
Appears in the Proceedings of the 2002 International Conference on Computer Design.

A Stream Processor Development Platform

Ben Serebrin
�
, John D. Owens

�
, Chen H. Chen � , Stephen P. Crago � , Ujval J. Kapasi

�

Brucek Khailany
�
, Peter Mattson

�
, Jinyung Namkoong

�
, Scott Rixner

�
, William J. Dally

�

�
Computer Systems Laboratory � Computer Systems Laboratory � Information Sciences Institute East

Stanford University Rice University University of Southern California
Stanford, CA 94305 Houston, TX 77005 Arlington, VA 22203�

serebrin, jowens, kapasi, khailany, pmattson, rixner@rice.edu
�
cchen,crago � @east.isi.edu

namkoong, billd � @cva.stanford.edu

Abstract

We describe a hardware and software platform for devel-
oping streaming applications. Programmers write stream
programs in high-level languages, and a set of software
tools maps these programs to code that runs on a stream-
ing hardware system. The hardware platform includes
two Imagine Stream Processors, together providing 32
GFLOPS peak performance, and a high-speed onboard net-
work to carry video and other data between peripherals and
the Imagine processors.

1 Introduction

In this paper, we describe a development platform for
the Imagine Stream Processor and show how high perfor-
mance streaming media applications are realized on this
platform. The Imagine development system supports two
Imagine processors and provides them with memory, video
inputs and outputs, and a high-speed network, all on a sin-
gle circuit board that allows us to test and debug the Imagine
hardware and software systems and to develop Imagine ap-
plications. A single Imagine node can provide 16 GFLOPS
peak performance. Imagine’s network interface allows mul-
tiple processors and media devices to be connected in a scal-
able network. The development board provides sufficient
computational power for real-time video applications such
as stereo depth extraction and MPEG encoding.

Imagine applications are programmed using StreamC
and KernelC. StreamC programs specify data movement
and initiate kernel operations on entire streams of data. A
host processor executes these stream programs and uses a
run-time scheduler to coordinate stream traffic. KernelC
kernels, which execute on the Imagine processor, perform

computation on the data records within a stream.
This paper describes the hardware and software systems

we have implemented to operate a dual-Imagine system. In
Section 2, we describe an application we will use to illus-
trate the details of the system throughout the paper. Sec-
tion 3 discusses the programming environment and stream
and kernel schedulers. In Section 4 we detail the hard-
ware implementation of the system. Finally, we describe
our plans to extend the design of the dual-Imagine system
to a 64-Imagine computer capable of over 1 TeraFLOPS in
Section 5.

2. Example Application: 3-D Teleconferencing

In this section, we sketch how a 3-D teleconferencing ap-
plication may be mapped to the Imagine development sys-
tem. The approach taken for this implementation applies
to any Imagine application. We will refer to this example
as details of the development platform are introduced later
in this paper. Teleconferencing is particularly suited to this
system because it exercises all of the system’s components,
including video I/O, the Imagine network, the host proces-
sor, and the Imagine itself. Video applications such as this
one perform well in the Imagine stream processing archi-
tecture because pixel data can be streamed in and passed
through several computation kernels within the stream pro-
cessor, taking advantage of producer-consumer locality be-
fore results are finally streamed out of the processor. Ap-
plications similar to teleconferencing will be used in our
evaluation of the Imagine architecture.

A 3-D teleconferencing setup requires two or more cam-
eras that operate in concert to allow extraction of depth in-
formation. The cameras are located a small, fixed distance
from each other and aimed at the same scene to allow binoc-
ular depth extraction from the resulting overlapping images.

1

The Imagine stream processors perform stereo depth extrac-
tion on two video input streams [1] and output a stream of
depth-annotated, MPEG compressed image data. The out-
put stream is transferred to the remote viewing site, where
MPEG decoding and 3-D image reconstruction must be per-
formed.

The major computational kernels for the transmission
side of the application have been written and optimized for
Imagine. The following results are derived from perfor-
mance numbers from our cycle-accurate simulator for the
depth extraction and MPEG kernels. These computation-
ally intense tasks fit well on a single Imagine chip, which
can process 42 frames per second for 640x480 stereo depth
extraction and 94 fps for MPEG encoding (derived from
Khailany et al. [3], using a core frequency of 400 MHz).
Using these two kernels to create a depth map from two im-
ages and to compress a single composite image, an Imagine
could sustain approximately 29 fps for the transmission side
of 3-D teleconferencing.

