processor, only 3 cycles are required for traversing

the intercluster switch. In the following sections, we account for this wire delay when

measuring the performance of intracluster and intercluster scaling on a set of key media

processing kernels and applications.

7.3. PERFORMANCE EVALUATION 111

7.3 Performance Evaluation

In order to gain insight into the sustained performance on these kernels and applications us-

ing intracluster and intercluster scaling, sustained performance was evaluated on media pro-

cessing kernels and applications. Previously, typical ratios between arithmetic operations

and COMM, SP, and SRF accesses in kernel inner-loops were presented in Table 6.3. These

ratios were used to govern how to scale key stream processor components. As a result, sus-

tained performance on average is not limited by available throughput in the COMM or SP

units, nor by SRF bandwidth. However, other application characteristics such as available

instruction-level parallelism (ILP) and data-level parallelism (DLP) in kernel inner-loops,

stream lengths, and wire delay have an influence on sustained performance with intracluster

and intercluster scaling. In this section, these effects on performance are explored.

Performance was evaluated with six media processing kernels and six applications,

summarized in Table 7.1. Kernels and applications were written in KernelC and StreamC.

StreamC specifies how streams are passed between kernels. KernelC contains the mathe-

matical operations for the kernel codes. Each kernel and application was then re-compiled

for different architectures using the compilation and programming tools developed for the

Imagine stream processor. Kernel inner-loop performance was measured from static anal-

ysis of compiled kernels. Applications were simulated on a C++ cycle-accurate simulator,

holding the dataset size constant across all stream processor sizes.

The stream processor simulated assumes symmetric ALUs, where every function unit

can perform multiplies, adds, shifts, or logical operations. Clock rates and external band-

widths were set to values typical for a 45 nanometer technology [SIA, 2001]. In this tech-

nology, a 45 FO4 inverter delay clock period would have a 1GHz processor clock rate. In

addition, a memory system able to provide 16 GB/s of external memory bandwidth using

eight Rambus channels [Rambus, 2001] and a 1GHz host processor issuing stream instruc-

tions across a 2GB/s channel were simulated.

7.3.1 Kernel Inner-Loop Performance

Kernel inner-loop performance is an important metric for predicting application perfor-

mance. When running typical media processing applications like DEPTH on the Imagine

112 CHAPTER 7. STREAM PROCESSOR SCALABILITY: PERFORMANCE

Table 7.1: Kernels and Applications use for Performance Evaluation

Kernel/APP Data Description
Blocksad 16b Sum-of-absolute differences kernel for image processing
Convolve 16b Convolution filter for image processing
Update FP Matrix block update for QRD

FFT FP Radix-4 fast Fourier transform
Noise FP / 32b Perlin noise function used in procedural marble shader
Irast FP Triangle rasterizer

RENDER FP / 32b Polygon rendering of a bowling pin with a procedural mar-
ble shader.

DEPTH 16b Stereo Depth Extraction on a 512x384 pixel image [Kanade
et al., 1996]

CONV 16b Convolution filter on 512x384 pixel image
QRD FP 256x256 Matrix Decomposition

FFT1K FP 1024-point complex FFT
FFT4K FP 4096-point complex FFT

stream processor, over 80% of execution time is spent in kernel inner loops.

In order to study the effect of intercluster and intracluster scaling on kernel inner-loop

performance, a suite of kernels was compiled for various stream processor sizes. Func-

tional unit latencies were taken from latencies in the Imagine stream processor and the

latencies of communications were taken from the results presented in Section 6.2. In the

Imagine design, half of a 45 FO4 cycle was allocated for intracluster communication delay.

Therefore, for configurations with N > 12, where more than a half-cycle is required for

intracluster communication, an additional pipeline stage was added to ALU operations and

streambuffer reads to cover this latency. Similarly, the COMM unit operation latency and

instruction issue pipeline depth was determined by the intercluster communication delay.

Intracluster Scaling

Whereas intercluster scaling exploits data-level parallelism (DLP) by operating on more

than one stream element in parallel, kernel inner-loop performance with intracluster scaling

is influenced by the ability of the VLIW kernel compiler to exploit ILP. ILP can be classified

7.3. PERFORMANCE EVALUATION 113

0.0%

25.0%

50.0%

75.0%

100.0%

2 3 4 5 6 7 8 9 10 11 12 13 14

N (ALUs per Cluster)

A
L

U
 U

ti
liz

at
io

n

0.00

1.00

2.00

3.00

4.00

5.00

IP
C

 p
er

 c
lu

st
er

BLOCKSAD CONVOLVE UPDATE FFT NOISE IRAST HARM MEAN

Figure 7.3: Intracluster Scaling with no Loop Transformations

114 CHAPTER 7. STREAM PROCESSOR SCALABILITY: PERFORMANCE

into three categories:

• True ILP within one iteration of a kernel inner-loop

• DLP converted to ILP via software pipelining.

• DLP converted to ILP via loop unrolling.

Each category affects the tradeoffs between intracluster and intercluster scaling in slightly

different ways. True ILP can only be exploited by intracluster scaling and therefore in-

tracluster scaling that exploits true ILP does not degrade intercluster scaling. Software

pipelining and loop unrolling are loop transformations that convert DLP between loop iter-

ations into ILP within kernel inner-loops. These transformations benefit intracluster scal-

ing without affecting inner-loop performance with intercluster scaling. However, note that

software pipelining and loop unrolling exploit parallelism which could have also been ex-

ploited directly by intercluster scaling. For this reason, these different forms of ILP must

be treated separately in order to explore the tradeoffs between intracluster and intercluster

scaling.

First, intracluster scaling exploiting true ILP in kernel inner-loops is presented. Fig-

ure 7.3 shows this inner-loop performance without the use of software pipelining or loop

unrolling. In other words, each inner loop iteration processes only one element of a stream.

For example, the FFT kernel executes one butterfly operation and the noise kernel runs a

perlin noise function shader for one fragment. All kernels were scheduled with intracluster

and intercluster switch latencies for a C = 8 processor, with N varied from 2 to 14. The

top graph shows the average instructions per cycle (IPC) executed in each cluster within

the kernel inner loops. IPC ranges from 0.90 to 1.39 for N = 2 and from 0.89 to 4.17 for

N = 12, the highest performing configuration. The harmonic mean across all kernels is

shown in bold1. Most kernels have average IPCs of less than 2.5 for all ranges of ALUs.

The one exception is the convolve kernel, which has a significant amount of ILP within

the inner loop. However, for the other kernels, the minimum loop length is limited by the

length of the dependency chain in the processing of stream elements in the inner loops,

1The instructions included in the IPC shown are those executed on the ALU, MUL, and DSQ units only,
and does not include COMM or SP operations. However, IPC but does not translate directly to GOPS since
non-arithmetic operations such as SELECTs and SHUFFLEs are included.

7.3. PERFORMANCE EVALUATION 115

making these kernel schedules critical-path limited rather than arithmetic-throughput lim-

ited, leading to limited IPC.

In the lower graph in Figure 7.3, the same kernel inner-loop performance data is pre-

sented as average arithmetic unit utilization. On this graph, flat lines would correspond to

linear speedups for intracluster scaling. Without the use of loop transformations such as

software pipelining or loop unrolling, the IPC and utilization data suggests that there would

be little advantage to intracluster scaling beyond 2 or 3 ALUs since little additional speedup

is achieved for larger clusters. Furthermore, when going from 12 ALUs to 13 ALUs per

cluster, a slowdown is observed, due to the additional cycle of latency incurred in travers-

ing the intracluster switch. Without the use of software pipelining or loop unrolling, little

ILP can be exploited with intracluster scaling and performance is affected by intracluster

switch delay.

Once software pipelining is used, the dependency chain that limited ILP in the kernels

above is broken across several iterations of the inner loop, allowing independent process-

ing for several stream elements to occur within the same loop iteration. This significantly

increases the amount of ILP available within the inner loops. Average IPC and ALU uti-

lization with software pipelining in these inner loops are shown in Figure 7.4. For N = 2,

high ALU utilization of over 75% is achieved for all kernels except for Irast. With this

small cluster size, an average IPC of 1.59 is sustained, a speedup of 1.34x over the non-

software-pipelined kernels.

As the number of ALUs per cluster is increased, the advantage of these kernels over the

non-software-pipelined kernels dramatically increases. In fact, two of the kernels, Noise

and Convolve, containing 269 and 146 operations per loop iteration respectively, show

near-linear speedups up to 14 ALUs. Irast has the worst average IPC of all kernels because

its inner-loop performance is limited by COMM unit throughput, not ALU throughput.

