Chapter 1

| ntroduction

1.1 TheProblem

Media processing applications, such asimage-processing, signal processing, and graphics,
motivate new processor architecturesthat place new burdens on the compiler. These appli-
cations demand very high arithmetic rates on the order of 10-100 billion operations per

second. They also demand correspondingly high data bandwidth, and have little to no data

reuse, i.e. most data are read only once after being written. [11][46]

Conventional processors, like the one shown in Figure 1-1, cannot meet the demands of
media processing applications. They cannot support enough functional unitsto achievethe
needed arithmetic rates because their register file architecture does not scale. As shownin
Figure 1-1, each functional unit input or output is connected by a dedicated bus and regis-
ter file port to asingle register file. The size of the register file is proportional to the cube
of the number of functional units [44]. Conventional processors cannot supply the needed
data bandwidth because their on-chip memory isin the form of a cache that relies on data
reuse to reduce memory traffic. A cache never reduces memory traffic by more than half
for an application without data reuse, in which all datais written once and read once. The
cache cannot anticipate that the datais never reused so it must propagate the write to
memory. Further, the random-access design of a cache limits the amount of bandwidth it

can provide to the processor core.
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FIGURE 1-1. Simplified diagram of a conventional processor

The Imagine Media Processor (Imagine), shown in Figure 1-2, introduces two innovations
that enable it to meet the demands of media processing applications. First, Imagine
replaces the single register file with distributed register files: multiple two-ported register
files connected to the functional units by shared buses and register file ports. These dis-
tributed register files can efficiently support alarge number of functional units. Each func-
tion unit output is connected to a bus that is connected to all shared register file write
ports. Second, Imagine uses a Stream Register File (SRF) instead of a cache. The SRF
allows the application to explicitly load and store long sequences of data records called
streams. L oading and storing streams only when necessary significantly reduces memory
traffic. The SRF is optimized for sequential access to these streams, allowing it to provide

much higher bandwidth to the processor core than a cache.

Other architectures designed for media processing have incorporated limited support for
similar features. For example, the Texas Instruments C6X [48] has two partitioned register
files and the Equator MAP-CA [2] has a programmer controlled DMA unit for accessing
streams through an existing cache. However, Imagine is designed around the concepts of

partitioned register files and streaming memory access: register files are partitioned down



to asingleregister file per functional unit input and streams are used for al memory

accesses.
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FIGURE 1-2. Simplified diagram of an | magine processor

These architectural innovations place additional burdens on the compiler. Distributed reg-
ister files require the compiler to allocate the shared buses and register file ports and to
manage the movement of data between the multiple register files. A stream register file
requires the compiler to explicitly allocate space in the stream register file to hold streams

and manage the loading and storing of streams.

This thesis presents a programming system for the Imagine Media Processor that consists

two C-like languages called KernelC and StreamC that implement the stream program-



ming model, and two compilers, one for each language. The two compilers introduce new

techniques to handle Imagine's architectural innovations.

The stream programming model divides a media processing application into one or more
kernels that define each processing step in the application, and a stream program that
defines the high-level control- and data- flow between kernels. A kernel, written in Ker-
nelC, isafunction that operates on streams. Internally, a kernel usually consists of a com-
putation-intensive loop that iterates over the records in the input stream(s) and produces
the records in the output stream(s). The stream program, written using StreamC in combi-
nation with C++, consists of a series of operations performed on streams, the most com-
mon of which are kernels. Figure 1-3 graphically depicts asimplified version of a polygon
rendering application written using the stream programming model. The first kernel takes
astream of triangles asinput and produces a stream of spans (lines of pixels) as output, the
second kernel takes the stream of spans asinput and produces a stream of fragments (pix-

els) as output.
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FIGURE 1-3. Simplified polygon rendering using stream programming model



The Kernel C compiler introduces communication scheduling to allocate shared intercon-
nect resources and manage data movement between multiple register files and functional
units. With asingle register file, all functional units can accessall data. With multiple reg-
ister filesthisis no longer the case. Communication scheduling ensures that the result of
each operation is available to the operations that use that result. It assigns each communi-
cation, the logical transfer of a value from the operation that computed it to an operation
that usesit, to aroute that defines the resources used to move the value between the func-
tional units that perform the operations, as depicted in Figure 1-4. Communication sched-
uling composes each route from three components: awrite stub that defines how the result
iswritten to aninitial register file, zero or more copy operations to move the value
between register files, and aread stub that defines how the operand is read from the final
register file.
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FIGURE 1-4. Communication scheduling assigns each communication to a route
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The StreamC compiler introduces stream scheduling to allocate the SRF and determine
when to load and store streams. It assigns each stream access to a buffer in the SRF as
depicted in Figure 1-5. Stream scheduling attempts to minimize memory traffic and maxi-
mize parallelism of kernels and memory accesses. Ideally, a stream is kept in the SRF
between accesses, reducing memory traffic. When a stream must be loaded or stored, it is
allocated a buffer that is digoint from the buffers used by nearby kernels, enabling the
memory access to occur in parallel with those kernels. Stream scheduling allocates the

SRF as atwo dimensional space. One dimension of this space is the SRF address space,



the other dimension is time, the duration of the stream program. It assigns all stream
accesses in the stream program to rectangular buffers with appropriate size (width) and
duration (height), then tries to position all of the buffersin the two dimensional space. If
all of the buffers do not fit, stream scheduling reduces the size or duration of a buffer and

then tries again until it succeeds.
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FIGURE 1-5. Sream scheduling assigns each stream accessto a buffer in the SRF

Experimental results demonstrate that this programming system can be used to implement
sophisticated, high-performance applications including stereo depth extraction, MPEG2
encoding, and polygon rendering for the Imagine Media Processor. For a set of bench-
marks that includes these applications, communication scheduling delivers performance
with shared interconnect and multiple partitioned register files that is comparable to one
multi-ported register file and stream scheduling manages the SRF as well as or better than

experienced Imagine programmers can by hand.



1.2 Contributions

The main contributions of thisthesis are:

1. Animplementation of the stream programming model which introduces the StreamC
and Kernel C languages to enable efficient development of stream programs and ker-
nels. Thisimplementation allows programmersto write high-performance applications
for stream processors like Imagine without detailed knowledge of the target architec-

ture and facilitates high-level optimization.

2. Communication scheduling, a compiler technique for alocating shared interconnect
between functional units and multiple register files. Communications scheduling has
several key innovations and supporting optimizations:

* use of stubs, partial routes between functional units, to allow independent
assignment of operations to functional units

» amethod for incrementally composing routes from stubs during the scheduling
process

« communication cost, a heuristic component for assigning operations to func-
tional units that reflects the impact of copy operations on schedule length

* heuristics for ordering operations and assigning them to functional units tailored
to wide VLIWs with shared interconnect, including the use of a random com-
ponent to explore several possible schedules

Communication scheduling can be incorporated into a variety of VLIW scheduling
algorithms, extending them to alarge class of architectures that includes the very effi-

cient distributed register file architecture.

3. Stream scheduling, a compiler technique for allocating a stream register file and man-
aging the loading and storing of streams. Stream scheduling has several key innova-
tions and supporting optimizations including:

* aunique alocation process that combines compile-time allocation of on-chip
memory with spilling and double-buffering

* application of data-flow analysisto streams of records

* useof aprofile of the stream program to allow efficient allocation of on-chip
memory



» amethod for estimating batch size when stripmining stream programs

* asoftware-pipelining algorithm for covering sequential memory latency in
stream programs

Stream scheduling combines the performance benefits of managing on-chip memory

explicitly with much of the ease of an implicit on-chip memory like a cache.

1.3 ThesisRoadmap

Thisthesisisorganized into aseries of chaptersthat present background material, describe
the components of the Imagine programming system, and evaluate their performance.

Each of these chaptersis briefly summarized in the remainder of this section.

Chapter 2 presents background on VLIW scheduling, streams, and the Imagine Media
Processor. In particular, it discusses the limitations of prior VLIW scheduling techniques
for multiple register file architectures, describes prior uses of the concept of streams, and

provides an overview of the Imagine architecture.

Chapter 3 introduces an implementation of the stream programming model. It describes
how the stream programming model divides a media processing application into a stream
program and one or more kernels. It provides an overview of StreamC, a programming
language extension used in combination with C++ to write stream programs, and KernelC,

a C-like language used to write kernels.

Chapter 4 introduces communication scheduling, and describes how it allocates shared
interconnect resources and manages data transfers between multiple register files and
functional units. Chapter 5 presents the Kernel C compiler, which uses communication

scheduling to compile Kernel C for Imagine.

Chapter 6 introduces stream scheduling, and describes how it allocates space in a stream
register file and manages the loading and storing of streams for applications written using
the stream programming model. Chapter 7 presents the StreamC compiler, which uses

stream scheduling to compile StreamC for Imagine.



Chapter 8 presents a quantitative evaluation of the KernelC and StreamC compilers, with
emphasis on communication scheduling and stream scheduling. It describes atesting
methodology and a set of benchmarks for each compiler, then presents and analyzes the

results obtained by applying the methodology to the benchmarks.

Finally, Chapter 9 summarizes this thesis and discusses future areas of exploration.
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Chapter 2

Background

This chapter presents background for the programming system described in thisthesis. It
provides an overview of VLIW scheduling algorithms, and discusses the limitations of
existing algorithms when applied to architectures with multiple register files and shared
interconnect. It describes prior uses of the concept of streams, which have primarily
involved adding hardware to accel erate memory access. Lastly, it presents an overview of

the Imagine Media Processor Architecture.

2.1 VLIW Scheduling

A very long instruction word (VLIW) scheduler takes a set of operations and produces a
schedule that specifies which operationsto issue to which functional unit on agiven cycle.
The key problemsin VLIW scheduling are finding enough parallel operations, and sched-
uling those operations to occur on a particular functional unit on a particular cycleina
way that effectively utilizes this parallelism. There are two approaches to increasing the
number of paralel operations. expand the size of the region of operations that can be
scheduled beyond a basic block, and transform the operations within a basic block to
increase parallelism. The first approach is used by trace scheduling [15], which schedules
aseries of basic blocks that are likely to occur in sequence, and superblock scheduling
[21], which schedules multiple basic blocks with a single entry point but multiple exit
points. The second approach is used by loop unrolling [29], which duplicates aloop body

allowing multiple iterations to overlap and software pipelining [28][41], which divides a
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loop into stages and then overlays the stages so that successive iterations can occur simul-

taneoudly.

The second key problem, assigning operations to functional units and scheduling them to
beissued as part of aparticular cycle, is NP-complete. A variety of heuristic VLIW sched-
uling methods have been developed. Most algorithms, such as Bottom-Up-Greedy (BUG)
perform these tasks using separate phases[5][10][12][32][38]. Typically, each operationis
first assigned to afunctional unit. Operations are then assigned to cycles using atop-down
or bottom-up traversal of an acyclic version of the data dependency graph. The earliest
cycle on which an operation can be issued is the cycle after the last operation it is depen-
dent on completes (or visaversain the case of a bottom-up traversal). However, the multi-
phase approach either imposes constraints on the scheduling process by preassigning
operations to functional units, or visaversa. For instance, two operations may be assigned
to the same functional unit ahead of time. During scheduling, it may be desirable to sched-
ule both operations on the same cycle. Under a multi-phase approach thisis not possible
even if there is more than one functional unit available. In contrast, Unified Assign and
Schedule (UAS) [40] assigns operations to functional units and cyclesin asingle phase.
UAS attempts to assign each operation to the earliest possible cycle. If an appropriate
functional unit is available on that cycle then UAS assigns the operation to that functional

unit. Otherwise, it delaysit until the next earliest cycle, and so on.