Data originates in this application with two digital cam-
eras, which are connected to the board via Firewire ports.
Frames from both cameras travel over the Imagine network
on the board into the stream processor, where the images
are processed and then sent out via an external network to
the viewing station for the teleconference. While one Imag-
ine has sufficient resources to execute both depth-extraction
and MPEG encoding, the application may be partitioned be-
tween the processors to increase performance, reduce la-
tency, or to further process the image. We will describe the
use of multiple Imagines in more detail in section 5.

3. Software Implementation

The Imagine stream programming model decomposes
an application into a series of computation kernels that
operate on streams of data. Streams are sets of sequen-
tial data records that lend themselves to high-performance
computation through their regular and predictable structure.
Khailany et al. show how the depth extractor portion of the
teleconferencing application maps to the stream program-
ming model [3].

Stream and Kernel programs are written in the StreamC
and KernelC languages, respectively. The use of these lan-
guages for Imagine programming allows the programmer to
use the familiar high-level C language instead of writing in
Imagine assembly code. The two-level programming sys-
tem reflects the division of labor on the Imagine system: the
kernels running on Imagine perform numeric computation,
while the stream programs running on the Host Processor
correspond to a high-level description of the application.

Several types of programs work together to execute an
Imagine application, as illustrated in figure 1. Each kernel
program takes one or more data streams as inputs and pro-

KernelC

Iscd kernel

scheduler

Kernel Program

H

o

s
t

P

r
o

c

e
s

s

o

r

I
m

a

g

i
n

e

Run-time

Compile-time

C

o

n

s
o

l
e

P

C

User Interface/

stdio

File System

Stream Program

stream

scheduler

StreamC

Metrowerks

C++ compiler

C++

Visual Studio

C++ compiler

Figure 1. Imagine System Software Layout

duces one or more streams as outputs. For example, one
kernel in the MPEG-2 compression portion of the applica-
tion is Discrete Cosine Transform (DCT), which accepts a
stream of 8x8 pixel blocks, performs a 2-D DCT on them,
and outputs a stream of transformed blocks. Stream pro-
grams run on the Host Processor, call the kernel programs,
and initiate the transfer of data streams. The Host Proces-
sor’s runtime libraries interface the execution of Imagine
applications with the console PC, provide a command-line
interface, and load compiled StreamC and KernelC code
into the Host Processor and Imagine. Finally, the Console
PC runs a user interface application and a simple PCI device
driver. The software exports the Console PC’s console I/O
and file system to the Host Processor, and may be extended
for specific applications to provide network functions and a
more elaborate user interface.

The way kernels work together in a real application can
be seen by revisiting our 3-D teleconferencing application.
First, the image-sharpening kernel enhances the contrast for
a stream of pixels, then the depth-extraction kernel performs
sum-of-absolute-differences calculations to output a stream
of pixels that represents a depth map. Finally, the MPEG
compression kernels read image pixels in as 8x8 blocks and
output a stream of compressed blocks. The overall telecon-
ferencing application is implemented as a StreamC program
that instructs Imagine to receive network data, run kernels,
and then send out the resulting data. The Console PC is
used to provide a command line interface to allow the user
to start up and control the application.

3.1. StreamC and the Stream Scheduler

StreamC provides a simple and complete programming
interface for stream programs. StreamC programs are writ-
ten in C++ with calls into a library of stream functions,
which enables kernel calls and stream manipulation. Ker-
nel calls are treated as functions that take input and output

streams as arguments. StreamC provides functions to cre-
ate streams, transfer them over the Imagine network, and
communicate with the Console PC.

The stream scheduler allocates space in external memory
and in the Stream Register File (SRF), a large on-chip mem-
ory used to store streams that are passed between kernels.
The scheduler determines when to place streams in the SRF
and when to move them to and from main memory to take
advantage of producer-consumer locality between different
kernels [2]. Efficient stream programs minimize traffic be-
tween the SRF and memory. Stripmining breaks a large in-
put stream into smaller batches when the data is larger than
the SRF. In our example, the entire data set of two video im-
ages is larger than the SRF, so the stream scheduler divides
the images into batches of pixel rows. One batch is loaded
into the SRF at a time. The entire series of kernels executes
on this batch before computation begins on the next rows.
In this way, raw pixel data arrives in the SRF and passes
between kernels through temporary storage in the SRF. Ex-
pensive memory traffic is encountered only when final re-
sults are written out.