For this reason, its performance improves when going from 5 to 6 ALUs and from 10 to

11 ALUs, thresholds for adding COMM units in the scaling model. The remaining three

kernels scale to maximum IPCs between 4.1 and 6.4 for 12 ALUs per cluster. These three

kernels only contain between 49 and 64 operations per loop iteration and in some cases

contain loop-carried state with long dependency chains that can not be broken across loop

iterations with software pipelining.

116 CHAPTER 7. STREAM PROCESSOR SCALABILITY: PERFORMANCE

0.00

2.00

4.00

6.00

8.00

10.00

12.00

IP
C

 p
er

 c
lu

st
er

BLOCKSAD CONVOLVE UPDATE FFT NOISE IRAST HARM MEAN

0.0%

25.0%

50.0%

75.0%

100.0%

2 3 4 5 6 7 8 9 10 11 12 13 14

N (ALUs per Cluster)

A
L

U
 U

ti
liz

at
io

n

Figure 7.4: Intracluster Scaling with Software Pipelining

7.3. PERFORMANCE EVALUATION 117

Software pipelining is also effective at creating enough ILP in some kernels to hide the

latency of the intracluster switch. Noise and Convolve continue to demonstrate speedups

when scaling from 12 to 13 ALUs, in contrast to the slow-downs observed without software

pipelining. However, slow-downs are still observable for the Update and FFT kernels,

which don’t have quite as much ILP.

As shown above, the Blocksad, FFT, and Update kernels scale well to around 5 ALUs

per cluster, but beyond that become limited by the amount of ILP and total operation count

in each loop iteration. Loop unrolling is a transformation that can help to overcome this

by allowing the VLIW compiler to schedule more than one loop iteration at one time. This

allows the compiler to interleave ALU operations from subsequent iterations in order to

achieve higher ALU utilizations. IPC and ALU utilization results with both loop unrolling

and software pipelining on the same suite of kernels are shown in Figure 7.5. From N = 2

to N = 5, the kernel results with software pipelining are nearly identical with and without

loop unrolling. However, for N > 5, loop unrolling is effective at improving speedups

for the Blocksad, FFT, and Update kernels. For N = 14, loop unrolling improved the

average IPC from 5.71 to 6.87. In addition, delay in the intracluster switch does not have a

noticeable effect with the use of loop unrolling.

The above data shows that near-linear speedups can be achieved on media processing

kernels up to around 10 ALUs per cluster by applying loop transformations and intracluster

scaling. However, in order to fairly evaluate the tradeoffs between intracluster and inter-

cluster scaling, performance efficiency (performance per unit area or per unit power) must

be considered as well. Figure 7.6 shows the ratio of sustained IPC in kernel inner-loops

to processor area for 8-cluster processors. Area is scaled to dimensions typical to a 45

nanometer technology. The three graphs from top to bottom present IPC per square mil-

limeter with no loop transformations, only software pipelining, and both software pipelin-

ing and loop unrolling, respectively. Results are shown for all six kernels with the harmonic

means in bold. The lower two graphs contain two bold lines: the lower bold line is the har-

monic mean of all six kernels while the upper bold line excludes the Irast kernel from the

harmonic mean.

118 CHAPTER 7. STREAM PROCESSOR SCALABILITY: PERFORMANCE

0.00

2.00

4.00

6.00

8.00

10.00

12.00

IP
C

 p
er

 c
lu

st
er

BLOCKSAD CONVOLVE UPDATE FFT NOISE IRAST HARM MEAN

0.0%

25.0%

50.0%

75.0%

100.0%

2 3 4 5 6 7 8 9 10 11 12 13 14

N (ALUs per Cluster)

A
L

U
 U

ti
liz

at
io

n

Figure 7.5: Intracluster Scaling with Software Pipelining and Loop Unrolling

7.3. PERFORMANCE EVALUATION 119

Without loop transformations, the peak IPC per square millimeter is with 2 ALUs per

cluster at 3.82 when averaged over the six kernels. However, the peak performance ef-

ficiency improves by 47% when software pipelining is used, providing a peak efficiency

of 5.62 with 3 ALUs per cluster. Loop unrolling further increases the peak to 5.76 at 3

ALUs per cluster. In Chapter 6, it was shown that the optimal ratio of peak performance to

area was at 5 ALUs per cluster with intracluster scaling. The same result, with an optimal

performance efficiency at 5 ALUs, is measured when the Irast kernel is excluded from the

analysis. Irast is a kernel limited by COMM unit bandwidth, so does not benefit as much

from increasing the ALUs per cluster until more COMM units are also added. The optimal

intracluster scaling for performance per unit power (average energy per ALU operation)

was presented previously in Chapter 6 and was also shown to be at 5 ALUs.

The kernel performance data presented above demonstrates the effectiveness of intra-

cluster scaling at exploiting various forms of ILP. By applying software pipelining, near-

linear speedups were shown up to 5 ALUs across a broad range of media processing ker-

nels. Further scaling to around 10 ALUs provided good speedups on Noise and Convolve

and other kernels with the use of loop unrolling. Performance efficiency measurements

show that with the use of software pipelining, the optimal intracluster scaling occurs at be-

tween 3 and 5 ALUs per cluster depending on the kernel. Due to limitations in the VLIW

compiler, loop-carried state within kernels, intracluster wire delay for N > 12, and reduced

area efficiency for N > 5, intracluster scaling is not as effective beyond 5 ALUs per cluster

with the use of software pipelining. Although performance efficiencies improve slightly

for 4 to 10 ALUs with the use of loop unrolling, this is achieved by converting DLP into

ILP.

Intercluster Scaling

Intercluster scaling, on the other hand, is able to directly exploit DLP more efficiently.

Intercluster scaling directly exploits DLP by executing more iterations of kernel inner-loops

simultaneously in a SIMD fashion. However, just as wire delay and available ILP affected

sustained kernel inner-loop performance with intracluster scaling, for intercluster scaling,

we have to account for wire delay in the intercluster switch and available DLP. In this

section, we explore how intercluster switch delay affects kernel inner-loop performance

120 CHAPTER 7. STREAM PROCESSOR SCALABILITY: PERFORMANCE

0

1

2

3

4

5

6

7

8

IP
C

 p
er

 s
q

 m
m

(T
ru

e
IL

P
)

BLOCKSAD CONVOLVE UPDATE FFT NOISE IRAST HARM MEAN

0

1

2

3

4

5

6

7

8

IP
C

 p
e

r
s

q
 m

m
(S

o
ft

w
ar

e
P

ip
el

in
in

g
)

0

1

2

3

4

5

6

7

8

2 3 4 5 6 7 8 9 10 11 12 13 14

N (ALUs per Cluster)

IP
C

 p
er

 s
q

 m
m

(U
n

ro
lli

n
g

 +
 S

W
P

)

Figure 7.6: Inner-Loop Performance per Area with Intracluster Scaling

7.3. PERFORMANCE EVALUATION 121

0
2
4
6
8

10
12
14
16
18

8 16 32 64 128

Number of Clusters (C)

S
p

ee
d

-u
p

Blocksad
Convolve
Update
Fft
Noise
Irast
Harmonic Mean

Figure 7.7: Intercluster Kernel Speedup

and performance efficiency. Limitations on DLP affect application stream lengths, but

not kernel inner-loop performance, so the effect of stream lengths on performance will be

explored later when discussing application performance in Section 7.3.3.

Holding N fixed at 5 ALUs per cluster, kernel speedups over an 8-cluster processor are

shown in Figure 7.7. This data shows the effectiveness of intercluster scaling with the most

efficient number of ALUs per cluster, although results would be similar for clusters with

different numbers of ALUs. In addition, software pipelining was used for all configura-

tions since this was shown to provide the best efficiencies. As shown in Figure 7.7, as C

increases, some kernels such as Noise, are perfectly data-parallel and demonstrate perfect

speedup. Even kernels such as Irast, which rely heavily on conditional stream and inter-

cluster switch bandwidth, are able to hide intercluster switch latency by taking advantage

of available ILP within kernel inner-loops. Based on this kernel inner-loop performance,

intercluster scaling is able to achieve near-linear speedups when scaling to 128 clusters.

Performance efficiency results with intercluster scaling are shown in Table 7.2. The ta-

ble shows total IPC from all C clusters per square millimeter in a 45 nanometer technology.

Although peak performance efficiency is achieved with the C = 32 N = 5 configuration

at 5.31 IPC per square millimeter, performance per area is relatively unaffected by inter-

cluster scaling until around 64 clusters. Performance per unit area starts to degrade slightly

122 CHAPTER 7. STREAM PROCESSOR SCALABILITY: PERFORMANCE

Table 7.2: Intercluster Scaling Performance Efficiency

Clusters
N 8 16 32 64 128
2 5.23 5.16 5.18 5.05 5.00
5 5.29 5.29 5.31 5.22 4.95

10 4.39 4.47 4.20 4.08 3.81
14 2.68 3.30 3.00 2.88 2.62

when scaling to 128 clusters. However, with performance per area of 4.95, the 640-ALU

C = 128 N = 5 processor is only 7% worse than the best C = 32 N = 5 processor.