Prior VLIW scheduling algorithms have concentrated on architectures with either asingle
register file architecture or a clustered register file architecture. In asingle register file
architecture, all functional units are connected to the same register file by dedicated inter-
connect. Every functional unit always reads from and writes to the same register file, so
assigning operations to functional unitsis sufficient. In a clustered register file architec-
ture, functional units are grouped into clusters and al functional unitsin acluster are con-
nected to the same register file by dedicated interconnect. Values can be transferred
between cluster register files across global buses by means of copy operations. For these
architectures, VLIW scheduling also needs to add and schedule a copy operation when the

operation that computes a value and an operation that usesit are assigned to functional
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unitsin different clusters. UAS and the multiphase algorithm presented in [38] both target

clustered register file architectures.

Some scheduling algorithms target specific architectures that take incremental steps
beyond a clustered register file architecture. The polycyclic compiler [42] targets an archi-
tecture that allows functional unitsto read from/write to multiple register files, but pro-
vides a dedicated register file between every functional unit output and every functional
unit input to avoid resource conflicts. The Cydrab [9] compiler targets architecturesin
which each functional unit input can read from multiple register files, but provides each
input with a dedicated bus and a dedicated register file port to access each register file.
Both the polycyclic and Cydrab architectures allow the compiler to consider only func-
tional units when scheduling operations, with all shared interconnect allocated implicitly.
The TMS320C6x compiler [48] targets an architecture with two cluster register files that
includes a small number of cross-cluster buses, but which still provides each functional
unit input and output with a dedicated bus and register file port to accessits cluster register
file. This architecture guarantees a conflict-free way to read operands and write results,
allowing the compiler to use aversion of the slack scheduling algorithm for clustered
architectures presented in [20] that is modified to be single-phase for better performance.
Distributed modulo scheduling [14], another single-phase scheduling algorithm, targets a
clustered register file architecture that places special communication queue register files
between adjacent clusters. (“distributed” does not refer to the distributed register file
architecture used by Imagine). It uses amodified modul o scheduling algorithm that triesto
schedule communicating operations on the same or adjacent clusters so that it can use
these communication queue register filesto avoid the need for copy operations. It adds
copy operationsif it unable to schedule communicating operations on adjacent clusters,
and backtracksif all elsefails. The Multiflow compiler [32] targets architectures with
some shared interconnect using a multiphase algorithm based on BUG that assigns opera-

tions to functional units before scheduling.

A few scheduling algorithms address unique architectures that include shared interconnect

but add special purpose hardware to handle conflicts. Transport-triggered architectures
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(TTA) [19] place a special register (not aregister file) at each input and output of func-
tional unit, then connects these special registers with shared buses. The TTA compiler
resolves conflicts by delaying aresult in the register at the functional unit output aslong as
necessary, which stalls other operations in that functional unit’s pipeline. The RAW
machine [31] consists of agrid of connected tiles each containing one functional unit. It

uses small routers between tiles to handle conflicts.

2.2 Sreams

A stream is a sequence of data records defined by aregular access pattern. For example,
the simplest access pattern is constant stride, in which records are separated by afixed
amount. Though some work on automatically converting regular access patterns into
streams has been done [ 3], most implementations require manual specification of streams
in the program [2][6][35].

Several hardware optimizations have taken advantage of the concept of streams. At a
hardware level streams offer the potential to hide latency by allowing data to be loaded in
advance of execution, optimize memory access patterns by reordering accesses, compact
data within a cache, and enable higher bandwidth access to on chip-data. The WM archi-
tecture [3] separates memory access from computation by routing all loads and stores
through FIFOs, then supports stream accesses that load or store all records in a stream to
or from a FIFO. The Stream Memory Controller [35] uses FIFO stream buffersin parallel
with a cache. The records that compose a stream can be sequentially read from or written
to these buffers, bypassing the cache. The Impulse Memory Controller [6] implementstwo
optimizations based on streams that work with aconventional cache. Firgt, it adds an extra
stage to address transl ation that remaps the records in a stream into a sequential series of
addresses in unused address space, alowing it to be stored as compactly as possible in the
cache. Second, it uses the stream’s access pattern to perform prefetching. The DataS-
treamer [2] in the Equator MAP-CA architecture allows the programmer to load or store a

block of data and into or out of the cache independent of the main thread of execution.
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2.3 Imagine Media Processor

The Imagine Media Processor is designed to process streams [25][43][45]. Imagine works
in conjunction with a conventional host processor that executes a scalar application and
sends operations to Imagine. Imagine, shown in Figure 2-1, consists of five major compo-
nents. The stream controller/host interface, numbered 1 in Figure 2-1, receives operations
from the host and issues them to the components of Imagine. It also transfers streams
between Imagine and the host. The stream register file, numbered 2 in Figure 2-1, contains
the current working set of streams. The memory system, numbered 3 in Figure 2-1, loads
and stores streams to and from off-chip memory. The processor core, numbered 4 in Fig-
ure 2-1, processes streams. Each of these four components is described in more detail
below. Thefifth component, the network interface, sends and receives streamsto and from

a high-speed network. It is not shown and is outside the scope of thisthesis.

2.3.1 Stream controller/host interface
The stream controller/host interface receives |magine operations from the host and issues

them to the components of Imagine. Imagine operations include loading, storing, or trans-
ferring a stream, executing akernel (asmall program that has streams as inputs and out-
puts), and reading or writing a control register such as an SDR or MAR (see below). The
stream controller contains an operation buffer into which the host processor can write
Imagine operations and information about dependencies between operations. The stream
controller then issues these operations to the appropriate Imagine component. It can issue
the operations out-of-order, subject to dependency constraints. The stream controller/host

interface also transfers streams between the host processor and Imagine.

2.3.2 Stream register file
The stream register file (SRF) contains the current working set of streams. The SRF isa

very wide single-ported memory. Despite being single-ported, it effectively supports
simultaneous access to different streams by multiple clients by writing or reading a very
wide word containing a portion of the stream into or out of a buffer dedicated to a particu-
lar client on each cycle. The client then writes or reads data into or out of the buffer at a

lower granularity as often as every cycle. Thelocation and length of astream in the SRF is
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FIGURE 2-1. Imagine M edia Processor

stored in a stream descriptor register (SDR) in the SDR register file. Imagine operations
specify which streams they operate on by referring to the appropriate SDR.

2.3.3 Memory system
The memory system loads and stores streams to and from off-chip memory. The memory

system consists of the Memory Access Register (MAR) register file and two memory con-
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trollers. Each MAR contains the start address in memory and access pattern for a stream.
Each memory controller is capable of loading or storing a stream between alocation in the
SRF described by an SDR and alocation in memory described by an MAR.

2.3.4 Processor core
Imagine's processor core executes small programs called kernels on eight identical pro-

cessing elements. It consists of the eight SIMD processing elements, the microcontroller,
and the microcode store. The eight processing elements operate in a SIMD fashion; each
processing element executes the same set of operations each cycle. However, the process-
ing elements are physically distinct and operate on full word data types. Each processing
element contains eight functional units and multiple local register files. The ALUs within
aprocessing element also support segmented operations on 16-bit or 8-bit data. Since the
processing elements operate in SIMD fashion, the single microcontroller can decode and
issue instructions to all eight processing elements. The microcontroller reads instructions
from the on-chip microcode store. It also contains a small register file that holds special

microcontroller variables used to pass arguments between the host processor and Imagine.

24 Summary

This chapter presented background for the programming system described in thisthesis.
Firgt, it provided an overview of VLIW scheduling algorithms and discussed the limita-
tions of the register file architectures these algorithms target, and some common optimiza-
tions. Next, it summarized the concept of streams and the hardware optimizations that
have been developed to take advantage of streams. Lastly, it presented an overview of the
major components of Imagine Media Processor: the stream controller/host interface,

stream register file, memory system, and processor core.
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Chapter 3

Sream Programming M odel

This chapter presents an implementation of the stream programming model [43], a pro-
gramming model for media processors. General purpose programming languages are not
well suited to media processing applications. They emphasize expressiveness and flexibil-
ity, allowing development of awide range of applications. However, their lack of aconsis-
tent structure obscures the high-level dataflow and memory access patterns, which makes
high-level optimizations difficult. Their abundant low-level control divides programsinto
many small basic blocks, limiting instruction level parallelism. Thisimplementation of the
stream programming model provides a consistent structure that is specialized for media
processing applications. This structure makes high-level data flow and memory access
patterns explicit. It also limits low-level control flow. The stream programming model
divides a media processing application into a stream program that specifies the high-level
structure of the application and one or more kernelsthat define each processing step. Each
kernel isafunction that operates on streams, sequences of records. This chapter describes
StreamC, a set of classes and functions used in combination with C++ to write stream pro-
grams, and KernelC, a simple programming language used to write kernels. The steam
program is executed on a host processor; the computation intensive kernels are executed

on Imagine.

This chapter consists of three sections. Section 3.1 presents an overview of the stream pro-

gramming model. Section 3.2 presents Kernel C. Section 3.3 presents StreamC.
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3.1 Overview

The stream programming model divides a media processing application into one or more
kernels and a stream program as depicted in Figure 3-1. A kernel isacomputation inten-
sive function that operates on sequences of records called streams. Each kernel takes
streams of records as input and produces streams of records as output. Kernels are written
using a C-like language called Kernel C. The stream program declares the streams and
defines the high-level control- and data-flow between kernels. Stream programs are writ-

ten using a programming language extension called StreamC intermixed with C++.

(v

Kernel

Stream
Program

Kernel

\ et

FIGURE 3-1. Stream programming model

Streams

Figure 1-3 graphically depicts a simplified polygon rendering application written using
the stream programming model. The application is structured as a stream program that
declares three streams: triangles, spans (lines of pixels), and fragments (pixels), and cals
two kernels. The first kernel takes a stream of triangles as input and produces a stream of
spans as output, the second kernel takes the stream of spans produced by the first kernel as

input and produces a stream of fragments as output.
The implementation of the stream programming model described in this chapter can be

thought of as a code transformation on programs that consist of a series of 1oops that pro-

cess arrays of records. The access pattern of each loop with respect to each array is
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extracted into one or more streams, and the computation performed by each loop is encap-
sulated inside a kernel. The remaining code composes the stream program. In reality, most
applications need to be restructured to make efficient use of the stream programming

model but this code transformation serves as a useful starting point.

Figure 3-3 shows an example of example of a conventional program and the correspond-
ing stream program and kernel. The conventional code consists of aloop that reads all
records from the arrays a and b and writes the even records in the array c. The correspond-
ing stream program declares four streams: three that correspond to the three arrays and a
fourth, cEven, that refersto the even recordsin the stream c. The stream cEven is specified
as asubset of the stream c that starts with record 0 and ends at record 512, with a stride, or
fixed interval between records, of 2. After declaring the streams, the stream program then
callsakernel that processes the streams a and b to produce the stream cEven. Scalar argu-
ments to the kernel such as uc_amul and uc_bmul are encapsulated as microcontroller
(“uc”) variables. The kernel is declared as taking two input streams (“istreams’), one out-
put stream (“ostream”) and two microcontroller variables as arguments. If first reads the

values of the microcontroller variables, then loops over the records in the input streams
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computing records in the output stream. This stream program and kernel are explained in

detail in the remainder of this chapter.

Conventional program: Stream Program:
voi d main() zoid mai n()
{ int a[256]; streanxi nt> a(256);
int b[256]; streanxi nt > b(256);
int c[512]; streanxi nt> c(512);
int amul = 2; streanki nt> cEven =
int bnmul = 3; c(0, 512, FIXED, STRIDE, 2)
Ca uc<int> uc_amul = 2
for (int i =0; i < 256; i++) { uc<int> uc_bmul = 3
if (a[i] > 0) { Ce
c[i * 2] = a[i] * amul; exanpl el(a, b, cEven,
} else { uc_amul , uc_bmul);
cl[i * 2] =Db[i] * bnul;
} }
}
e Kernel:
}

KERNEL exanpl el(i streanxint> a,
i streanxint> b,
ostreanxi nt> c,
uc<i nt> uc_anul ,
uc<i nt> uc_bmul)

{
int amul = ucRead(uc_armul);
int bmul = ucRead(uc_brmrul);
| oop_stream(a) {
int ai, bi, ci;
a >> ai;
b >> bi;
ci = select(ai > 0,
ai * amul,
bi * bmul);
c << ci;
}
}

FIGURE 3-3. Code transformation to stream programming model

22



3.2 KernelC

Kernels are written using a language called Kernel C, which uses alimited C-like syntax.
Figure 3-4 gives an abbreviated definition of KernelC. The purpose of this definitionisto
summarize the language; it includes minor changes to the actual syntax and omits some
non-essential details. KernelC is more restrictive than C. It does not allow global vari-
ables, pointers, function calls, or control-flow constructs other than loops. However, it can
be compiled more efficiently and retains considerable flexibility. KernelC has four impor-

tant features:

e Sructured data access. KernelC only allows global data to be accessed through spe-
cial arguments passed to the kernel.