To ensure high resource utilization, the stream scheduler
performs software pipelining at the stream level, where ker-
nels are executed concurrently with memory operations. In
our example, kernels process a batch of pixels while the
scheduler simultaneously sends out finished data to memory
and loads the next rows into the SRF. One measure of the
efficacy of software pipelining is occupancy, the percentage
of time that a module is performing work. In practice, soft-
ware pipelining improves the occupancy of the most heavily
used module (either the memory system or the arithmetic
units) to above 90% [4].

3.2. KernelC and the Kernel Scheduler

Kernel programs are written in KernelC, a subset of C.
KernelC programs operate on single stream elements and
are repeatedly executed on each element of a stream. Be-
cause of this simplification, KernelC does not contain any
control structures except loops and select statements and
does not support subroutines. It supports Imagine’s four ba-
sic datatypes: integers, paired halfwords in a single word,
four bytes in a single word, and single-precision floating
point. Records composed of these datatypes are also sup-
ported. KernelC also provides an interface to the vari-
ous mechanisms on Imagine that implement data-dependent
conditionals.

The kernel scheduler, IScd, compiles the KernelC de-
scription of the kernel into Imagine executable code. Imag-
ine has several functional units operating in parallel, so the
kernel scheduler must extract instruction-level parallelism
from the kernel. The algorithm used in IScd, communica-
tion scheduling, is described by Mattson [5].

Imagine Development Board

Imagine B
Imagine A

Communication

FPGA

Host Interface

Imagine Network

Host

Processor

Processor

FPGA

DVI & Firewire

Host Interface

Imagine Network

2

5

6
M

B

S

D

R

A

M

6

4

M

B

S

D

R

A

M

2
5

6

M

B

S

D

R

A

M

Console PC

PCI Bus

Keyboard
 File System
Monitor

Figure 2. Imagine Prototype Board Architec-
ture

3.3. Compilation and Booting

Three different types of programs are compiled and
loaded on the Imagine system. Console PC programs are
compiled in Microsoft Visual Studio and run as standard
Microsoft Windows 2000 applications that access a device
driver for communication over PCI to the Host Processor.
Both StreamC programs and the stream scheduler are com-
piled for the Host Processor with Metrowerks Codewar-
rior for Embedded PowerPC. On boot, the Host Processor
reads a small boot program from Boot ROM and waits for
the Console PC to send the full StreamC application. Fi-
nally, IScd compiles KernelC code for Imagine. The stream
scheduler loads compiled kernels into Imagine’s microcode
store.

4. Hardware Implementation

The Imagine development system contains two Imagine
processors with a high-speed network, I/O devices, and a
Host Processor. Two FPGAs serve as translators to make
Imagines and I/O devices available to the Host Processor
and on the Imagine network. The Host Processor controls
the entire prototype system, running stream programs and
a stream scheduler. Figure 2 shows the architecture of the
Imagine system. A photograph of the prototype board with-
out the Imagine processors is shown in Figure 3. The proto-
type board is a 14-layer, 31x27cm oversized PCI card with

aa

aa

aa

aa

aa

Imagine A
 Imagine B

(on back of board)

Processor FPGA

Communication FPGA

Firewire
 Host Processor

Clock

Generators

DVI and VGA

Power Supplies

 a

Figure 3. Imagine Prototype Board Photo-
graph

substantial real estate dedicated to debugging tools such
as probe points, configurable clocks, and adjustable power
supplies.

4.1. Imagine

The Imagine Stream Processor receives data streams
from the network and host interfaces and runs arithmetic
kernels on this stream data. To support the streaming model,
Imagine has a hierarchical register file organization. A large
Stream Register File provides on-chip storage for transfer-
ring data streams between kernels [3]. The stream sched-
uler utilizes this on-chip capacity to keep external commu-
nication to a minimum, as described in Section 3.1. In ad-
dition to its internal memory, Imagine can address up to
512 MB of external SDRAM. The development system pro-
vides each Imagine with 256 MB. Imagine has a total of 48
floating-point ALUs organized as 8 SIMD clusters, provid-
ing 16 GFLOPS of peak performance. The Imagine Stream
Processor is implemented in a 0.15 micron Texas Instru-
ments process.