Kernel Inner-Loop Performance Summary

The kernel inner-loop performance data presented above shows that given a fixed area bud-

get, without the use of software pipelining, it would be most efficient to only scale to 2

ALUs per cluster and then to utilize intercluster scaling to provide additional performance.

However, even with only 2 ALUs per cluster, the use of software pipelining was shown to

provide a 36% performance on inner-loop performance, meaning that this is a loop trans-

formation that provides significant performance gains for all cluster sizes. Once software

pipelining is used, intracluster scaling has near-linear speedups up to 10 ALUs on some ker-

nels, although was most efficient at 5 ALUs per cluster for most kernels. Therefore, with

the use of software pipelining, it would be most efficient to use intracluster scaling up to

5 ALUs per cluster and to use intercluster scaling, which provides near-linear speedups up

to 128 clusters on kernel inner loops, to further improve performance. An optimal perfor-

mance efficiency was found with 32 clusters and 5 ALUs per cluster, although performance

efficiency degraded by only 7% when scaling to 128 clusters.

Whereas software pipelining was shown to be a beneficial loop transformation for all

cluster sizes, the case for loop unrolling is less convincing. Loop unrolling shows the most

benefit for intracluster scaling for N > 5 and has a negligible impact for N <= 5. Even

though loop unrolling increases ILP for these larger clusters, the increase in ILP does not

overcome degradations in area efficiency and IPC per square millimeter gradually degrades

7.3. PERFORMANCE EVALUATION 123

from 5.33 to 4.50 when scaling from N = 5 to N = 10. However, loop unrolling and intr-

acluster scaling for the larger clusters is exploiting DLP which could have been exploited

with intercluster scaling, yet with much better performance efficiency. This data suggests

that intracluster scaling beyond N = 5 would not be as efficient from a performance effi-

ciency standpoint as intercluster scaling to up to 128 clusters.

7.3.2 Kernel Short Stream Effects

Kernel inner-loop performance speedups would reflect application speedups if stream lengths

scaled with machine size as the number of ALUs per stream processor are increased. If

stream lengths are held constant as machine size increases with intercluster scaling, then

the number of loop iterations executed per kernel invocation decreases, so the percentage

of runtime spent in kernel inner-loops decreases. If loop unrolling is used with intraclus-

ter scaling, the percentage of runtime spent in kernel inner-loops also decreases. In this

section, the effect that stream lengths have on kernel performance are measured.

Short stream effects were studied in some detail by Owens et al. [Owens et al., 2002;

Owens, 2002], and are similar to performance effects due to short vector lengths in vec-

tor processors [Asanovic, 1998]. With short streams, the number of inner loop iterations

executed per kernel call decreases, causing a larger fraction of execution time to be spent

in loop prologues and epilogues rather than in kernel inner loops. Furthermore, since soft-

ware pipelining is used extensively to optimize kernel inner-loop performance, a software

pipelining priming overhead is incurred with each kernel invocation.

The effect of stream length on kernel performance for a C = 8 processor on four media

processing kernels is shown in Figure 7.8. While inner-loop results from Section 7.3.1

showed the achievable IPC with infinitely long streams, meaning a negligible number of

cycles are spent outside inner loops, the results in Figure 7.8 show what happens to overall

kernel IPC when stream length is taken into account. For each kernel, IPC is shown as

stream length, L, is increased from 8 elements to 256 elements. Since C = 8, the number

of loop iterations executed per kernel call is given by L/8.

The None N2 results show average IPC without the use of software pipelining or loop

unrolling for N = 2. In this case, performance is relatively unaffected by stream length

124 CHAPTER 7. STREAM PROCESSOR SCALABILITY: PERFORMANCE

0.00

2.00

4.00

6.00

8.00

16 48 80 112 144 176 208 240

C
o

n
vo

lv
e

IP
C

 p
er

 c
lu

st
er

None_N2 SWP_N2 SWP_N5 SWP_N10 Unroll_N10 SWP2_N5

0.00

2.00

4.00

6.00

8.00

16 48 80 112 144 176 208 240

U
p

d
at

e
IP

C
 p

er
 c

lu
st

er

0.00

2.00

4.00

6.00

8.00

16 48 80 112 144 176 208 240

F
F

T
IP

C
 p

e
r

cl
u

st
er

0.00

2.00

4.00

6.00

8.00

16 48 80 112 144 176 208 240

Stream Length (Elements)

N
o

is
e

IP
C

 p
er

 c
lu

st
er

Figure 7.8: Kernel Short Stream Effects

7.3. PERFORMANCE EVALUATION 125

since the loop prologues, bodies, and epilogues are all constrained by limits on true ILP and

inter-instruction dependencies within the kernels. Next, results with software pipelining for

three cluster sizes (N = 2, 5, and 10) are shown as SWP N2, SWP N5, and SWP N10. In

these cases, the kernel scheduler chose the number of software pipeline stages that would

minimize the inner loop length. In some of the kernels, up to 6 pipeline stages were used.

When software pipelining is used, IPC is much more dependent on stream length than in

the none N2 case, due to the overhead of software pipelining: given stream length L, a

kernel inner loop with S software pipeline stages executes L/C + (S − 1) times because

S − 1 iterations are required to prime a software pipelined loop. Finally, two other results

are shown: SWP2 N5 and Unroll N10. SWP2 N5 limits S to a maximum of two stages,

meaning kernel inner-loop length is greater than SWP N5, leading to better IPC for short

streams but worse IPC for long streams. Unroll N10 shows results with the use of software

pipelining and loop unrolling for N = 10. It performs worse than SWP N10 for the same

size streams for most kernels, with the exception being Update. Although Unroll N10

contains shorter inner loops, it executes half as many inner loop iterations as SWP N10,

leading to more software pipelining overhead.

Across the four kernels, for N = 2, the crossover point at which software pipelining

improves average kernel IPC is between 16 (Update) and 112 elements (Convolve). Al-

though not shown in the graph, with intracluster scaling, this crossover point shifts down:

for N = 5, software pipelining improves IPC across all four kernels for stream lengths of

32 elements or higher. This data suggests that our conclusions for N = 5 being the most

efficient cluster organization holds for reasonably sized streams since software pipelining

should be used for streams greater than 32 elements, and once software pipelining is used,

N = 5, was shown previously in Section 7.3.1 to be the most efficient cluster organization.

Further scaling to N = 10 and using loop unrolling to improve inner-loop IPC was shown

to be even less efficient when stream lengths are taken into account.

Although the results from Figure 7.8 are specific to a C = 8 processor, from this data,

the overall effect intercluster scaling has on kernel performance becomes more clear when

stream lengths are taken into account. During applications where dataset size limits stream

lengths, such as QRD, intercluster scaling with fixed dataset sizes would reduce stream

lengths. With streams significantly longer than the number of clusters, this would have

126 CHAPTER 7. STREAM PROCESSOR SCALABILITY: PERFORMANCE

a neglible effect on performance, but for short streams, this could reduce the achieved

speedup. For example, in the Update2 kernel (a key part of QRD), as shown in Figure 7.7,

an inner-looop speedup of 1.8x was achieved when scaling from 8 to 16 clusters. However,

when accounting for short stream effects, the overall kernel speedup would vary from 1.30x

to 1.72x for streams of length 32 elements and 512 elements, respectively.

Although short streams could limit speedup on some applications with intercluster scal-

ing with fixed dataset sizes, it is important to note that not all applications incur this perfor-

mance degradation with intercluster scaling. RENDER, for example, has enough available

DLP such that its stream lengths are limited by the capacity of the SRF, not the application

dataset. Therefore, its stream lengths are able to scale with the number of clusters and

the percentage of runtime in inner loops remains high. Applications such as these or with

large datasets (and therefore long streams) will have overall speedups similar to inner-loop

performance speedups.

7.3.3 Application Performance

In order to study the effect of intracluster and intercluster scaling on full applications with

fixed dataset sizes, the performance on RENDER, DEPTH, CONV, QRD, FFT1K, and

FFT4K were evaluated on a range of processor configurations. These results are shown in

Figure 7.9, as speedup over a C = 8 N = 5 processor. Sustained performance results in

GOPS for the C = 8 N = 5 processor, feasible in today’s technology, and the C = 128

N = 10 processor, the highest performing processor, are also annotated for each applica-

tion assuming a 1 GHz processor clock. All applications except FFT1K and FFT4K assume

data is initially in external memory. Since FFTs are typically part of a larger application,

their performance was measured with input data already in the SRF, and without simulating

the bit-reversed stores on the output data. The C = 128 N = 10 processor has the highest

performance with speedups over the C = 8 N = 5 configuration of 20.5x (311 GOPS) on

RENDER and 11.6x (328 GOPS) on DEPTH, and a harmonic mean of 10.4x across the six

applications.