* Limited control flow: KernelC only allows loops, but supports conditional assign-
ments, stream reads, and stream writes.

» Packed data typesand DSP math operators. Kernel C supports several additional
data types and math operators useful for digital signal processing.

e SIMD processing support: Kernel C supports multiple SIMD processing elements.

The remainder of this section discusses each of these featuresin detail.

3.2.1 Sructured data access
Kernel C only allows accessto global data through argumentsto the kernel. All arguments

to the kernel are passed by reference. Writing arecord in an output stream or setting the
value of amicrocontroller variable changes that record or variable outside of the kernel. A
kernel takes a small number of input streams (“istream”) and output stream (“ostream”)
arguments. The kernel sequentially reads records from the input streams and sequentially
writes records to the output streams using the << and >> operators, respectively. Kernels
also can take special microcontroller (“uc”) variables as arguments, which encapsulate
scalar values. This encapsulation is required because the variables are passed from the
stream program running on the host to the microcontroller that controls execution of the
kernel on Imagine. The kernel reads and writes the microcontroller variables using the

ucRead and uc\Write functions.
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basic-type:

i nt

unsi gned int
hal f2

unsi gned hal f2
byt e4

unsi gned byte4
f | oat

record-type-definition:
RECORD record-type { field-definition, ... };

field-definition:
complex-type id

complex-type:

basic-type
record-type

kernel-definition:

KERNEL identifier ( argument, ... ) { statement .

argument:
istream<complex-type> istream-id
ostream<complex-type> ostream-id
uc<basic-type> uc-id

statement:
declaration
assignment
input
output
loop

declaration:
basic-type id;
basic-type id = expression;
record-type id;
array<basic-type> array-id(constant);
uc<basic-type> uc-id;
uc<basic-type> uc-id = constant;
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assignment:
lvalue = expression;
uc-id = ucWrite(PE-index, expression);

Ivalue:
id
id.id
array-id[expression]

expression:
rvalue
math-expression
permute(PE-permutation, expression)
select(expression, expression, expression)
ucRead(uc-id)

rvalue:
constant
id
id.id
array-id[expression]

math-expression:
unary-operator id
id binary-operator id
unary-operation(id)
binary-operation(id, id)

input:
istream-id >> lvalue;
istream-id( expression, lvalue) >> lvalue;

output:
ostream-id << expression
ostream-id( expression) << expression;

loop:
| oop- count (uc-id) { statements }
| oop-whi | eany (expression) { statements }
| oop-whi |l eal | (expression) { statements }
| oop-until any (expression) { statements }
I oop-untilall (expression) { statements }
| oop-stream (istream-id) { statements }

FIGURE 3-4. Abbreviated definition of KernelC
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Figure 3-5 highlights the data access in the example kernel introduced in Figure 3-3. The
example takes five arguments: two input streams, a and b, an output stream, ¢, and two
microcontroller variable arguments, uc_amul and uc_bmul. It reads the two microcontrol-
ler variables, uc_amul and uc_bmul, into local variables which it uses repeatedly in the
main loop. On each iteration of the main loop, it reads arecord from the input streams a
and b and writes arecord to the output stream c. This kernel loops over the stream a, and

assumes that the streams b and c are the same length.

KERNEL exanpl el( istream<int> a,
istream<int> b,
ostream<int> c,
uc<int> uc_amul,
uc<int> uc_bmul)
{
int amul = ucRead(uc_amul);
i nt bnul ucRead(uc_bmul);
| oop_streanm(a) {
int ai, bi, ci;
a >> ai;
b >> bi;
ci = select(ai > 0,
ai * anul,
bi * bmul);
Cc << ci;

}

}
FIGURE 3-5. Example with data access highlighted

3.2.2 Limited control flow
KernelC limits control flow in order to maximize instruction level paralelism. The only

control flow that KernelC allows are loops. In addition to count, while, and until loops,
KernelC introduces a new looping construct “loop_stream(input stream)” that iterates
until al records have been read from the specified input stream. Instead of if-statements,
Kernel C supports conditional assignment using the “select” function (similar to the C 2.
operator) to choose between two values based on a condition. For instance, “ select(cond,
X,Y)” returnsthe value of x if cond istrue or y if cond isfalse. It aso supports conditional
reads from streams and conditional writes to streams[23]. For instance, “ostreaml(cond)

<< x” only writes the value of x to ostreaml if cond istrue.
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Figure 3-6 highlightsthe limited control flow in the example kernel. It loops over the input
stream a until all records in the stream have been read. It uses a select statement to deter-
mine the output each iteration. If ai is greater than 0, it outputs ai multiplied by amul, oth-

erwise it outputs bi multiplied by bmul.

KERNEL exanpl el(i streanxint> a,
i streanxint> b,
ostreanxi nt> c,
uc<i nt> uc_amul ,
uc<i nt> uc_bmul)

{

int amul = ucRead(uc_arnul);
int brmul = ucRead(uc_brul);
loop_stream(a) {
int ai, bi, ci;
a >> ai;
b >> bi;
ci = select(ai > 0,
ar * amul,
bi * bmul);
c << ci;
}
}

FIGURE 3-6. Examplewith limited control flow highlighted

3.2.3 Additional data typesand math operators
KernelC adds packed data types and DSP math operations. Kernel C includes two new

packed data types: (unsigned) byte4, four bytes packed into one 32-bit word, and
(unsigned) half2, two 16-bit half-words packed into one 32-bit word. Operations per-
formed on these packed data types affect each of the packed componentsin a SIMD fash-
ion. Kernel C al'so includes various mathematical operations that are useful for signal- and

image processing such as saturating add and subtract.

The simple kernel shown in Figure 3-7 uses packed data types and saturating addition to
brighten an 8-bit grayscale image. The single saturating add operation increments four 8-
bit pixel values by the value of mod (which, in the context of this kernel, must contain the

same value in each byte.)
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KERNEL bri ghten(i streanm<unsi gned byte4> in,
ostreanxunsi gned byte4> out,
uc<unsi gned byte4> uc_nod)

{

unsi gned byte4 nod = ucRead(uc_nod);
| oop_stream(in) {

unsi gned byte4 ini, outi;

in >>ini;

outi = addsat(ini, nod);

out << outi;

}
FIGURE 3-7. Kernel to brighten an 8-bit grayscale image

3.2.4 SIMD processing support
Kernel C supports Imagine’'s eight SIMD processing elements. All eight processing ele-

ments execute akernel in parallel. Every cycle, al processing elements execute the same
operations on different data. Each processing element reads every eighth record from the
input stream(s) and writes every eighth record to the output stream(s). For example, pro-

cessing element 3 reads or writes records 3, 11, 19, etc. from or to each stream.

The permute operation is used to explicitly interchanges val ues between processing ele-
ments. The permute operation takes a constant describing the permutation and the value to
be permuted as arguments. The permutation is an integer in which the nth nibble specifies
the index of the processing element from which the nth processing element gets the value
of the permuted variable. For instance, “ permute(0x65432107, x)”, rotates the value of x
in each of the processing elements to the left by specifying that processing element 7 gets

the value from processing element 6, and so on.

Microcontroller variables, which encapsul ate scalar arguments passed from the host pro-
cessor to the microcontroller, are not replicated across Imagine's eight processing ele-
ments. The ucWrite function, which is used to write a value from one of the processing
elements to a microcontroller variable takes two arguments, the index of the processing
element to read the value from, and the value. For instance, “uc_x = ucWrite(0, X)” writes

the value of x in processing element O to the microcontroller variable uc_x.
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The simple kernel shown in Figure 3-8 computes the sum of a stream of integers. First, it
loops through the stream and sums all of the integers processed by each processing ele-
ment. Next, it addsthe totalsin the processing elementstogether in atree-like fashion. The
kernel adds the total in each processing element to the total one processing element to the
left, then adds that total to the total two processing elementsto the left, then adds that total
to the total four processing elements to the left. Lastly, it writes the final total in process-

ing element O to a microcontroller variable.

KERNEL sunstrean(istreanxint> in,
uc<int> uc_total)

{
int total = O;
| oop_strean(in) {

int ini;

in >>ini;

total = total + ini;
}
total = total + permute(LROTATE, total);
total = total + permute(LROTATE2, total);
total = total + permute(LROTATE4, total);

uc_total = ucWrite(O, total);
}

FIGURE 3-8. Kernel to sum a stream of integers

3.3 SreamC

Stream programs are written using a small number of classes and functions collectively
called StreamC that are intermixed with arbitrary C++. The StreamC functions, which
consist of kernel calls and functions to copy and transfer streams, are compiled for execu-
tion on Imagine by the StreamC compiler as described in Chapter 6. StreamC includes the

following components:

» stream class

» microcontroller variable class

» kernels exposed as functions

» functions for copying streams and transferring data between streams and arrays
» conventions for specifying data-dependent streams and control flow
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Figure 3-9 shows the C++ declarations for these components. The StreamC presented in
Figure 3-9 is acleaner version of the actual implementation of StreamC and is used
throughout this thesis for clarity and as a basis for future implementations. Each of these

components is discussed in more detail in the remainder of this section.

// 1. Streans
enum AccessPatt ernEnum { SEQUENTI AL, STRI DED, | NDEXED };

t enpl at e<cl ass type>
cl ass stream {
public:
stream()
/'l basic stream
strean(int _size,
Dat aDependenceEnum _dataDependence = Fl XED);

/'l sequential derived stream (default)

streanxt ype> operator () (
int _start, int _end, DataDependenceEnum _dataDependence = Fl XED,
AccessPat t er nEnum _accessPattern = SEQUENTI AL,
i nt _recordLengthOverride = 1);

/1 strided derived stream

streanxt ype> operator () (
int _start, int _end, DataDependenceEnum _dataDependence,
AccessPatt er nEnum _accessPattern, int _stride,
i nt _recordLengthOverride = 1);

/1 indexed derived stream

streanxtype> operator () (
int _start, int _end, DataDependenceEnum _dataDependence,
AccessPat t er nEnum _accessPattern, streanxint> _index,
int _recordLengthOverride = 1);

i nt getLength();
b

/1 2. Mcrocontroller variables

t enpl at e<cl ass type> class uc {
public:
uc<type>()
uc<type> operator=(const type rvalue);

}
t enpl at e<cl ass type> type ucRead(uc<type>& uc);

/1 3. Kernels

/'l kernels exposed as C++ functions, varies with application

/1 exanpl e:

voi d exanpl el(istreankint>& a, istreanxint>& b, ostreanxint>& c,
uc<i nt>& uc_amul, uc<int>& uc_bmul);
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/1 4. Copies and transfers

tenpl at e<cl ass type>
voi d streanmCopy(streanxktype>& streanfFrom streanxtype>& streanilo);

tenpl at e<cl ass type>
voi d streanlLoadBi n(streanxktype>& stream type* array, int |length);

tenpl at e<cl ass type>

voi d streanBaveBi n(streanxktype>& stream type* array);

/1 5. Data-dependence annotations

enum Dat aDependenceEnum { FI XED, VARI ABLE_LENGTH, VARI ABLE_BOUNDS };
/1 macros used to note entry and exit into/out of control-flow

/1 that depends on the data being processed

#define i f_VARI ABLE ...