4.2. Network

The Imagine network provides high-speed communi-
cation for data streams. Each Imagine chip has 4 bi-
directional, 16 bit wide, 400 MHz network ports that can
be used to create scalable Imagine networks. Streams are
composed of a series of 80-bit flits, of which 16 bits are used

for control and 64 are data. Each stream starts with a head
flit that contains routing information, a tag to identify the
stream, and a virtual channel number. Subsequent body flits
of the stream are identified by the virtual channel number.
A stream may be of arbitrary length; each stream is ended
by a tail flit. Each virtual channel uses credit-based flow
control. All network transfers originate and terminate in the
Imagine’s Stream Register File or at a peripheral. Network
streams are statically source-routed by the Stream Sched-
uler.

In our example application, the two cameras send data to
Imagine via the network. We use tags to distinguish images
from the left and right cameras. Because an image is larger
than the Imagine’s SRF, the Stream Scheduler stages the
transfer of image data from the cameras through the SRF
to memory. Network and memory transfers operate inde-
pendently of all other Imagine operations. While a row is
being transferred to memory, the next row of pixels is ar-
riving and the arithmetic clusters are operating on another
portion of the image.

A router on each Imagine chip enables networks to be
constructed with no external logic. In a multiple-Imagine
system, packets move through a series of Imagines on the
routes specified in their headers. The network supports ar-
bitrary topologies of node degree 4 or less, e.g., a 2-D torus.
The network on the development board contains two Imag-
ines and media devices as shown in figure 2. The off-board
Imagine network connections allow the network to grow by
connecting to additional dual-Imagine boards with a passive
backplane. Because the aggregate bandwidth increases with
the number of nodes in the Imagine network, the network
can scale to support hundreds of Imagines and peripherals.
In contrast, simple bus-based or shared-medium intercon-
nects such as PCI and Ethernet have fixed bandwidth even
as devices are added.

4.3. Media Peripherals and Device Memory Map-
ping

The prototype board supports several high-bandwidth
media devices. A DVI (Digital Video Interface) input chan-
nel allows video input, and DVI and VGA output chan-
nels serve as the video output for Imagine’s graphics ap-
plications. Two 400 Mbps Firewire channels allow high-
resolution cameras or other devices to provide input for
video applications.

The Imagine board contains two Xilinx VirtexII-1000
FPGAs for memory translation and peripheral control. The
Processor FPGA maps the control and data registers for
the Imagine chips and peripherals into the Host Processor’s
memory space. The Communication FPGA connects all the
peripherals to the Imagine network and translates between
their native interfaces and the Imagine network. In addition,

the Communication FPGA implements a double buffer us-
ing external memory that can be used as a frame buffer in
video rendering applications. The chosen FPGAs can ac-
commodate large designs, and thus may be programmed
with additional functions for specific applications. General
uses include staging incoming data for convenient stream
representation and performing inherently serial pre- or post-
processing on data sets, such as the run-length encoding
stage of MPEG compression.

In the teleconferencing application, the Communication
FPGA translates the incoming video images into network
streams, tags them appropriately, and sends them to the
Imagine processor. In a teleconference receiver, the recon-
structed video output is output using DVI or VGA.

4.4. Host Interface and Host Processor

In addition to its four high-speed network interfaces,
Imagine has a conventional TTL interface to connect to the
Host Processor. Imagine is controlled through this inter-
face; programs and data may be loaded and Imagine’s con-
trol and status registers are accessible through the host inter-
face. The host interface is connected to the Host Processor,
an embedded PowerPC 8240, through the Processor FPGA.
The 8240 was chosen because it provides a built-in PCI in-
terface and reasonable performance in one chip.

5 Future Work

The Imagine prototype board is designed as an applica-
tion development platform and to test all components of a
larger system of 64 Imagine nodes. A unit of two Imag-
ines and one PowerPC host processor, plus memory, can be
duplicated four times on a board, and eight boards can be
placed in a system, to create a 64-Imagine machine capable
of 1 TeraFLOPS of computing. The Imagines will be tied
together in a 2-dimensional, 8x9 torus network, where the
9th column of the torus is occupied by shared I/O devices
such as video inputs and outputs, consoles, hard drives,
and network ports. A PCI bus on each card ties the four
host processors on that card together for program distribu-
tion and control, and bridge chips on each card connect the
PCI busses together. Figure 4 shows the design of the 64-
Imagine system. The system will have a passive backplane
to connect eight 8-Imagine boards and an I/O board together
in a unified, high-speed network of computation nodes, with
a bridged PCI bus for host-processor coordination.