Intracluster scaling of application performance is similar to kernel performance and is

mostly affected by the limited ILP in kernels and increased functional unit latencies. This

7.3. PERFORMANCE EVALUATION 127

128
64
32
16

8

Clusters

RENDER

DEPTH

CONV

QRD

FFT1K

FFT4K

HARM
MEAN

ALUs per Cluster (N)

326
GOPS

41.2
GOPS

469
GOPS

25.6
GOPS

138
GOPS

14.6
GOPS

103
GOPS

10.6
GOPS

211
GOPS

200
GOPS

2 5 10 14

128
64
32
16

8

128
64
32
16

8

128
64
32
16

8

128
64
32
16

8

128
64
32
16

8

128
64
32
16

8

18.3
GOPS

28.0
GOPS

15.4
GOPS

311
GOPS

App

0.0 4.0 8.0 12.0 16.0 20.0 24.0

Speedup over C=8 N=5

Figure 7.9: Application Performance

128 CHAPTER 7. STREAM PROCESSOR SCALABILITY: PERFORMANCE

leads to little application-level speedup or even slow-downs in some cases when increasing

N from 10 to 14.

With intercluster scaling, speedups vary considerably depending on the application.

With large numbers of clusters and relatively small dataset sizes, some applications suffer

from short stream effects. In addition to the short stream effects exhibited during kernel ex-

ecution described above in Section 7.3.1, as stream lengths decrease relative to C, memory

latency and host processor bandwidth also begin to affect performance.

The effect short streams have on application performance with intercluster scaling is

evident from the breakdown of execution cycles in RENDER, DEPTH, and QRD, shown

in Figure 7.10. Execution cycles are grouped into four categories: kernel inner-loop cycles,

kernel non-inner-loop cycles, cycles when kernels are stalled waiting for SRF streams, and

cycles when kernels are not active because of memory or host bottlenecks. RENDER is

very data-parallel and contains stream lengths limited only by the total number of triangles

in a scene. Since this number stays large compared to C, the ratio of kernel inner-loop

iterations to kernel invocations stays high, and over 80% of runtime is devoted to processing

from kernel inner loops. As a result, RENDER scales very well to large numbers of clusters.

DEPTH also contains abundant data parallelism, however does not scale quite as well

as RENDER due to short stream effects and SIMD overheads. When streams contain only

pixels from one row of the input image, SIMD overheads (extra instructions executed in the

kernel inner loops per cluster) are small, but short stream effects cause a large percentage

of run-time to be spent in non-inner-loop kernel cycles, as seen in Figure 7.10 when going

from 8 to 16 clusters. For 32 clusters, the application is restructured so that each stream

contains pixels from 16 rows at a time, rather than the single row which was used for 8 and

16 clusters. The result is that over 95% of runtime is spent in the inner loops. However,

the operation count per inner loop is higher when clusters operate on streams that contain

pixels from more than one row in SIMD. Consequently, there is a sub-linear speedup from 8

to 32 clusters on DEPTH. The advantage of multiple-row DEPTH becomes apparent when

scaling to 64 and 128 clusters: short stream effects are avoided and large amounts of data

parallelism can be exploited.

With QRD, the matrix block update kernels scale well and if the datasets grew with

C, QRD performance would scale similarly. However, with a fixed-size dataset, the larger

7.3. PERFORMANCE EVALUATION 129

Inner Loop

Kernel Non-Inner Loop

SRF stalls

Clusters Idle
(Memory or Host Stalls)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 16 32 64 128
Clusters

Q
R

D

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 16 32 64 128
Clusters

D
E

P
T

H

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 16 32 64 128
Clusters

R
E

N
D

E
R

Single-row streams Multi-row streams

Figure 7.10: Application Cycles with Intercluster Scaling (N=5)

130 CHAPTER 7. STREAM PROCESSOR SCALABILITY: PERFORMANCE

machines spend an increasing fraction of their runtime computing the orthogonal bases for

the decomposition, a step which scales poorly, therefore limiting speedup. In addition to

algorithmic inefficiencies leading to poor speedups, QRD with a fixed 256x256 dataset-size

also suffers from short stream effects, as can be seen in Figure 7.10, with a large percentage

of cycles spent outside of kernel inner-loops.

Direct evidence for performance degradation due to short stream effects is apparent

when comparing FFT4K to FFT1K in Figure 7.9. Although FFT4K has lower performance

than FFT1K at C = 8 N = 5 because its large working set requires spilling from the SRF

to memory, at C = 128 N = 10, the difference in raw performance between FFT4K and

FFT1K is due purely to stream length. On a C = 128 N = 10 processor, FFT4K sustains

211 GFLOPS, while FFT1K, containing shorter streams, only sustains 103 GFLOPS.

In summary, the advantages of intracluster scaling to exploit ILP and provide optimal

efficiency at 5 ALUs per cluster were apparent from kernel inner-loop performance. Similar

speedups in the intracluster scaling dimension were also achieved with full applications.

With intercluster scaling, kernel inner-loop performance results showed the ability to take

advantage of DLP in kernels with near-linear speedups up to 128 clusters on many kernels.

These kernel performance speedup numbers suggest how media application performance

would scale if dataset size scaled with machine size. However, with fixed dataset sizes,

limited DLP in some applications leads to short streams. Nevertheless, even with these

datasets, a 1280-ALU C = 128 N = 10 processor is able to sustain an average of 200

GOPS over six applications, a speedup of 10.4x over a 40-ALU C = 8 N = 5 processor.

7.3.4 Bandwidth Hierarchy Scaling

The tradeoffs between intracluster and intercluster scaling demonstrate the ability to ex-

ploit available ILP and DLP in media applications. However, not only must parallelism be

exploited, but a processor must exploit both the compute intensity and locality in media

applications in order to achieve high performance. With both intracluster and intercluster

scaling, the data bandwidth hierarchy has been scaled to exploit the available locality. This

is accomplished by increasing the LRF and SRF size and capacity as specified in Chapter 6.

7.3. PERFORMANCE EVALUATION 131

SRF BW

External Memory BW

LRF BW

0.1

1

10

100

1000

10000

8 16 32 64 128
Clusters

G
B

/s

0.1

1

10

100

1000

10000

8 16 32 64 128
Clusters

G
B

/s

0.1

1

10

100

1000

10000

8 16 32 64 128
Clusters

G
B

/s

R
E

N
D

E
R

D
E

P
T

H
Q

R
D

Figure 7.11: Bandwidth Hierarchy with Intercluster Scaling (N=5)

132 CHAPTER 7. STREAM PROCESSOR SCALABILITY: PERFORMANCE

This scalable data bandwidth hierarchy in the stream architecture enables GFLOPs of arith-

metic performance to be sustained with modest off-chip memory bandwidth requirements.

The scalability of the data bandwidth hierarchy is shown on a logarithmic scale in Fig-

ure 7.11. With eight arithmetic clusters, between 380 and 565 GB/s of LRF bandwidth,

between 11 and 42 GB/s of SRF bandwidth, and between 0.33 and 2.87 GB/s of memory

bandwidth are necessary in the RENDER, DEPTH, and QRD applications. As intercluster

scaling is used to scale to 128 clusters, the LRF bandwidth demands grow by over an order

of magnitude to between 5.9 and 7.0 TB/s. However, since the SRF bandwidth and capacity

is also increased with the number of ALUs, the bandwidth hiearchy is able to handle this

increased LRF bandwidth. During RENDER, memory bandwidth is used only for input

and output operations, so its memory and SRF bandwidth scales as the same rate as the

LRFs. However, for DEPTH and QRD, with increased SRF capacity, additional locality

can be captured in the SRF, avoiding memory spills required in the smaller processors.

Since LRF and SRF bandwidth and capacity are increased appropriately with intraclus-

ter and intercluster scaling, the data bandwidth hierarchy is able to scale effectively to hun-

dreds of ALUs per stream processor. This scalablity allows for high sustained arithmetic

throughputs with hundreds of ALUs per stream processor with modest off-chip memory

systems. Furthermore, the scalability of the data bandwidth hierarchy means that over 95%

of data accesses in these future stream processors are made to the LRFs, not to the SRF or

external memory, leading to energy-efficient execution of these media applications.