#defi ne whil e_VARI ABLE ...

#define for_VARI ABLE ...

FIGURE 3-9. C++ declarationsfor SreamC components

3.3.1 Sreams
The stream class can be used for two kinds of streams, basic streams and derived streams.

A basic streamis an array of records. A basic stream is defined by a size as shown in Fig-
ure 3-10. A derived streamis areference to a subset of the recordsin abasic stream. A
derived stream defined by a basic stream and a start, end, and access pattern within that
stream as shown in Figure 3-11. The start isthe index of thefirst record in the stream. The
end isthe index of the record after the last record that could be in the stream. The access
pattern defines which records between the start and the end are in the stream. Both stream
definitions also include a data dependence parameter. The data dependence parameter is
used to annotate streams with characteristics that vary depending on the data being pro-
cessed. It is described in Section 3.3.5.

stream<type> name(size, dataDependence);

basic stream

FIGURE 3-10. A basic stream isan array of records
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stream<type> name = basic-stream(start, end, dataDependence, access-
pattern);

basic stream

HEENEENEENEEEEEn
W 71

derived stream

FIGURE 3-11. A derived stream isa subset of therecordsin abasic stream defined

by a start, end, and access pattern
Conceptually, an access pattern can define any series of records. In reality, only afew
access patterns are useful enough to be supported in hardware. The three most common
access patterns are: sequential, strided, and indexed, depicted in Figure 3-12 through Fig-
ure 3-14. A sequential stream refersto all records from the start record up to, but not
including, the end record. A strided stream refersto records separated by a constant offset
called the stride. It refersto every strideth record from the start record up to the end record
(i.e. start, start + stride, start + 2*stride, etc.). An indexed stream accesses records at off-
sets given by a stream of integers called the index stream. An indexed stream includes one
record for each valuein the index stream, at an offset from the start equal to that value (i.e.
start + first index, start + second index, etc.). Since the effective access pattern of an
indexed stream depends entirely on the index values it can provide any desired access pat-

tern.

The example stream program introduced in Figure 3-3 contains three basic stream declara-
tions and one derived stream declaration, all highlighted in Figure 3-15. The basic streams
a and b contain 256 records. The basic stream c contains 512 records. The derived stream
cEven refers to the even records in the basic stream c. It is specified with a start of O, an
end of 512, and a strided access pattern with a stride of 2. This derived stream replaces a

conventional array access in which aloop index is multiplied by two.
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sequentia

A

start end

FIGURE 3-12. Sequential access pattern includes every record

strided (stride = 3)

HENEENEN
AM“

start end

FIGURE 3-13. Strided access pattern includes every strideth record

indexed (index stream :|6 |5 |9 |7 |3|)

A

start

FIGURE 3-14. Indexed access pattern includes records with positions given by
index stream

voi d main()

{ -
stream<int>
stream<int>
stream<int>

a(256);
b(256);

stream<int>
c(0, 512,

c(512);

cEven
FI1XED

, STRIDE, 2)
2;
3;

uc<i nt > uc_anmul
uc<i nt > uc_bmul

exanpl el(a, b, cEven,
uc_anmul, uc_bmnul);

, -
FIGURE 3-15. Example with streams highlighted

A derived stream can also be defined in terms of another derived stream. Internally, the

start, end, and stride of the new derived stream are recalculated in terms of the underlying
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basic stream. As asimple example, if anew stream with a start of 5 is defined in terms of
an old stream with astart of 10, it actually hasastart of 15 in terms of the underlying basic
stream. More specifically, the start of the new stream is multiplied by the stride of the old
derived stream since each record in the old stream is separated by the stride, then added to
the start of the old stream since the first record in the old stream is offset by that amount.
To avoid multiple levels of indirection, indexed streams can only be derived in terms of

sequential streams, and streams cannot be derived from indexed streams.

Figure 3-16 shows a graphical table that illustrates this concepts. The first column con-
tains a stream definition. The second column shows how the recordsin that stream corre-
spond to recordsin abasic stream. Thefirst declaration is of the basic stream x. It refersto
an array of eight integer records. The second declaration is of the derived stream y that
accesses every odd record of x. The third declaration is of the derived stream z that
accesses every odd record iny. The stream zis remapped to x, the underlying basic stream
of y. The actual start of zisequal to the specified start times the stride of y plus the start of
y=(1* 2) + 1= 3. The end and stride are remapped similarly. Z maps to every fourth

record of the underlying basic stream X, starting with record 3.

The derived stream definition also takes an optiona parameter, recordLengthOverride,
which overrides the length of arecord to force the stream to treat multiple recordsasasin-
gle record. For instance, this parameter can be used to access a 2D block of an image by
overriding the record length with the width of the block and specifying a stride equal to

the width of the image. Each row of the block is then treated as a single record.

3.3.2 Microcontroller variables
StreamC uses microcontroller variables to pass scalar arguments to kernels. A microcon-

troller variable encapsulates a single integer or floating point variable. The value of a
microcontroller variable can be set in a stream program using standard assignment. When
akernel is called with amicrocontroller variable as an argument, its current valueis sent

to the microcontroller on Imagine. The stream program can only read the new value of the



Stream Declaration Basic Stream Mapping

Streansint> x(®: [(TTT*TTT]
Stream<int> y(x, 1, 8, | | | * | | |
FIXED, STRIDE, 2); ‘ym A
syart end

Stream<int> z = y(1, 4,
FIXED, STRIDE, 2);

4 A
//equivalent to: Staq/////////;nd 1] T
//Stream<int> z = x(3, 8, | A

'
// FIXED, STRIDE, 4); | ‘V* | -> é‘yx/end
syart end

FIGURE 3-16. Derived streams mapped to the underlying basic stream

microcontroller variable computed by the kernel using the ucRead function, which pauses

execution of the stream program until the kernel finishes.

Figure 3-17 shows an extended version of the example that includes acall to the sum-
Stream kernel defined in Figure 3-8, with the uses of microcontroller variables high-
lighted. The kernel examplel takes two microcontroller variable arguments uc_amul and
uc_bmul, which are set using standard assignment. The kernel sumStream takes a micro-

controller variable argument uc_sum which is read using the ucRead function.

3.3.3 Kernels
Kernels are called in StreamC just like normal functions that take streams and microcon-

troller variables as arguments. All argumentsto kernels are passed by reference. Figure 3-
18 highlights the kernel call in the example.
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void main()

{
streanxi nt > a(256);
streanxi nt > b(256);
streanxki nt> ¢(512);
st reanxi nt> cEven =

c(0, 512, FIXED, STRIDE, 2);

uc<int> uc_amul 2;
uc<int> uc_bmul 3;

exanpl el(a, b, cEven
uc_amul, uc_bmul);

uc<int> uc_sum;
suntstrean(c, uc_sum);
int sum = ucRead(uc_sum);

}
FIGURE 3-17. Extended example with microcontroller variables highlighted

void main()

{
streanxi nt > a(256);
streanxi nt > b(256);
streanxki nt> ¢(512);
st reanxi nt> cEven =

c(0, 512, FIXED, STRIDE, 2);

uc<i nt> uc_armul 2;
uc<i nt> uc_brmul 3;

examplel(a, b, cEven,
uc_amul, uc_bmul);

\ e
FIGURE 3-18. Kernel call in example

3.3.4 Stream copiesand transfers
In addition to Kernels, StreamC includes several functions used to copy data between

streams and transfer data between arrays and streams. The streamCopy function reads all
of the records from one stream and writes them to another stream. The streamLoadBin
function copies a specified number of records from an array to a stream. The streamSave-
Bin function copies records from a stream to an array of records. Figure 3-19 summarizes

these functions.
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Function Description

st r eamCopy ( copies records from one stream to another
st reanxtype> fronftream

st reanxtype> toStrean

st r eamLoadBi n( copies records from an array to a stream
streanxtype> toStream

char* fronPtr, int |ength)

streanBaveBi n( copies records from a stream to an array
st reanxt ype> fronftream

char* toPtr)

FIGURE 3-19. Copiesand transfers

Figure 3-20 shows a simple stream program that copies records from an array to a stream,

then to another stream, and finally back to an array.

voi d main()

{
int arrayl[ 256];
int array?2[ 256];
st reanxi nt > streanil(256);
st reanxi nt > strean®(256);
streamLoadBin(streaml, arrayl, 256);
streamCopy(streaml, stream?2);
streamSaveBin(stream2, array2?);

}
FIGURE 3-20. Simple example of stream copies and transfers

3.3.5 Data-dependence annotations
The StreamC compiler described in Chapter 6 requires the programmer to set the data

dependence argument in the definition of astream if it is used to hold the output of a ker-
nel that produces a varying number of records, or is a derived stream with a start or end

that varies depending on the data being processed. The data dependence argument can be
either fixed (the default), variable length, or variable bounds. A fixed stream has the same
definition regardless of the data being processed. A variable length stream is used to hold
the output of akernel that produces a varying number of records. For instance, a kernel

might rasterize a stream of trianglesinto avarying number of pixels. When akernel writes
avariable length stream, it updates the length of the stream to reflect the actual number of

records it contains. The getLength() method is used in the stream program to determine
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the number of recordsin such astream. A variable bounds stream is a derived stream with
astart or end that depends on the data being processed. For instance, the location of aref-
erence block within an image might vary, so a stream used to access that block would have

variable bounds.

StreamC also requires that al control flow that depends on the data being processed be
explicitly annotated. If the number of iterations of aloop or the execution of an if state-
ment depends on the data being processed, that loop or if statement is annotated as shown
in Figure 3-21.

data-dependent |oops:

whi | e_VARI ABLE(...) {
/1 1 oop body

}

for _VARI ABLE(...) {
/1 1 oop body

}

data-dependent if:

i f VAR ABLE(...) {
/1 if body
}

FIGURE 3-21. Data dependent control flow annotations

Figure 3-22 shows a simple program that recirculates a stream of records through a kernel
until all records have reached afina state. The number of iterations required depends on
the actual records, so the while loop is marked as data-dependent. The number of records
that still need to be recirculated and the number of records that are finalized each iteration
varies, so the streams remainingRecs and newFinal Recs are variable length. The newly
finalized records need to be appended to the end of the records finalized on previous itera-
tions. Thus, the stream newFinal Recs has a data-dependent start within the accumulated

stream finalRecs and is also variable bounds.
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streankRec> renai ni ngRecs( MAX_RECS, VARIABLE_ LENGTH);
streanckRec> fi nal Recs( MAX_RECS);

int final RecCount = O;
while_VARIABLE(remai ni ngRecs. get Length() > 0) {
st reankRec> newri nal Recs = final Recs(fi nal RecCount, MAX RECS,
VARIABLE_LENGTH | VARIABLE_BOUNDS) ;
processRecs(remai ni ngRecs, /1 inputs
newFi nal Recs, remai ni ngRecs); /1 outputs
fi nal RecCount += newki nal Recs. get Lengt h();

}

FIGURE 3-22. Example of data dependence annotations

3.4 Summary

This chapter presented an implementation of the stream programming model. It described
how the stream programing model structures a media processing application as a stream
program and one or more kernels that operate on streams of records. It introduced
StreamC, a set of classes and functions used in combination with C++ to write stream pro-

grams, and KernelC, a simple programming language used to write kernels.

Though designed for stream processors, this implementation of the stream programming
model provides a consistent structure for media processing applications that can be effi-
ciently mapped to other platforms. It makes the high-level control and data flow explicit,

opening the door for powerful compiler optimizations even on general purpose processors.
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Chapter 4

Communication Scheduling

This chapter presents communication scheduling [34], a new component of VLIW sched-
uling that enables scheduling to shared interconnect architectures in which some or all
functional unit inputs or outputs are connected to multiple registers files by shared buses
and register file ports. Communication scheduling assigns each communication, the logi-
cal transfer of the result of one operation for use as a specific operand of another opera-
tion, to aroute that defines the interconnect resources used to transfer the value between

functional units.