An application must be partitioned to run on a multiple
Imagine system. Applications can be partitioned either by
kernels, by data, or by both kernels and data. With kernel
partitioning, the kernels of an application are divided across
the processors in a system and network communications are
used to pass streams between kernels running on different

P

C

I

B

u

s

I

I

I

I

I

I

I

I

8

-
I

m

a

g

i
n

e

B

o

a

r
d

I
/

O

B

o

a

r
d

8
-

I
m

a

g

i
n

e

B

o

a

r
d

8
-

I
m

a

g

i
n

e

B

o

a

r
d

8
-

I
m

a

g

i
n

e

B

o

a

r
d

8
-

I
m

a

g

i
n

e

B

o

a

r
d

8
-

I
m

a

g

i
n

e

B

o

a

r
d

8
-

I
m

a

g

i
n

e

B

o

a

r
d

8
-

I
m

a

g

i
n

e

B

o

a

r
d

Host

Processor

Imagine

Imagine

Imagine

Network

Figure 4. A TeraFLOPS system containing 64
Imagines

processors. Data partitioning is achieved by replicating a
kernel on a number of processors and dividing the data be-
tween them - e.g., sending even records of a stream to the
kernel running on node 1 and the odd elements of a stream
to the identical kernel running on node 2. Manual and auto-
mated partitioning of streaming programs are currently un-
der investigation.

6 Conclusion

The Imagine development platform has three functions:
Imagine architecture evaluation, software development, and
component debugging for the 64-Imagine TeraFLOPS sys-
tem. The development platform, which is successfully run-
ning simple applications as of July 2002, will allow us to
verify the performance of the Imagine design, which has
been previously exercised with a suite of applications run-
ning on our cycle-accurate simulator. We will distribute
the Imagine board to academic partners who will explore
the uses of streaming in graphical and scientific computing
applications, for both single and multiple-Imagine applica-
tions. The experience gained in implementing and program-
ming the dual-Imagine system will guide us in the construc-
tion of a 1-TeraFLOPS streaming computer.

Acknowledgments

We would like to thank Jinwoo Suh and Li Wang of ISI
East for their work in implementing and debugging board
software and FPGA code. Thanks also go to Abhishek Das
and Jung Ho Ahn at Stanford for their help in debugging
system hardware and software. Finally, Alan Swithenbank
provided invaluable advice and assistance with delicate cir-
cuit board rework.

The research described in this paper was supported by
the Defense Advanced Research Projects Agency under
ARPA order E254 and monitored by the Army Intelligence
Center under contract DABT63-96-C0037, by ARPA order
L172 monitored by the Department of the Air Force under
contract F29601-00-2-0085, by Intel Corporation, by Texas
Instruments, by an Intel Foundation Fellowship, and by the
Interconnect Focus Center Program for Gigascale Integra-
tion under DARPA Grant MDA972-99-1-0002.

References

[1] T. Kanade, H. Kano, S. Kimura, A. Yoshida, and K. Oda.
Development of a video-rate stereo machine. In Proceedings
of the International Robotics and Systems Conference, pages
95–100, Pittsburgh, PA, August 5–9, 1995.

[2] U. J. Kapasi, P. Mattson, W. J. Dally, J. D. Owens, and
B. Towles. Stream Scheduling. Concurrent VLSI Architec-
ture Tech Report 122, Stanford University, Computer Systems
Laboratory, March 2002.

[3] B. Khailany, W. J. Dally, S. Rixner, U. J. Kapasi, P. Matt-
son, J. Namkoong, J. D. Owens, B. Towles, and A. Chang.
Imagine: Media Processing with Streams. IEEE Micro, pages
35–46, Mar/Apr 2001.

[4] P. Mattson. Programming System for the Imagine Media Pro-
cessor. PhD thesis, Stanford University, 2002.

[5] P. Mattson, W. J. Dally, S. Rixner, U. J. Kapasi, and J. D.
Owens. Communication scheduling. In Proceedings of the
Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 82–
92, 2000.