7.4 Improving Intercluster and Intracluster Scalability

The results presented in Chapter 6 demonstrated the scalability of stream processors to

hundreds of arithmetic units with a less than 10% degradation in efficiency. For example,

a 640-ALU C = 128 N = 5 stream processor requires only 2% more area per ALU and

only 7% more energy per ALU operation than a 40-ALU C = 8 N = 5 stream proces-

sor. Furthermore, the results from this chapter demonstrated near-linear speedup on kernel

inner-loop performance when comparing a 640-ALU and 40-ALU processor. However, it

is worth considering whether additional microarchitectural optimizations in large stream

processors such as a 640-ALU processor could lead to area and energy efficiencies equal

7.4. IMPROVING INTERCLUSTER AND INTRACLUSTER SCALABILITY 133

or better to a 40-ALU processor.

With slight modifications to the software tools and to microarchitecture used for intra-

cluster and intercluster scaling, area and energy efficiency could potentially be improved.

The two structures that stand out as not scaling as efficiently as the rest of the processor

and that could be improved are the intracluster and intercluster switches.

Several optimizations could be made to improve the intracluster switch. First, by adding

control bits to the intracluster switch, instead of broadcasting functional-unit outputs to all

LRF inputs, some bus segments could be disabled on a cycle-by-cycle basis in order to save

power. Second, area could be saved by using an explicitly scheduled sparse crossbar for

the intracluster switch. Currently, the kernel compiler requires a full crossbar connecting

the outputs of functional units to inputs of the LRFs in order to achieve high efficiencies in

kernel inner loops. However, with some kernel compiler improvements, a sparse crossbar

would reduce the area of the switch as the number of ALUs per cluster increased and

would have the potential to increase the number of ALUs per cluster that achieved optimal

performance efficiencies on a range of ALUs. Although most kernels would have to convert

DLP to ILP with loop unrolling to have performance scale effectively beyond 5 ALUs per

cluster, some kernels have enough ILP to take advantage of the additional parallelism that

could be enabled with an efficient intracluster switch.

The switch is the limiting structure in intercluster scaling as well. A sparse crossbar for

the intercluster switch could further improve area and energy efficiency for larger numbers

of clusters. In the intercluster case, the communication across the switch is input from the

programmer and is based on communication patterns required in the applications.

Just as locality could be exploited by the VLIW compiler in the intracluster switch, if

locality exists in intercluster communication patterns, a switch that could exploit this to

improve area and energy efficiency. The available locality in intercluster communications

was studied by looking at the 13 permutations from the kernel inner-loops in DEPTH,

FFT, and QRD on 64-cluster machines. An 8x8 cluster grid floorplan was assumed, where

clusters 0 through 7 are in column 0, clusters 8 through 15 are in column 1, and so on up

to clusters 56 to 63 in column 7. Given this floorplan, the histogram shown in Figure 7.12

demonstrates the locality in these permutation patterns. Since 13 permutations are studied,

832 total communications are grouped into 15 categories based on the number of hops

134 CHAPTER 7. STREAM PROCESSOR SCALABILITY: PERFORMANCE

Intercluster Permutation Histogram
for 64 Clusters

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Hops

N
u

m
b

er
 o

f
C

o
m

m
u

n
ic

at
io

n
s

Figure 7.12: Intercluster Switch Locality with 8x8 Cluster Grid Floorplan

which must be traveled between clusters. Note that in an 8x8 grid, the maximum number

of hops is 14. This histogram shows that indeed some locality exists as the most common

case is 4 hops and only 6.5% of communications require greater than 8 hops.

Future research could explore intercluster switch topologies that could provide better

area and energy efficiency by exploiting the locality between clusters during communica-

tions. One example of a switch topology for an 8x8 cluster grid that exploits this locality

is shown in Figure 7.13. Similar to the full crossbar shown in Figure 6.1, in this figure,

each cluster broadcasts its output across its row bus and reads an input onto its column bus.

However, in this topology, row and column buses span only 2 clusters in each direction,

meaning communications are limited to four hops maximum. Permutations with maxi-

mum hop counts greater than 4 would require more than one communication to route the

data succesfully, leading to more required switch bandwidth in some kernels. However, this

topology has an area-efficiency advantage over a full crossbar because it only requires five

buses per column and per row, whereas a full crossbar requires eight buses per column and

7.4. IMPROVING INTERCLUSTER AND INTRACLUSTER SCALABILITY 135

1680 403224 5648

1791 413325 5749

18102 423426 5850

19113 433527 5951

20124 443628 6052

21135 453729 6153

22146 463830 6254

23157 473931 6355

Figure 7.13: Limited-Connectivity Inercluster Switch for 8x8 Cluster Floorplan

136 CHAPTER 7. STREAM PROCESSOR SCALABILITY: PERFORMANCE

per row. Future research could explore the tradeoff between performance and efficiency for

this and other switch topologies.

7.5 Scalability Summary

As technology enables more ALUs to fit on a single chip, architectures must efficiently

utilize bandwidth in order to achieve large performance gains. In this chapter, two scaling

techniques for stream processors that enable large performance gains on media processing

applications in future VLSI technologies were presented. Intracluster scaling was shown

to be effective from a performance and cost standpoint up to 10 ALUs per cluster, although

was most efficient at 5 ALUs per cluster. This optimal efficiency at 5 ALUs per cluster is

derived from amortizing fixed cluster costs such as streambuffers, the intercluster switch

ports, and the scratchpad over more ALUs. Meanwhile, near-linear speedups are achievable

up to 5 ALUs with the use of software pipelining. Beyond 5 ALUs, the ILP available from

software pipelining trails off and the cost of the intracluster switch and additional required

intercluster switch port hurts efficiency. Intercluster scaling was shown to be effective up to

128 clusters, with only a slight decrease in area and energy efficiency. In addition, a variety

of media applications were shown to have significant parallelism and no prohibitive limits

on inherent stream lengths in the application, thereby enabling speedups of up to 27.4x and

10.0x when comparing a 1280-ALU to a 40-ALU stream processor on a harmonic mean of

kernels and applications.

Chapter 8

Conclusions

In this dissertation, stream processors were shown to achieve performance rates and per-

formance efficiencies significantly higher than other programmable processors on media

applications, and approaching the efficiencies of fixed-function processors. The Imagine

architecture, the first VLSI implementation of a stream processor, is able to achieve high

performance and efficiencies by exploiting large amounts of parallelism, by exploiting lo-

cality to effectively manage data bandwidth, and by the use of area- and energy-efficient

register organization.

Furthermore, the architectural concepts and performance measurements validated with

the Imagine stream processor can be extended to future technologies using the intercluster

and intracluster scaling techniques presented in this dissertation. The analysis presented

in this work demonstrates the scalability of stream processors to thousands of arithmetic

units in future VLSI technologies with comparable performance efficiencies to stream pro-

cessors containing tens of arithmetic units. These future stream processors will be capable

of sustaining hundreds of billions of arithmetic operations per second while maintaining

high performance efficiencies, enabling a large set of new and existing real-time media

applications in a wide variety of mobile, desktop, and server systems, while retaining the

advantages of programmability.

137

138 CHAPTER 8. CONCLUSIONS

8.1 Future Work

The work described here leads to a number of other interesting areas of future research:

Imagine System

Although this dissertation presents the design and implementation of the Imagine processor,

one important area of future work is in system design for the Imagine stream processor. The

experimental measurements described in Chapter 5 were obtained with a PCI board con-

taining two Imagine processors, a host processor, glue-logic FPGAs, and DRAM chips. At

the time this dissertation was submitted, this board was not able to run all available media

applications at real-time due to host-processor and glue-logic limitations (not because of

host interface bandwidth limitations on the Imagine processor). Future work is underway to

redesign a board which eliminates these limitations enabling real-time execution of a larger

range of media applications. Another ongoing area of research is multiprocessor systems

using the Imagine network interface. This research would lead to a number of key insights

into performance, software tools, and host processor requirements in these multi-Imagine

systems.

Applications

In this dissertation, the evaluation of stream processing was restricted to media processing

requirements with today’s workloads and datasets. However, as stream processors scale

to Teraops of performance with high performance efficiencies, such processors will pro-

vide the potential for running more complex media processing algorithms and much larger

datasets at real-time rates. For example, in computer graphics, polygon rendering with

higher scene complexity and screen resolutions would require larger datasets and more

performance to achieve real-time rates. Furthermore, raytracing and image-based rendering

techniques have been emerging as alternative applications for computer graphics also re-

quiring higher performance than polygon rendering. These trends suggest that as available

media processor performance increases, media applications and their datasets will evolve

to take advantage of this available performance while sustaining real-time rates. Therefore,

an important area of future work would be to explore how media processors can scale in a

8.1. FUTURE WORK 139

way to provide the types of performance rates required for future media applications, rather

than today’s applications.

Another area of future work for applications of stream processors is in broadening the

application domains. Recent work has started to explore the effectiveness of stream pro-

cessing to both scientific workloads [Dally et al., 2001] and signal processing for wireless

communications [Rajagopal et al., 2002]. Such application domains share many of the

same application characteristics as media applications, but differ slightly, meaning that en-

hancements and optimizations to the stream processor architecture and microarchitecture

could be made to improve performance and VLSI efficiency on these applications.