Scheduling to shared interconnect architecturesis difficult because it requires simulta-
neoudly allocating functional units to operations and buses and register file ports to the
communications between operations. Communication scheduling solves this problem by
incrementally composing aroute for each communication from three components. awrite
stub that defines how the result iswritten to an initial register file, zero or more copy oper-
ations to move the value between register files, and aread stub that defines how the oper-
and isread from the final register file. When the first operation is scheduled, the first stub
istentatively allocated. When the second operation is scheduled, both stubs are allocated
and any required copy operations are scheduled. This composition allows the communi-
cating operations to be scheduled independently while ensuring that the interconnect

resources will be available to complete the communication.
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This chapter is divided into four sections. Section 4.1 presents the motivation for commu-
nication scheduling. Section 4.2 presents an overview of the communication scheduling
process and defines required terminology. Section 4.3 presents the communication sched-

uling algorithm. Section 4.4 discusses implementation of communication scheduling.

4.1 Motivation

A VLIW scheduler assigns each operation to afunctional unit and schedulesit on a partic-
ular cycle; communication scheduling allocates the interconnect resources the operation
uses to read its operands and write itsresult. In aconventional, single register file architec-
ture every functional unit input and output is connected to the same register file by a dedi-
cated bus and register file port. All functional units read operands from and write resultsto
the same register file, and can always do so without bus or register file port conflicts. The
scheduler only needs to assign each operation to afunctional unit and scheduleit on a
cycle. In ashared interconnect architecture, multiple functional unit inputs or outputs
share buses connected to multiple register files. The scheduler needs to specify which reg-
ister file to read each operand from, which register file (or multiple register files) to write
each result to, and which shared buses and register file ports to use for doing so. Some-
times, the scheduler needs to insert copy operations to move avalue from one register file
to another. Communication scheduling extends a VLIW scheduler to handle these addi-
tional requirements. It ensures that each result is available to operations that use it as an
operand, and avoids bus or register file conflicts when reading operands and writing

results.

Scheduling the code fragment shown in Figure 4-1 for the single register file architecture

shown in Figure 4-2 only requires assigning operations to functional units and scheduling

them on cycles. Figure 4-3 isagraphical schedule® that illustrates all functional unit, inter-
connect, and register file activity on each cycle. It shows how each functional unit always

reads its inputs from and writes its outputs to the same register file using the same dedi-

1. Forillustrative purposes, al operations have unit latency.
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cated interconnect. All functional units access the same register file, so every functional

unit can access all data.

1: a =1oad ...
2. b= + .
3: ¢ = R
4: =a+b
5: —a+c

FIGURE 4-1. Example code fragment

all FUs
read from

and write to

same RF

all inputs and /,+ y b 4 v b 4 v §

outputs have
dedicated ADDO L/S ADD1

buses and RF

ports T
FIGURE 4-2. Singleregister file architecture

Functional Unit
ADDO L/S ADD1

Cycle

FIGURE 4-3. Schedulefor single register file architecture
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Now consider scheduling the same code fragment on the shared interconnect architecture
shown in Figure 4-4. Though simple and purposefully non-optimal, the architecture
includes all of the features of a shared interconnect architecture that require communica
tion scheduling. Each adder output and the load/store unit output is connected by a shared
bus to two register files. Both of the shared buses can drive the shared write port of the
center register file. The scheduler specifies which driver drives each shared interconnect
resource. Unlike asingle register file architecture, all functional units cannot access all

register files, so copy operations may be required to move values between register files.

+ + A + + A + + A
ADDO L/S ADD1
+ A PA
\/ Y AN \
either output output can either bus
can drive drive either can drive
shared bus or both buses shared port

FIGURE 4-4. Shared interconnect architecture

The graphical schedule shown in Figure 4-5 illustrates these differences. On each cycle,
the scheduler specifies which functional unit outputs drive the shared buses, and which
bus drives the shared register file port. For example, on cycle 1 adder 0 usesthe top shared
busto write to the | eft register file, while the load/store unit uses the bottom shared bus to
write to the other two register files (using the shared write port of the middle register file).
Note that operation 3 could not be scheduled on cycle 1 because the three functional unit
outputs share only two output buses. On cycle 2, the scheduler schedules a copy operation
to move athe result of operation 1 from the middle register file to the left register file so

that operation 4 can use it as an operand.
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FIGURE 4-5. Schedulefor shared interconnect architecture

4.2 Overview

To handle the additional requirements of a shared interconnect architecture, communica-
tion scheduling assigns each communication between operations to a route between the
functional unitsthat perform those operations as depicted in Figure 4-6. A communication
isascheduler abstraction for the use of the result of one operation as an operand of
another operation. A communication exists from the write operation that computes a
result to each read operation that could use the result as an operand. If multiple operations
could use the result as an operand, or one operation could use the result as multiple oper-
ands, then a separate communication exists for each such read operand. If an operation
could use one of several results as an operand dueto different control flows then a separate

communication exists for each such result.
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A route defines the resources used to transfer a value from afunctional unit output to a
functional unit input. A route consists of resources to write the value to aregister file from
the functional unit that computes it, resources to read it from aregister file to the func-
tional unit that usesit, and, if necessary, copy operation(s) to move the value between reg-

ister files.

write operation

result
operand :

FIGURE 4-6. Communication scheduling assigns each communication to a route

route

communication

\

read operation

The motivating example contains four communications as shown in Figure 4-7 and four
routes, one for each communication, as shown in Figure 4-8. For example, operation 1
computes the value a, which is used by operation 4 and operation 5. There are two com-
munications from operation 1, one to operation 4 and one to operation 5, each of whichis

assigned to aroute.

FIGURE 4-7. Communicationsin motivating example
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FIGURE 4-8. Routesfor communicationsin motivating example

A

Communi cation scheduling composes a route for each communication as shown in
Figure 4-9. Thewrite stub consists of the functional unit output, bus, and register filewrite
port allocated to write the result. The write stub is allocated on the cycle that the writing
operation completes. The read stub consists of the register file read port, bus, and func-
tional unit input allocated to read the operand. The read stub is allocated on the cycle that
reading operation issues. If the write stub and read stub access the same register file, they
form aroute. Otherwise, one or more copy operations are used to move the value from one

register file to another to connect the stubs and form aroute.

Figure 4-10 shows the write stub, read stub, and copy operation that compose the route for

the communication of a from operation 1 to operation 4 in the motivating example.
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Communi cation scheduling composes routes such that stubs on the same cycle do not con-

flict. Read stubs for different operands or write stubs for different results conflict if they
use the same resource, such as a functional unit input or output, bus, or register file port.
An operand can only be read from oneregister file, so two read stubsfor the same operand
conflict if they are not identical. A result can be written to multiple register files, so two
write stubs for the same result only conflict if they write to the same register file using dif-

ferent buses or register file ports.

4.2.1 Rolein a VLIW scheduler
The communication scheduling algorithm presented in this chapter is a general technique

that works as a drop-in addition to avariety of VLIW scheduling algorithms. The VLIW
scheduler is responsible for assigning operations to functional units and scheduling them
on cycles, communication scheduling simply accepts or rejects each placement as shown
in Figure 4-11. The only assumption communication scheduling makes is that repeatedly
rejecting an operation placement will eventually force that operation into an otherwise
empty region of the schedule. However, considering communication scheduling when

placing operations results in better performance. Chapter 5 describes the Kernel C com-
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FIGURE 4-10. Composition of route for communication of a from operation 1 to
operation 4
piler, aVLIW scheduler that uses communication scheduling, and discusses the ramifica-

tions of communication scheduling for the scheduling process as a whole.

Asthe VLIW scheduling algorithm selects and schedul es operations, communication
scheduling incrementally composes a route for each communication. Figure 4-12 shows
how communi cation scheduling composes a route for a communi cation between two arbi-
trary operations, operation 1 and operation 2. In this example, operation 1 is scheduled
before operation 2, the processis the same if the order were reversed. When operation 1is
being scheduled, the communication is opening: communication scheduling determines
the valid stubs and selects a stub that does not conflict with other stubs on the same cycle.

If it cannot find a stub that does not conflict, it rejects the placement until it succeeds.



select and schedule
unscheduled operation

!

attempt communication
scheduling

mark as scheduled

FIGURE 4-11. Flowgraph for a simple scheduler with communication scheduling

Other operations may be scheduled before operation 2 is scheduled depending on the
scheduling algorithm, and often must be scheduled when an operation communicates with
multiple operations since only one can immediately follow it. As each such operationis
scheduled, communication scheduling may change the stub assigned to the open commu-
nication to allow stubsto be found for other communications. When the operation 2 is
being scheduled, the communication is closing: communication scheduling triesto find a
write stub and aread stub that access the same register file to form aroute. If necessary, it
triesto insert and schedule copy operations to connect the stubs and form aroute. If itis
unable to do so, it unschedules all copy operations and rejects the placement of operation
2. Once a communication has been assigned to aroute, the stubs and any copy operations
that compose the route cannot be changed and it is called closed. Once all operations are

scheduled, all communications are closed and have all been assigned to routes.

4.3 Algorithm

For each potential operation placement, communication scheduling performs the follow-

ing steps for the operation that is being scheduled, hereafter called the current operation:

1. determinethevalid read stubsfor each communication to the current operation and the
valid write stubs for each communication from the current operation
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FIGURE 4-12. Incremental composition of aroute (Ieft to right)

2. find anon-conflicting permutation of read stubs for communications to operations on
the cycle the current operation issues on

3. find anon-conflicting permutation of write stubs for communications from operations
on the cycle current operation completes on

4. for each closing communication, if the read stub and write stub form aroute then
assign the communication to that route

5. for each closing communication, if the read stub and write stub do not form aroute
then insert and attempt to schedule copy operation(s) to connect the stubs

Each of these stepsis described in detail in the remainder of this section.

Sep 1. Determine valid stubs

First, communication scheduling determines the valid read stubs for each communication
to the current operation and the valid write stubs for each communication from the current
operation. A read stub connects the read port of aregister fileto an appropriate input of the
functional unit that the current operation isassigned to. A write stub connects the output of
the functional unit to which the current operation is assigned to awrite port of aregister

file. For acommunication from operation 0, to operation 0,, zero or more copy operations
can be used to move avalue from any register file written to by avalid write stub for o, to
any register file read from by avalid read stub for o,, regardless of which functional units

the operations are assigned to.

Figure 4-13 shows all four valid write stubs for the communication from operation 1,

scheduled on the load/store unit on cycle 1, to operation 4. The four stubs are, described
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left to right then top to bottom: using the left bus to write to adder O's register file, using
the right bus to write to adder 1'sregister file, using the left bus to write to the |oad/store

unit'sregister file, and using the right bus to write to the load/store unit’s register file.
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FIGURE 4-13. Valid write stubs

Figure 4-14 shows the valid read stubs for operation 4 when, after scheduling several
other operations, it is scheduled on adder 0 on cycle 3. Since addition is acommutative
operation, adder 0 can read the value of a from itsregister file using either input port. Zero
or more copy operations can be used to connect any write stub in Figure 4-13 to any read
stub in Figure 4-14.

Sep 2. Find permutation of read stubs

Second, communication scheduling attempts to find a permutation of read stubs for all
communications to the current operation and previously scheduled operations that are

issued on the same cycle. This set of communications is called C;,. Since communication

scheduling can't change the read stub assigned to a closed communication, the stubsiit
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FIGURE 4-14. Valid read stubs

finds for other communications must not conflict with those stubs. Therefore, it removes

all closed communicationsin C;, and eliminates all valid stubs for the remaining commu-

nications that conflict with any read stub assigned to a closed communication. Communi-
cation scheduling then attempts to find a valid stub for each communication remaining in
Cio- It can choose any stub for each open communication, but tries to choose aread stub
for each closing communication that forms a route. When selecting aread stub for aclos-
ing communication ¢ from a scheduled operation o5, communication scheduling aso
attempts to find a permutation of write stubs for communications to operations that com-
plete on the same cycle as og such that the write stub for ¢ accesses the same register file as

the read stub and forms a route.

Sep 3. Find permutation of write stubs

Third, communication scheduling analogously attempts to find a permutation of write
stubsfor all communications from the current operation or operations that complete on the

same cycle as the current operation. This set of communicationsis called Cyp,. If cOmMmu-

nication scheduling cannot find a permutation of read stubs or a permutation of write

stubs, it rejects the current operation placement.

In the motivating example, communication scheduling finds different permutations of
write stubs for the communications from operations on cycle 1 as each of the first two
operations are scheduled. Communication scheduling chooses the permutation of write
stubs shown in Figure 4-15 when operation 1 is scheduled, then changes to the permuta-

tion shown in Figure 4-16 when operation 2 is scheduled. Operation 3 cannot be sched-
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uled on cycle 1 because a permutation of write stubs cannot be found due to stub conflicts

as shown in Figure 4-17.
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FIGURE 4-15. Permutation of write stubs when scheduling operation 1
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FIGURE 4-16. Permutation of write stubs when scheduling operation 2
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FIGURE 4-17. Operation 3 cannot be scheduled due to stub conflicts




Sep 4. Assign routes

Fourth, communication scheduling examines each closing communication and assigns a
route if possible. If the read stub and write stub access the same register file and form a

route, communication scheduling immediately assigns the communication to that route.

When scheduling operation 4 in the motivating example, the write stub and a read stub
form aroute for the closing communication of b from operation 2, so communication
scheduling immediately assignsit to that route as shown in Figure 4-18. The stubs for the

closing communication of a from operation 1 do not form aroute.
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FIGURE 4-18. Route for communication of b from operation 2 to operation 4
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Sep 5. Insert copy operations

Fifth, communication scheduling inserts and attempts to schedule a copy operation to con-
nect the stubs and form a route for each remaining closing communication. Inserting a

copy operation is equivalent to the code transformation shown in Figure 4-19.

FIGURE 4-19. Copy operation code transfor mation

Effectively, this transformation splits the original communication into two communica
tions, one from the write operation to the copy operation, and one from the copy operation
to the read operation as shown in Figure 4-20. Communication scheduling then calls on

the scheduler to schedul e the copy operation.
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FIGURE 4-20. A copy oper ation effectively splitsoriginal communication into two
communications

two communications

original communication

The copy operation is scheduled just like any other operation, except that it must be sched-
uled on acyclein the copy range of the original communication. If the write operation is
before the read operation in the same basic block, the copy rangeisall cycles between the

cycle on which the write operation completes and the cycle on which the read operation
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issues. Otherwise, the copy rangeisall cyclesin the write operation's basic block after the

write operation. These two cases are shown in Figure 4-21.
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FIGURE 4-21. Copy ranges based on location of read oper ation

Copy operations for communications between operations in different basic blocks (or
from awrite operation to aread operation earlier in the same block) are restricted to the
write operation’s basic block so that they do not overwrite the result of other write opera-
tions. Multiple write operations could compute an operand depending on control flow. A
copy operation for a communication from one such write operation scheduled in the read
operation’s basic block would overwrite the result of any other write operation, regardless

of the actual control flow. If necessary, the scheduler inserts additional cycles at the end of

the write operation’s basic block to accommodate copy operations.t

Communi cation scheduling treats the copy operation just like any other operation, so com-

munication scheduling can recursively insert additional copy operations as needed.

1. Theimplementation of communication scheduling used in the evaluation section backtracks to
the basic block containing the write operation rather than adding additional cycles, but back-
tracking is a costly way to handle arare specia case and not recommended for future implemen-
tations.
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Returning to the motivating example, the stubs for the closing communication of a from
operation 2 to operation 4 do not form aroute, so communication scheduling inserts and

attempts to schedule a copy operation as shown in Figure 4-22.
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FIGURE 4-22. Route for communication of a from operation 1 to operation 4

Communication scheduling succeeds if it finds a permutation of write stubs and a permu-
tation of read stubs, and assigns each closing communication to aroute. If communication
scheduling fails, any routes assigned to communications to/from the current operation are
unassigned, and any copy operations are unscheduled. The scheduler then reschedul es the
operation and attempts communication scheduling again. Once all operations have been
scheduled successfully, communication scheduling has assigned all communications to

routes.



4.4 Implementation

This section discusses implementing three key components of the communication sched-
uling algorithm: determining the valid stubs for a communication and finding a permuta-

tion of stubs for a set of communications, and efficiently scheduling copy operations.

4.4.1 Determining valid stubsfor a communication
To determine the valid stubs for a communication, communication scheduling first finds

all possible stubs using atransversal of the architecture’s interconnect. In the case of read
stubs, it first determines which functional unit input(s) can be used to read the operand.
Then, for each input, it enumerates all the buses the input is connected to and all the regis-
ter file read ports each such busis connected to. Each combination of a connected input,

bus, and register file port is a possible read stub.

However, not all possible stubs are valid because communication scheduling requires that,
for agiven communication, it must be possible to use copy operations to complete aroute
from any valid write stub to any valid read stub. This constraint is fundamental to commu-
nication scheduling because it alows two communicating operations to be scheduled

independently. Regardless of which stub is chosen when scheduling the first operation, the

second operation can still be assigned to any functional unit.

This constraint can only be met for a copy-connected architecture, such asImagine. A reg-
ister file, rfl, is copy-connected to another register file, rf2, if zero or more copy opera-
tions can be used to move avalue from rfl to rf2 (aregister file is aso considered copy-
connected to itself). An architecture is copy-connected if, given any pair of operations, ol
and 02, and a specific operand of 02, operand, such that the result of 01 can be used as that
operand of 02, it is possible to find two sets of register files, RFwrite and RFread such
that:

* Theoutput of any functional unit that can perform ol is connected to at |east one reg-
ister filein RFwrite

* Every input that can be used to read operand by any functional unit that can perform
02 is connected to at least one register file in RFread
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» Every register filein RFwrite is copy-connected to every register filein RFread

Figure 4-23 illustrates this constraint.
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The RFwrite and RFread sets for each 01, 02, operand triplet can be precomputed using
several methods. The most flexible method is an exhaustive search of all permutations of
register files. Since these sets are used to limit valid stubs, it is desirable to find the largest
sets possible. If rfl is copy-connected to rf2 and rf2 is also copy-connected to rfl, the two
register files can be treated as one register file for the purpose of this search. Any set that
contains rfl also contains rf2. For many architectures, every register file is copy-con-
nected to every other register file, so the search istrivial and the RFread and RFwrite sets

always contain all register files.

Communi cation scheduling determines the valid stubs for a communication by using the
RFwrite set and RFread set for the communication’s write operation, read operation, read
operand triplet. The valid write stubs are the possible stubs that write to aregister filein
RFwrite. The valid read stubs are the possible stubs that read from aregister filein
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RFread. Since every register filein RFread is copy connected to every register filein

RFwrite, copy operations can be used to complete the route between any two valid stubs.

4.4.2 Finding a permutation of stubs
Finding a non-conflicting permutation of stubsis computationally expensive, but the

search does not need to be exhaustive. The number of permutations of stubsis exponential

with the number of communications. However, the search will complete if:

* It canfind aread/write stub for all communications to/from an operation in the
absence of other communications

» |t can dwaysfind a permutation of stubs for a given set of communications if it ever
finds a permutation of stubs for that set of communications (i.e. it is repeatable)

The first requirement ensures that an operation can always be scheduled, even if only by

scheduling it to issue and complete on cycles without any other scheduled operations. The
second requirement ensures that, once an operation has been scheduled it will remain pos-
sibleto find a permutation of stubs for the cycles on which it issues and completes, even if

only by scheduling no additional operations on those cycles.

One search algorithm that meets these requirements orders the communications, then finds
astub for each communication in turn. The algorithm orders the communications so that
the communications for which it is most important to complete a route come first. All
closing communications are ordered before all open or opening communications. Closing
communications are ordered by smallest copy rangefirst, so that the communications with
the fewest cycles to schedule copy operations on have preference in choosing stubs to
form routes. Once the communications are ordered, the algorithm selects the first stub for
each communication that does not conflict with the stub found for a previous communica-
tion. If all stubsfor acommunication conflict with stubs found for a previous communica-
tions, the search falls backs to the first such communication and chooses a new stub. The
search terminates when a stub has been found for each communication or after an arbi-

trary, relatively large, number of partial permutations have been tried.
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Figure 4-24 shows detailed pseudocode for afunction that implements this search algo-

rithm.> Note that this function is used both to find apermutation of read stubsin Step 2 of
the communi cation scheduling algorithm, and to find an opposite read stub for a closing
communication in Step 3. The corresponding function used to find a permutation of write
stubs in Step 3 and an opposite write stub for a closing communication in Step 2 mirrors

this function exactly.

Bool ean Fi ndReadSt ubs(Operation o, Conmuni cation cFi ndOpposite = NULL)

{
Integer i, j, k;

Set <Qperation> O = Get Operationsl ssuedOnCycl e(0.i ssue);

Set <Communi cati on> CTo = Get Communi cati onsToOperations(O);

Set <Conmmuni cati on> CC osed = Get d osedConmuni cati ons( CTo) ;

Set <Conmuni cati on> CNonCl osed = Get NonCl osedConmmuni cat i ons( CTo);

/1 sort non-cl osed comunications so that all closing comrunications cone
/1 first, in order of ascending copy range size
PrioritizeConmmuni cati ons(CNonC osed);

/'l renmove valid stubs that conflict with stubs of closed comrunications
for (i = 0; i < CNonC osed.count; i++) {
Communi cation ¢ = CNonCl osed[i];
for (Integer j = 0; j < CCosed.count; j++) {
RermoveConfl i cti ngSt ubs(c. val i dReadSt ubs, CCl osed[j].readStub);

}
c.readStub = NULL;

/1 with each non-cl osed contmunication. ..

i = 0;

I nteger pernutati onCount = 0;

while (i >= 0 & i < CNonCd osed. count &&
pernut ati onCount < MAX_PERMUTATI ONS) {

Conmmuni cation ¢ = CNonCl osed[i];
Stub firstNonConflictingStub;
Bool ean conflict = TRUE;

/1 find the first stub that does not conflict with a previous stub
I nteger prevConflictMaxldx = -1;
for (j = GetlndexOf Next Stub(c.vali dReadSt ubs, c.readStub);
j < c.validReadStubs. count && conflict; j++) {
c.readStub = c.vali dReadStubs[j];
conflict = FALSE;
for (k =i - 1; k >= 0 & !'conflict; k--) {
if (CheckStubConflict(c.readStub, CNonC osed[k].readStub) {

1. Pseudocode assumes all object variable are reference-counted pointers
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conflict = TRUE;
prevConflict Maxl dx = Maxi mun( prevConflict Maxl dx, k);

/1 if a stub is found and the comunication is closing,
/1 try and find the opposite stub
/1 unless this function is being used to find an opposite stub,
/1 then try and forma route
if ('conflict & c.status == CLOSING {
if (cFindOpposite == NULL) {
conflict = 'FindWiteStubs(c.witeQp, ¢));
} else {
conflict = !CheckStubsFornRoute(c));
}
/1 note the first non-conflicting stub
if (firstNonConflictingStub == NULL) ({
firstNonConflictingStub = c.readStub;
}

/1 if the conmunication is closing and a route cannot be forned
/1 use the first non-conflicting stub, copy operations will be added | ater
/1 unless trying to find the opposite stub for this comunication
if (conflict & firstNonConflictingStub !'= NULL & c != cFi ndOpposite) {
c.readStub = firstNonConflictingStub;
conflict = FALSE;

}

// if a stub is found, advance to the next communi cati on
/1 otherwi se fallback to the first previous communication with a stub
/1 that conflicts with any stub of this conmunication
if ('conflict) {
i ++;
} else {
while (i > prevConflictMaxldx) ({
CNonCl osed[i].readStub = NULL;
i--;
}
}
per nut at i onCount ++;

}

/!l return true if a stub is found for all non-cl osed comruni cations
return (i == CNond osed. count);

FIGURE 4-24. Pseudocode for stub permutation search
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4.4.3 Scheduling copy oper ations
The scheduler merges copy operations for different communications of the same result to

make more efficient use of resources. Suppose one operation computes aresult that is
communicated to two other operations, and both communications require copy operations
to form routes. The scheduler schedules the copy operation for the first communication,
copyl, normally. If it schedules copyl in the copy range of the copy operation for the sec-
ond communication, copy2, it schedules copy2 on the same cycle and functional unit as
copyl, then attempts communication scheduling. Communication scheduling treats stubs
for communications with either operation as stubs of communications with the same oper-
ation for the purpose of determining conflicts. If communication scheduling succeeds for
copy2, the scheduler merges the two copy operations into one copy operation. Otherwise,

it schedules copy2 normally.