VLSI Efficient Stream Processing

The VLSI efficiency of stream processing stems from the stream register organization that

allows for efficient use of parallelism and locality and media applications. One area of fu-

ture work would be to explore enhancements to this register organization that could further

improve the VLSI efficiency of stream processors. Such enhancements were briefly dis-

cussed in Chapter 7 with studies into non-fully-interconnected intercluster switches. How-

ever, other possibilities for improvement include a non-fully-interconnected intracluster

switch and slightly modified local register file structures. For example, rather than using

two dual-ported register files per arithmetic unit, other structures such as one multi-ported

register file per arithmetic unit could be explored. Although such a structure would require

more interconnectivity in the read and write ports, such a design might be more efficient if

this interconnect could be overlapped with memory cells and other transistors in this regis-

ter file design. This and other improvements to the register organization could be explored

to achieve small improvements in the VLSI efficiency of stream processing.

Scalability

A final area of future work involves scalability to large numbers of arithmetic units per

chip in future technologies. In this dissertation, the two techniques of intracluster and

intercluster scaling were presented and evaluated. These two dimensions of scaling are

able to exploit instruction-level and data-level parallelism respectively. However, a third

140 CHAPTER 8. CONCLUSIONS

dimension of scaling is also possible, in the task-level (or thread-level) dimension. This

scaling technique would involve either multiple kernel execution units (microcontroller

with some number of clusters) connected to a single stream register file or multiple stream

processor cores on a single chip. In these architectures, multiple kernels could be executing

simultaneously, thereby exploiting task-level parallelism. As software tools for exploiting

these scaling techniques mature, the performance and cost advantages of exploiting task-

level parallelism could be explored and compared to intracluster and intercluster scaling.

In summary, the work presented in this thesis describes the first VLSI implementation

of a stream processor and describes scaling techniques that show the viability of stream

processing for many years to come. This is an area of research that is just beginning and

will lead to new and exciting results in the areas of real-time media processing and power-

efficient computer architecture.

Bibliography

[Agarwal et al., 2000] Vikas Agarwal, M.S. Hrishikesh, Stephen W. Keckler, and Doug

Burger. Clock rate versus IPC: The end of the road for conventional microarchitectures.

In 27th Annual International Symposium on Computer Architecture, pages 248–259,

June 2000.

[Agarwala et al., 2002] S. Agarwala, P. Koeppen, T. Anderson, A. Hill, M. Ales,

R. Damodaran, L. Nardini, P. Wiley, S. Mullinnix, J. Leach, A. Lell, M. Gill, J. Gol-

ston, D. Hoyle, A. Rajagopal, A. Chachad, M. Agarwala, R. Castille, N. Common,

J. Apostol, H. Mahmood, M. Krishnan, D. Bui, Q. An, P. Groves, L. Nguyen, N. Na-

garaj, and R. Simar. A 600 MHz VLIW DSP. In 2002 International Solid-State Circuits

Conference Digest of Technical Papers, pages 56–57, 2002.

[Asanovic, 1998] Krste Asanovic. Vector Microprocessors. PhD thesis, University of Cal-

ifornia at Berkeley, 1998.

[Bhattacharyya et al., 1996] Shuvra S. Bhattacharyya, Praveen K. Murthy, and Edward A.

Lee. Software Synthesis from Dataflow Graphs. Kluwer Academic Press, Norwell, MA,

1996.

[Booth, 1951] A. D. Booth. A signed binary multiplication technique. Quarterly Journal

of Mechanics and Applied Mathematics, 4:236–240, 1951.

[Bove and Watlington, 1995] V. Michael Bove and John A. Watlington. Cheops: A re-

configurable data-flow system for video processing. IEEE Transactions on Circuits and

Systems for Video Technology, 3(2):140–149, April 1995.

141

142 BIBLIOGRAPHY

[Brooks and Shearer, 2000] Thomas Brooks and Findlay Shearer. Communications core

meets 3G wireless handset challenges. Wireless Systems Design, pages 51–56, October

2000.

[Burd and Brodersen, 1995] Thomas D. Burd and Robert W. Brodersen. Energy-efficient

cmos microprocessor design. In 28th Hawaii International Conference on System Sci-

ences, pages 288–297, January 1995.

[Caspi et al., 2001] Eylon Caspi, Andre Dehon, and John Wawrzynek. A streaming multi-

threaded model. In Proceedings of the Third Workshop on Media and Stream Processors,

pages 21–28, Austin, TX, Dec 2001.

[Chandrakasan et al., 1994] Anantha Chandrakasan, Samuel Sheng, and Robert W.

Brodersen. Low power CMOS digital design. In IEEE Journal of Solid State Circuits,

pages 473–484, October 1994.

[Chang, 1998] Andrew Chang. VLSI datapath choices: Cell-based versus full-custom.

Master’s thesis, MIT, 1998.

[Chen et al., 1997] Kai Chen, Chenming Hu, Peng Fang, Min Ren Lin, and Donald L.

Wollesen. Predicting CMOS speed with gate oxide and voltage scaling and interconnect

loading effects. IEEE Transactions on Electron Devices, 44(11):1951–1957, November

1997.

[Chen, 1999] David Chen. Apollo II adds power capabilities, speeds VDSM place and

route. Electronics Journal, page 25, July 1999.

[Chinnery and Keutzer, 2000] D. Chinnery and K. Keutzer. Closing the gap between ASIC

and custom: An ASIC perspective. In Proceedings of 37th Design Automation Confer-

ence, pages 637–641, June 2000.

[Chinnery and Keutzer, 2002] D. Chinnery and K. Keutzer. Closing the Gap Between

ASIC and Custom: Tools and Techniques for High-Performance ASIC Design. Kluwer

Academic Publishers, May 2002.

BIBLIOGRAPHY 143

[Chowdhary et al., 1999] A. Chowdhary, S. Kale, P.K. Saripella, N.K. Sehgal, and R.K.

Gupta. Extraction of functional regularity in datapath circuits. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 18(9):1279–1296, Septem-

ber 1999.

[Clark et al., 2001] Lawrence T. Clark, Eric J. Hoffman, Jay Miller, Manish Biyani, Yuyun

Liao, Stephen Strazdus, Michael Morrow, Kimberley E. Velarde, and Mark A. Yarch. An

embedded 32-b microprocessor core for low-power and high-performance applications.

In IEEE Journal of Solid State Circuits, pages 1599–1608, November 2001.

[Coonen, 1980] Jerome T. Coonen. An implementation guide to a proposed standard for

floating-point arithmetic. Computer, 13(1):68–79, January 1980.

[Cradle, 2003] Cradle technologies white paper: The software scalable system on a chip

(3SOC) architecture, 2003.

[Dally and Chang, 2000] William J. Dally and Andrew Chang. The role of custom designs

in ASIC chips. In Proceedings of 37th Design Automation Conference, pages 643–647,

June 2000.

[Dally and Poulton, 1998] William J. Dally and John Poulton. Digital Systems Engineer-

ing, pages 12–22. Cambridge University Press, 1998.

[Dally et al., 2001] William J. Dally, Pat Hanrahan, and Ron Fedkiw. A streaming super-

computer. Stanford Computer Systems Laboratory White Paper, September 2001.

[Dally, 1992] William J. Dally. Virtual channel flow control. IEEE Transactions on Par-

allel and Distributed Systems, pages 194–205, March 1992.

[Davis et al., 2001] W. Rhett Davis, Ning Zhang, Kevin Camera, Fred Chen, Dejan

Markovic, Nathan Chan, Borivoje Nikolic, and Robert W. Brodersen. A design envi-

ronment for high throughput, low power dedicated signal processing systems. In IEEE

2001 Conference on Custom Integrated Circuits, pages 545–548, May 2001.

[de Kock et al., 2000] E.A. de Kock, G. Essink, W.J.M. Smits, R. van der Wolf, J.-Y.

Brunei, W.M. Kruijtzer, P. Lieverse, and K.A. Vissers. YAPI: Application modeling

144 BIBLIOGRAPHY

for signal processing systems. In Proceedings of 37th Design Automation Conference,

pages 402–405, June 2000.

[Gieseke et al., 1997] Bruce A. Gieseke, Randy L. Allmon, Daniel W. Bailey, Bradley J.

Benschneider, Sharon M. Britton, John D. Clouser, Harry R. Fair III, James A. Far-

rell, Michael K. Gowan, Christopher L. Houghton, James B. Keller, Thomas H. Lee,

Daniel L. Leibholz, Susan C. Lowell, Mark D. Matson, Richard J. Matthew, Victor

Peng, Michael D. Quinn, Donald A. Priore, Michael J. Smith, and Kathryn E. Wilcox.

A 600 MHz superscalar RISC microprocessor with out-of-order execution. In 1997 In-

ternational Solid-State Circuits Conference Digest of Technical Papers, pages 176–177,

1997.

[Gokhale et al., 2000] Maya Gokhale, Jan Stone, Jeff Arnold, and Mirek Kalinowski.

Stream-oriented FPGA computing in the Streams-C high level language. In 2000 IEEE

Symposium on Field-Programmable Custom Computing Machines, pages 49–56, 2000.

[Goldberg, 2002] David Goldberg. Computer Arithmetic, Appendix H of C̈omputer Archi-

tecture: A Quantitative Approachb̈y John Hennessy and David Patterson, Third Edition,

page Appendix H. Morgan Kaufmann, 2002.

[Goldovsky et al., 2000] Alexander Goldovsky, Bimal Patel, Michael Schulte, Ravi Ko-

lagotla, Hosahalli Srinivas, and Geoffrey Burns. Design and implementation of a 16

by 16 low-power two’s complement multiplier. In IEEE International Symposium on

Circuits and Systems., volume 5, pages 345–348, May 2000.

[Golston, 2000] Jeremiah Golston. TMS320C64x architecture extensions boost perfor-

mance for broadband communications and imaging. In Hotchips 12, August 2000.

[Gordon et al., 2002] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin,

Ali S. Meli, Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David

Maze, and Saman Amarasinghe. A stream compiler for communication-exposed archi-

tectures. In Proceedings of the Tenth International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 82–92, October 2002.

BIBLIOGRAPHY 145

[Green, 2000] Peter K. Green. A GHz IA-32 architecture microprocessor implemented on

0.18 µm technology with aluminum interconnect. In 2000 IEEE International Solid-

State Circuits Conference Digest of Technical Papers, pages 98–99,449, February 2000.

[Ho et al., 2001] Ron Ho, Ken Mai, and Mark Horowitz. The future of wires. Proceedings

of the IEEE, April 2001.

[Horowitz et al., 1994] Mark Horowitz, Thomas Indermaur, and Ricardo Gonzalez. Low-

power digital design. In Symposium on Low Power Electronics, pages 102–103, October

1994.

[Huang and Ercegovac, 2002] Zhijun Huang and Milos D. Ercegovac. Two dimensional

signal gating for low-power array multiplier design. In IEEE International Symposium

on Circuits and Systems., volume 1, pages I–489–I–492, 2002.

[Intel, 2002] Intel Corp. Intel Pentium 4 Processor with 512-KB L2 Cache on 0.13 Micron

Process at 2 GHz - 3.06 GHz, with Support for Hyper-Threading Technology at 3.06

Ghz, document number: 298643-005 edition, November 2002.

[Janssen and Corporaal, 1995] Johan Janssen and Henk Corporaal. Partitioned register

files for TTAs. In Proceedings of the 28th Annual IEEE/ACM International Symposium

on Microarchitecture, pages 303–312, November 1995.

[Jouppi, 1990] Norman P. Jouppi. Improving direct-mapped cache performance by the

addition of a small fully-associative cache and prefetch buffers. In Proceedings of the

International Symposium on Computer Architecture, pages 364–373, May 1990.

[Kanade et al., 1996] Takeo Kanade, Atsushi Yoshida, Kazuo Oda, Hiroshi Kano, and

Masaya Tanaka. A stereo machine for video-rate dense depth mapping and its new

applications. In Proceedings of the 15th Computer Vision and Pattern Recognition Con-

ference, pages 196–202, San Francisco, CA, June 18–20, 1996.

[Kapadia et al., 1995] Hema Kapadia, Katayoun Falakshahi, and Mark Horowitz. Array-

of-arrays architecture for floating point multiplication. In Advanced Research in VLSI,

pages 150–157, March 1995.

146 BIBLIOGRAPHY

[Kapasi et al., 2000] Ujval J. Kapasi, William J. Dally, Scott Rixner, Peter R. Mattson,

John D. Owens, and Brucek Khailany. Efficient conditional operations for data-parallel

architectures. In Proceedings of the 33rd Annual IEEE/ACM International Symposium

on Microarchitecture, pages 159–170, December 2000.

[Kapasi et al., 2001] Ujval J. Kapasi, Peter Mattson, William J. Dally, John D. Owens, and

Brian Towles. Stream scheduling. In Proceedings of the Third Workshop on Media and

Stream Processors, pages 101–106, Austin, TX, Dec 2001.

[Khailany et al., 2001] Brucek Khailany, William J. Dally, Scott Rixner, Ujval J. Kapasi,

Peter Mattson, Jin Namkoong, John D. Owens, Brian Towles, and Andrew Chang. Imag-

ine: Media processing with streams. IEEE Micro, pages 35–46, Mar/Apr 2001.

[Khailany et al., 2002] Brucek Khailany, William J. Dally, Andrew Chang, Ujval J. Ka-

pasi, Jinyung Namkoong, and Brian Towles. VLSI design and verification of the Imagine

processor. In Proceedings of the IEEE International Conference on Computer Design,

pages 289–296, September 2002.

[Khailany et al., 2003] Brucek Khailany, William J. Dally, Scott Rixner, Ujval J. Kapasi,

John D. Owens, and Brian Towles. Exploring the VLSI scalability of stream processors.

In Proceedings of the Ninth International Symposium on High Performance Computer

Architecture, pages 153–164, February 2003.

[KleinOsowski et al., 2000] AJ KleinOsowski, John Flynn, Nancy Meares, and David J.

Lilja. Adapting the SPEC 2000 benchmark suite for simulation-based computer archi-

tecture research. In Workshop on Workload Characterization, International Conference

on Computer Design (ICCD), September 2000.

[Kohn and Fu, 1989] Leslie Kohn and Sai-Wai Fu. A 1,000,000 transistor microprocessor.

In 1989 International Solid-State Circuits Conference Digest of Technical Papers, pages

54–55, 290, 1989.

BIBLIOGRAPHY 147

[Kozyrakis and Patterson, 2002] Christos Kozyrakis and David Patterson. Vector vs. su-

perscalar and VLIW architectures for embedded multimedia benchmarks. In Proceed-

ings of the 35th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 283–293, November 2002.

[Kozyrakis and Patterson, 2003] Christos Kozyrakis and David Patterson. Overcoming the

limitations of conventional vector processors. In 30th Annual International Symposium

on Computer Architecture, June 2003.

[Kozyrakis, 2002] Christoforos Kozyrakis. Scalable Vector Media-processors for Embed-

ded Systems. PhD thesis, University of California at Berkeley, 2002.

[Kutzschebauch and Stok, 2000] T. Kutzschebauch and L. Stok. Regularity driven logic

synthesis. In Proceedings of the International Conference on Computer Aided Design,

pages 439–446, November 2000.

[Lee and Parks, 1995] Edward A. Lee and Thomas M. Parks. Dataflow process networks.

Proceedings of the IEEE, 83(5), May 1995.

[Lee and Stoodley, 1998] Corinna G. Lee and Mark G. Stoodley. Simple vector micro-

processors for multimedia applications. In Proceedings of the 31st Annual IEEE/ACM

International Symposium on Microarchitecture, pages 25–36, December 1998.

[Lee, 1996] Ruby B. Lee. Subword parallelism with MAX-2. IEEE Micro, pages 51–59,

August 1996.

[Mai et al., 2000] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and

Mark Horowitz. Smart memories: A modular reconfigurable architecture. In 27th An-

nual International Symposium on Computer Architecture, pages 161–171, June 2000.

[Malachowsky, 2002] Chris Malachowsky. When 10M gates just isn’t enough....the GPU

challenge. In Proceedings of 39th Design Automation Conference, June 2002.

148 BIBLIOGRAPHY

[Mattson et al., 2000] Peter Mattson, William J. Dally, Scott Rixner, Ujval J. Kapasi, and

John D. Owens. Communication scheduling. In Proceedings of the International Con-

ference on Architectural Support for Programming Languages and Operating Systems,

pages 82–92, November 2000.

[Mattson, 2001] Peter Mattson. A Programming System for the Imagine Media Processor.

PhD thesis, Stanford University, 2001.

[Montrym and Moreton, 2002] John Montrym and Henry Moreton. Nvidia GeForce4. In

Hotchips 14, August 2002.

[Nagamatsu et al., 1990] Masato Nagamatsu, Shigeru Tanaka, Junji Mori, Katsusi Hirano,

Tatsuo Noguchi, and Kazuhisa Hatanaka. A 15-ns 32x32-b CMOS multiplier with an

improved parallel structure. In IEEE Journal of Solid State Circuits, pages 494–497,

April 1990.