4.5 Performance

Architectures with shared interconnect and multiple register files impose additional con-
straints on VLIW scheduling; communication scheduling contributes to good performance
on these architectures by limiting the impact of these constraints on scheduling. Commu-
nication scheduling introduces an incremental method for composing routes from shared
interconnect resources during scheduling that does not need to know which operations are
assigned to which functional units prior to scheduling. This alows the use of asingle-
phase scheduling algorithm which assigns operations to functional units during schedul-
ing. Most multi-phase algorithms rely on constructing an approximate schedule before
constructing the actual schedule in order to assign parallel operations to different func-
tional units. This approximation becomes less accurate in the presence an additional
resource constraint, such as complex shared interconnect. Further, the effects of a poor
approximation are magnified when scheduling kernels with excess instruction level paral-
lelism on architectures with many functional units. When more operations can occur in
parallel than there are available functional units, the operations cannot be assigned to
functional units such that they can always be scheduled in parallel. More functional units
increases the chance that for a set of operations with an effectively random assignment to

functional units, one or more operations will be assigned to the same functional unit.



The effectiveness of communication scheduling depends on the topology of the shared
interconnect. It isdesigned for architectures with a high-degree of connectivity and mostly
equivalent interconnect resources, such as Imagine. In architectures with very limited con-
nectivity among functional units, there are few decisions for a communication scheduling
algorithm to make. On such architectures, operation placement isthe determining factor in
performance. Communication scheduling as presented in this chapter assumes that most
interconnect resources are equivalent. In an architecture in which some interconnect
resources are more connected that others, a naive algorithm for choosing stubs could
wastefully assign highly-connected resources to communications that could use less-con-
nected resources. However, using an algorithm that simply weighted stubs based on con-
nectivity would largely avoid this problem. The scheduling processfor aVLIW
architecture is already NP-complete and shared interconnect introduces additional, non-

orthogonal resources to the allocation problem so an exact approach is not possible.

4.6 Summary

This chapter described communication scheduling, anew component of VLIW scheduling
that allocates shared interconnect resources such as buses and register file ports by assign-
ing communications between operations to routesthat define the resources used to transfer
values between functional units. It presented the communication scheduling algorithm
used to assign communications to routes, and discussed implementing key portions of the

algorithm.

Communication scheduling is ageneral technique that can be incorporated as part of a
variety of scheduling algorithms and applied to alarge class of shared of architectures.
Communication scheduling can be added to a scheduler smply by allowing communica-
tion scheduling to accept or reject each operation placement. Communication scheduling
is not architecture specific. It can be used to explore novel register files architectures with-

out implementing a custom compiler for each architecture.
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Chapter 5

KernelC Compiler

This chapter describes the Imagine Kernel C compiler, which compiles Kernel C for the

processing elements of the Imagine media processor. This chapter provides an overview of
the Kernel C compiler as a whole and concentrates on the design choices and innovations
motivated by the new hardware concepts introduced in the Imagine processor architecture

and the characteristics of media processing kernels.

The Kernel C compiler supports the Imagine media processor architecture’s multiple regis-
ter files with shared interconnect, sequential interface to the stream register file, and
addressabl e scratchpad memory. The Kernel C compiler uses communication scheduling, a
new compiler technique described in detail in Chapter 4, to support multiple register files
with shared interconnect. This chapter describes the analysis used to construct the commu-
nication graph used for communication scheduling, and presents a scheduling algorithm
optimized for communication scheduling. The Kernel C compiler introduces stream input/
output ordering, a pre-scheduling step that ensures that memory accesses can be ordered
sequentially, and modifies the dependency graph to ensure that they are ordered sequen-
tially. The Kernel C compiler handles scratchpad accesses in the same manner as arith-

metic operations with additional dependencies.
The KernelC compiler is optimized for high performance media processing kernels that

usually consist of a single, computation-intensive loop. The performance critical nature

and relative simplicity of media processing kernels motivate the use of relatively expen-
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sive scheduling heuristics. Since kernel performance is dominated by the loop, the Ker-

nelC compiler incorporates a variation of modulo software pipelining[28].

The Imagine Kernel C compiler compiles kernels written in Kernel C into machine code
executable on the Imagine media processor. The compilation process is separated into
three steps, each described in a section of this chapter. Pre-scheduling trandlates source
code into primitive operations and analyzes and modifies those operations as described in
Section 5.1. Scheduling assigns the primitive operations to functional units and schedules
them on cycles as described in Section 5.2. Post-scheduling allocates registers and gener-

ates machine code as described in Section 5.3.

5.1 Pre-scheduling

The pre-scheduling process translates a kernel written in KernelC into primitive opera-
tions augmented with all the information necessary for scheduling. The Kernel C compiler
parses the source code into operations, separates the operations into basic blocks, gener-
ates acommunication graph that is the basis for communication scheduling, and produces

the dependency graph used to order operations for scheduling.

5.1.1 Parsing
The Kernel C compiler tranglates Kernel C into primitive operations using a standard lexi-

cal analyzer and parser. The Kernel C compiler adds operations to compute constants, and

performs any loop unrolling specified by the programmer.

Figure 5-1 shows asimple kernel in KernelC and the corresponding primitive operations.
The simple kernel performs a coordinate transformation with two explicit dimensions (x
and y) and one implicit dimension (z). This kernel will be used throughout the remainder

of this section to illustrate features of the KernelC compiler.

5.1.2 Control flow analysis
The Kernel C compiler separates the operations into basic blocks and constructs a control

flow graph containing all basic blocks in the kernel with adirected edge from each basic
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ker nel Coordi nat eTransf or m
i streamxfl oat> i nXYs,
ostreanxf | oat > out UVs)

{
float z = O; 1: z = 0.0
| oop_stream(i nXYs) {
/1 1oad inputs
i nXYs >> Xx; 2: in0 >> x
i nXYs >> vy; 3: in0 >y
/] coordinate transform
v =-((y +2)"2); 4 a=y +z
5. b=a* a
6: v =-b
u= x"2 + v; 7 € =X * X
8: u==c+yv
/1 store outputs
outUVs << U << v 9. outO << u
10: outO << v
/1l increnment inplicit z
z =z + 1.0; 11:. z =z + 1.0
}
}

FIGURE 5-1. Example kernel in KernelC and corresponding primitive operations

block to every basic block that could be executed immediately after it. Since the only con-
trol flow structuresin Kernel C are explicit loops, all basic blocks are delineated by the
start or end of aloop and the control flow analysisistrivial. Figure 5-2 shows the control

flow graph for the example.

5.1.3 Dataflow analysis
The Kernel C compiler constructs a data flow graph for the entire kernel containing all

operationswith directed edges representing each communication between operations. This
type of graph isastandard intermediate representation, but specifics vary from description
to description. For clarity, this specific form, which is used as the basis for communication

scheduling, is called a communication graph. The communication graph contains a
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BLOCK 0

1:z=0.0

Yy

BLOCK 1

2:in0 >>x
3:in0>>y

9: outO <<u
10: out0 << v

11: z=z+1.0

Yy

BLOCK 2

FIGURE 5-2. Control flow graph

directed edge from each operation that computes a result to each operation that uses the
result as an operand, for each such operand. A communication exists between two such
operations regardless of their relative location: communications can exist between opera-
tionsin different basic blocks, or from alater operation to an earlier operation that uses its
loop carried result as an operand. Each edge islabeled with the result used and the operand
itisused as. Thisinformation is used by communication scheduling to determine which

functional unit ports to use for the communication.

The communication graph can be constructed using one of severa dataflow analysis
methods. The Kernel C compiler uses a slot-wise approach [37], so named because it con-
siders each result separately, but this method is an arbitrary implementation choice. The
KernelC compiler iterates over each operation, o. For each result of o, r, it performsthe
following analysis: starting with the operation immediately after o, it adds an edge from o
to the current operation for each use of the r as an operand, then moves to the next opera-

tion in the current basic block. If the Kernel C compiler encounters the end of abasic
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block, it adds all unreached basic blocks that succeed that basic block in the control flow
graph to aworklist. It then removes a basic block from the worklist, marks it as reached,
and movesto thefirst operation in that basic block. If it encounters an operation that com-
putes aresult which is assigned to the same variable asr, it stops traversing the current

basic block and obtains a new basic block from the worklist.

Figure 5-3 shows the communication graph for the sample kernel. The first four edges,
shown in bold, are added as follows. Operation 1 (“z = 0.0") produces one result assigned
to z. There are no more operationsin block 0, so block 1 and block 2 are pushed onto the
worklist. Block 1 is popped off the work list and traversed. Operation 4 uses z as operand
two, so an edge is added from operation 1 to operation 4 and labeled “1, 2" (result 1 used
as operand 2). Operation 11 also uses z, so another edge is added. However, the result of
operation 11 isassigned to z. Traversal of block 1 stops and block 2 is popped off the
worklist. Block 2 is empty, not followed by any blocks in the control graph, and no blocks
remain on the worklist, so all edges for operation 1's only result have been added. Opera-
tion 2 also produces one result, assigned to x. Operation 7 uses x for two operands, so two
edges are added from operation 2 to operation 7, labeled “1, 1" and “ 1, 2”.

5.1.4 Dependency analysis
The Kernel C compiler constructs a directed acyclic graph (DAG) for each basic block

containing all operationsin the basic block with an edge from each operation to every
operation that depends on it. The initial dependency graph for a basic block is derived
from the communication graph and the source code order of the operations, and containsa
subset of the edgesin that graph. Each edge that connects two operations within the basic
block is considered in turn, all edges connecting operations in other basic blocks are
ignored. If the edge is from an earlier operation to alater operation, then a corresponding
edge annotated as read-after-write (RAW) is added to the dependency graph. If the edge
from alater operation to an earlier operation, then a corresponding but reversed edge
annotated as write-after-read (WAR) is added to the dependency graph. For simplicity,
redundant edges, edges of the same type between the same operations, are omitted. Later

analysis steps add edges that impose additional ordering constraints.
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BLOCK 0
1:z2=0.0

BLOCK 1

FIGURE 5-3. Communication graph

Figure 5-4 shows the dependency graph for the example kernel, along with athumbnail of
the communi cation graph. Two representative edges in the dependency graph are high-
lighted. The first highlighted edge is from operation 2 to operation 7. It was added to the
dependency graph because there is an edge from operation 2 to operation 7 in the commu-
nication graph. Although there are two such edges in the communication graph, the redun-
dant edge is omitted. The second highlighted edge is from operation 4 to operation 11. It
was added to the dependency graph because there is an edge from operation 11 to opera-
tion 4 in the communication graph. Since the edge in the communication graph isfrom a
later operation to an earlier one, it isreversed and annotated as a WAR edge in the depen-

dency graph.
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BLOCK 0
BLOCK 0

BLOCK 1

BLOCK 1

(communication graph)

FIGURE 5-4. Dependency graph

5.1.5 Stream input/output ordering
The Kernel C compiler must preserve the order of the operations used to read data from or

write data to a stream so that the records within the stream are accessed in the expected
order. To enforce this restriction, the Kernel C compiler adds a dependency between each
input operation that reads data from a stream and the next input operation that reads data
from that stream in the same basic block. It similarly adds dependencies between output

operations that write data to the same stream.