[Nickolls et al., 2002] John Nickolls, L. J. Madar III, Scott Johnson, Viresh Rustagi, Ken

Unger, and Mustafiz Choudhury. Broadcom Calisto: A multi-channel multi-service

communications platform. In Hotchips 14, August 2002.

[Nijssen and van Eijk, 1997] Raymond X.T. Nijssen and C.A.J. van Eijk. Regular layout

generation of logically optimized datapaths. In Proceedings of the International Sym-

posium on Physical Design, pages 42–47, 1997.

[Ohashi et al., 2002] Masahiro Ohashi, T. Hashimoto, S.I. Kuromaru, M. Matsuo, T. Mori-

iwa, M. Hamada, Y. Sugisawa, M. Arita, H. Tomita, M. Hoshino, H. Miyajima, T. Naka-

mura, K.I. Ishida, T. Kimura, Y. Kohashi, T. Kondo, A. Inoue, H. Fujimoto, K. Watada,

T. Fukunaga, T. Nishi, H. Ito, and J. Michiyama. A 27 MHz 11.1 mW MPEG-4 video

decoder LSI for mobile application. In 2002 IEEE International Solid-State Circuits

Conference Digest of Technical Papers, pages 366–367, February 2002.

[Olofsson and Lange, 2002] Andreas Olofsson and Fredy Lange. A 4.32GOPS 1W

general-purpose DSP with an enhanced instruction set for wireless communication. In

2002 International Solid-State Circuits Conference Digest of Technical Papers, pages

54–55,443, 2002.

BIBLIOGRAPHY 149

[Owens et al., 2002] John D. Owens, Scott Rixner, Ujval J. Kapasi, Peter Mattson, Ben

Serebrin, and William J. Dally. Media processing applications on the Imagine stream

processor. In Proceedings of the IEEE International Conference on Computer Design,

pages 295–302, September 2002.

[Owens, 2002] John Owens. Computer Graphics on a Stream Architecture. PhD thesis,

Stanford University, 2002.

[Peleg and Weiser, 1996] Alex Peleg and Uri Weiser. MMX technology extension to the

Intel architecture. IEEE Micro, pages 42–50, August 1996.

[Phillip, 1998] Mike Phillip. Altivec: A second generation SIMD microprocessor archi-

tecture. In Hotchips 10, August 1998.

[Rajagopal et al., 2002] Sridhar Rajagopal, Scott Rixner, and Joseph R. Cavallaro. A pro-

grammable baseband processor design for software defined radios. In 45th IEEE In-

ternational Midwest Symposium on Circuits and Systems, volume 3, pages 413–416,

August 2002.

[Rambus, 2001] Rambus. 512/576 Mb 1066 MHz RDRAM Datasheet, DL-0117-030 ver-

sion 0.3, 3.6MB, 11/01 edition, 2001.

[Ranganathan et al., 1999] Parthasarathy Ranganathan, Sarita Adve, and Norman P.

Jouppi. Performance of image and video processing with general-purpose processors

and media ISA extensions. In Proceedings of the 26th International Symposium on

Computer Architecture, pages 124–135, May 1999.

[Rathnam and Slavenburg, 1996] Selliah Rathnam and Gerrit A. Slavenburg. An architec-

tural overview of the programmable media processor, TM-1. In Proceedings of COMP-

CON, pages 319–326, February 1996.

[Rau et al., 1982] B. Ramakrishna Rau, Christopher D. Glaeser, and Raymond L. Picard.

Efficient code generation for horizontal architectures: Compiler techniques and architec-

tural support. In Proceedings of the International Symposium on Computer Architecture,

pages 131–139, April 1982.

150 BIBLIOGRAPHY

[Rau et al., 1989] B. Ramakrishna Rau, David W. L. Yen, Wei Yen, and Ross A. Towle.

The Cydra 5 departmental supercomputer: Design philosophies, decisions, and trade-

offs. Computer, pages 12–35, January 1989.

[Rixner et al., 1998] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek Khailany,

Abelardo Lopez-Lagunas, Peter Mattson, and John D. Owens. A bandwidth-efficient

architecture for media processing. In Proceedings of the 31st Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, pages 3–13, November 1998.

[Rixner et al., 2000a] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter R. Mattson,

and John D. Owens. Memory access scheduling. In 27th Annual International Sympo-

sium on Computer Architecture, pages 128–138, June 2000.

[Rixner et al., 2000b] Scott Rixner, William J. Dally, Brucek Khailany, Peter Mattson, Uj-

val J. Kapasi, and John D. Owens. Register organization for media processing. In

Proceedings of the Sixth International Symposium on High Performance Computer Ar-

chitecture, pages 375–387, January 2000.

[Rixner, 2001] Scott Rixner. Stream Processor Architecture. Kluwer Academic Publish-

ers, Boston, MA, 2001.

[Russell, 1978] Richard M. Russell. The Cray-1 computer system. Communications of the

ACM, 21(1):63–72, January 1978.

[Sager et al., 2001] David Sager, Glenn Hinton, Michael Upton, Terry Chappell,

Thomas D. Fletcher, Samie Samaan, and Robert Murray. A 0.18 µm CMOS IA32

microprocessor with a 4GHz integer execution unit. In 2001 International Solid-State

Circuits Conference Digest of Technical Papers, pages 324–325, 2001.

[Santoro et al., 1989] Mark R. Santoro, Gary Bewick, and Mark Horowitz. Rounding al-

gorithms for IEEE multipliers. In Proceedings of the 9th Symposium on Computer Arith-

metic, pages 176–183, September 1989.

[SIA, 2001] Semiconductor industry association: The international technology roadmap

for semiconductors, 2001.

BIBLIOGRAPHY 151

[Sibyte, 2000] Sibyte. SB-1250 Product Data Sheet, rev 0.2 edition, October 2000.

[Simulink, 2002] Mathworks. Simulink: Model-Based and System-Based Design (Using

Simulink), version 5 edition, 2002.

[Synopsys, 2000a] Synopsys. Design Compiler User Guide, 2000.11 edition, 2000.

[Synopsys, 2000b] Synopsys. Physical Compiler User Guide, 2000.11 edition, 2000.

[Thakkar and Huff, 1999] Shreekant Thakkar and Tom Huff. The internet streaming SIMD

extensions. Intel Technology Journal, Q2, 1999.

[Thompson et al., 2001] S. Thompson, M. Alavi, R. Arghavani, A. Brand, R. Bigwood,

J. Brandenburg, B. Crew, V. Dubin, M. Hussein, P. Jacob, C. Kenyon, E. Lee, B. Mcin-

tyre, Z. Ma, P. Moon, P. Nguyen, M. Prince, R. Schweinfurth, S. Sivakumar, P. Smith,

M. Stettler, S. Tyagi, M. Wei, J. Xu, S. Yang, and M. Bohr. An enhanced 130 nm gener-

ation logic technology featuring 60 nm transistors optimized for high performance and

low power at 0.7 - 1.4 V. In 2001 International Electron Devices Meeting, pages 11.6.1

–11.6.4, 2001.

[TI, 2003] Texas Instruments. TMS320C6713, TMS320C6713 Floating-Point Digital Sig-

nal Processors, sprs186c - december 2001 - revised march 2003 edition, March 2003.

[Tremblay et al., 1996] Marc Tremblay, J. Michael O’Connor, Venkatesh Narayanan, and

Liang He. VIS speeds new media processing. IEEE Micro, pages 10–20, August 1996.

[Tyagi et al., 2000] S. Tyagi, M. Alavi, R. Bigwood, T. Bramblett, J. Brandenburg,

W. Chen, B. Crew, M. Hussein, P. Jacob, C. Kenyon, C. Lo, B. McIntyre, Z. Ma,

P. Moon, P. Nguyen, L. Rumaner, R. Schweinfurth, S. Sivakumar, M. Stettler, S. Thomp-

son, B. Tufts, J. Xu, S. Yang, and M. Bohr. A 130 nm generation logic technology fea-

turing 70 nm transistors, dual Vt transistors and 6 layers of Cu interconnects. In 2000

International Electron Devices Meeting, pages 567–570, 2000.

[Waingold et al., 1997] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek

Sarkar, Walter Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua,

152 BIBLIOGRAPHY

Jonathan Babb, Saman Amarasinghe, , and Anant Agarwal. Bearing it all to software:

RAW machines. Computer, pages 86–93, September 1997.

[Wawrzynek et al., 1996] John Wawrzynek, Krste Asanovic, Brian Kingsbury, David

Johnson, James Beck, and David Morgan. Spert II: A vector microprocessor system.

Computer, pages 79–86, March 1996.

[Weste and Eshraghian, 1993] Neil H. E. Weste and Kamran Eshraghian. Principles of

CMOS VLSI Design: A Systems Perspective, Second Edition, pages 560–563. Addison-

WesleyPublishing Company, 1993.