No register file exists to stage the values written to a stream so the operations that compute
the values to be output, hereafter called the output computation operations, need to occur
in the same order as the output operations. In most cases, the Kernel C compiler adds a

dependency from each output computation operation to the next output computation oper-
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ation that computes data that is written to the same stream. However, sometimes all the
output computation operations are not in the same basic block as the corresponding output
operation. Other times there are dependency relationships among the output computation
operations such that they cannot occur in the same order as the output operations. For
example, one output computation operation may compute a value that is both written to a
stream and used to compute another value that must be written to the same stream earlier.
To resolve these situations, the Kernel C compiler inserts a copy operation that copies the
value to be output before some or al of the output operations. These copy operations
become the new output computation operations for those output operations, and effec-

tively stage the data through an existing register file.

Figure 5-5 shows the block 1 dependency graph before and after stream input and output
ordering. For this example, the Kernel C compiler adds an edge from operation 2 to opera-
tion 3 to order the input operations, and from operation 9 to operation 10 to order the out-
put operations. It cannot add an edge from operation 8, the output computation operation
for operation 9, to operation 6, the output computation operation for operation 10 since a
contrary dependency already exists between those operations such that operation 6 must
occur before operation 8. Instead, the Kernel C compiler inserts a copy operation that cop-
iesthe value of v just before the output. This operation becomes the new output computa-
tion operation for operation 10, and the Kernel C compiler adds an edge to it from

operation 8.

These copy operations can also be inserted using a source code transformation prior to
constructing the communication and dependency graphs, which alleviates the need to
update those graphs. Using this alternative, the Kernel C compiler determines which out-
put operations to insert copy operations before by examining each output operation for a
stream in source code order. If the output computation operation for the current output
operation is not in the same basic block, or appears before the output computation opera-
tion for the previous output operation, the Kernel C compiler inserts a copy operation. This

approach is overly conservative: output computation operations only need to be sup-
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BLOCK 1 BLOCK 1

FIGURE 5-5. Dependency graph before and after stream input/output ordering.

planted by copy operations if they are ordered incorrectly in the dependency graph, not

just in the source code.

5.1.6 Scratch pad access ordering
The Kernel C compiler adds dependencies to order all scratch pad accesses that may read

or write the same data. The scratch pad is used to hold small arrays. To avoid false depen-
dencies between accesses to the same array, the Kernel C compiler disambiguates such

accesses based on their indices. The Kernel C compiler disambiguates accesses with differ-
ent constant indices, or with the same index variable and additions or subtractions of con-

stants with a non-zero sum between the two accesses.

5.2 Scheduling

The scheduling process assigns each operation to afunctional unit and schedulesit on a

cycle. The scheduling algorithm is optimized for use with communication scheduling and
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alarge number of functional units. Those optimization considerations dictate the order in
which basic blocks are scheduled, the general structure of the scheduling algorithm, the
order in which operations are scheduled, and the functional unit each operation isassigned

to.

The examplesin this subsection are taken from scheduling the coordinate transform kernel
on the architecture presented in Figure 5-6. This simple architecture captures the primary
features of amedia processor like Imagine: a distributed register file architecture and

stream input and output units.

==
020 7 5

FIGURE 5-6. Example architecture

5.2.1 Basic block ordering
The Kernel C compiler schedules the basic blocks that dominate execution time first so

that those blocks have the greatest freedom for communication scheduling. Communica
tion scheduling influences operation placement based on communications between opera-
tionsin different basic blocks, so basic blocks cannot be schedul ed independently. The
basic blocks that are scheduled earlier do not need to close communications to operations
in basic blocks that are scheduled later, so those basic blocks have the fewest constraints
on operation placement. The Kernel C compiler orders basic blocks based on deepest

nested depth then largest number of operations. Assuming each loop is executed the same
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large number of times, this order reflects the influence of each basic block on execution

time.

In the example introduced in Figure 5-1, block 1 is more deeply nested than block 0, so it
is scheduled first. Block O has more operations that block 2, the empty block after the

loop, so it scheduled second. If block O was scheduled first, the placement of operation 1
(“z=0.0") would influence communication scheduling for operations 4 (*a=y + z’) and

11 (“*z=z+1") inblock 1, which could result in an inferior schedule for the inner loop.

5.2.2 Scheduling algorithm
The Kernel C compiler uses the scheduling algorithm depicted in Figure 5-7. Thisago-

rithm is similar to the algorithm described in [40]. The Kernel C compiler selects an opera-
tion based on a heuristic that considers whether the operation is on the critical path (how
much slack it has) and a several other factors, and schedulesit on the first possible cycle
with an available functional unit. It then assigns the operation to one of the available func-
tional units and attempts communication scheduling. If communication scheduling suc-
ceeds, the operation is scheduled. If communication scheduling fails, the KernelC
compiler assigns the operation to a different functional unit, or delaysit until alater cycle,

until it succeeds.

The Kernel C compiler is operation-driven rather than cycle-driven: it selects an operation
and schedules it on the earliest possible cycle, rather than scheduling as many operations
as possible on the current cycle before advancing to the next cycle. An operation-driven
scheduler is better than a cycle-driven scheduler for use with communication scheduling
because it ensures that communication between operations on the critical path are sched-
uled first. Consider acommunication between two adjacent operations on the critical path,
0l and 02. Using cycle order, the scheduler schedules 01 then as many operations as pos-
sible on the current cycle before moving on to the next cycle. Those additional operations
may occupy the interconnect resources needed to find an efficient route for the critical
communication. When attempting to schedule 02 on the next cycle, communication

scheduling may be forced to delay it to insert a copy operation. Other operations that can
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FIGURE 5-7. Scheduling algorithm flowchart

be scheduled on that cycle may occupy al functional units that could perform the copy
operation, causing o2 to be delayed even further. Using operation order, after scheduling
ol the scheduler can immediately schedule 02 on the next cycle since 02 does not depend
on any other operations. This order allows communication scheduling to assign the com-

munication to an efficient route.

Figure 5-8 shows how a cycle-driven scheduler schedules the operations in basic block 1.
On cycle 1, it schedules operation 2. On cycle 2, it schedules operation 3 then tries but
failsto schedule operation 7 because a copy operation is required between operation 2 and
operation 7. On cycle 3, it schedules operation 4, then operation 7 and the required copy
operation. It also tries but fails to schedule operation 11 since both shared buses are occu-

pied. On cycle 4, it attempts to schedule the critical-path operation 5, but fails because
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every possible write stub for operation 7 occupies the only bus that can write into the mul-
tiplier'sregister file as shown by Figure 5-9. Delaying the critical path operation 5 results
in an inferior schedule. This problem is exasperated if, after failing to schedule operation
11 on cycle 3, it schedules operation 11 on cycle 4 on adder 1, the only unit that can per-
form the copy operation for the communication from operation 4 to operation 5, making

the schedule even worse.

IN ADDO ADD1 MUL ouT
2:in0>>x
3:in0>>y 13: x =x

4:a=y+ z [7:Cc=x*X

Al wln|e

FIGURE 5-8. Cycle-driven schedule

FIGURE 5-9. Operation 5 can’t be scheduled due to communication conflict

In contrast, Figure 5-10 shows how the first several operationsin basic block 1 are sched-
uled by an operation-driven scheduler. It schedules operation 2 on cycle 1, operation 3 on
cycle 2, operation 4 on cycle 3, then operation 5 on cycle 4. Thus, it can close the commu-

nications from operation 4 to operation 5 as shown by Figure 5-11.
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IN ADDO ADD1 MUL ouT

1(2:in0>>x
2(3:in0>>y
3 4:a=y+ z
4 b:b=a*a
FIGURE 5-10. Operation-driven schedule
IN | ADDO | ADD1 | mMuL ouT
3
v v

FIGURE 5-11. Operation 5 can be scheduled without conflict

The Kernel C compiler uses asingle phase that assigns each operation to afunctional unit
at thetimeit is scheduled on acycle. Most VLIW schedulers use two phasesthat assign all
operations to functional units, then schedule them on cycles. However, atwo-phase sched-
uler delays an operation until alater cycleif the functional unit it is assigned to is already
occupied or bus or register filer port conflicts prevent the use of that functional unit, even
if another functional unit could perform the operation on that cycle. Shared bus and regis-
ter file ports make effectively assigning operations to functional units ahead of time diffi-
cult. The single-phase Kernel C compiler assigns each operation to an available functional
unit on the earliest possible cycle. Further, with shared buses and register file ports, the
functional unit an operation is assigned to influences communication scheduling for other
operations. The Kernel C compiler assigns each operation to afunctional unit that allows
for good communication scheduling (see the discussion of communication cost in Section
5.2) based on the actual schedule to date.
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The optimal schedule for the example kernel is shown in Figure 5-12. Using atwo-phase
scheduler, operation 12 could reasonably be pre-assigned to the multiplier (since no other
multiply operation could possibly conflict with it), but doing so would result in a commu-
nication conflict on cycle 5 as shown in Figure 5-13. This communication conflict results
from operation 6 and operation 7 occurring on the same cycle. This conflict is almost
impossible to predict statically given the complexity of scheduling operation 7 as
described above. Using a single-phase scheduler, operation 12 is assigned to a functional
unit at thetime it is scheduled, after operations 6 and 7 have already been scheduled.

IN ADDO ADD1 MUL ouT
112:in0>>x
213:in0>>y 13: x =x
3 11:z=z+1 |4 a=y+z
4 —a*a
5 6:v=-b 7:C=X*X
6 8:u=c+v
7 12:v=v 9: outO<<u
8

10: outO<<v

FIGURE 5-12. Optimal schedule

5.2.3 Operation prioritization
The KernelC compiler uses a heuristic to determine the order in which operations are

scheduled. This order is doubly important on an architecture with shared interconnect
because operations compete not only for issue slots on particular functional units, but also
for shared buses and register file ports. The earlier an operation is scheduled, the more
interconnect resources are available to it. The Kernel C compiler prioritizes operations
based on a heuristic that considers aweighted combination of slack, latency, average
usage of the functional units that can perform the operation, and distance from the edge of

the dependency graph.

The Kernel C compiler prioritizes operations with low slack above operations with high

slack to keep the critical path as short as possible. Slack is the number of cycles between
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FIGURE 5-13. Possible communication conflict with a two-phase scheduler

the earliest possible cycle and the latest possible cycle an operation could be scheduled on
in aminimum length schedule given infinite resources. The lower the slack, the greater the
chance that delaying an operation will increase the schedule length. The scheduler recom-
putes the slack of unscheduled operations after each operation is scheduled to reflect the

actual cycle on which that operation isissued.

The KernelC compiler prioritizes operations with high latency above operations with low
latency so that the low latency operations can fill in the gaps between the high latency
operations. A good analogy for this concept isthat it is easier to pour sand into a bucket

full of rocks than to pour rocks into a bucket full of sand.

The Kernel C compiler schedul es operations that can only be performed on busy functional

units before operations that can be performed on relatively unused functional units. This
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policy preventsissue slots on those busy functional units from being occupied by opera-
tionsthat could be performed by many kinds of functional units (such as copy operations),
or lost due to bus and register file port conflicts with operations that could be scheduled
differently. Before scheduling each basic block, the Kernel C compiler first computes a
measure of how busy each functional unit isfor that basic block, called functional unit
usage. The“raw” functional unit usage for aunit isthe expected number of operations that
would be assigned to the unit if each operation were randomly assigned to a unit that sup-

ports that operation. Raw functional unit usage is computed using Equation 1:

O(u), the set of operations in the block that are supported by the functional unit u
U(0), the set of functional units that support operation o

1
|U(0)|

rawFunctionalUnitUsage(u) = 3
0 € O(u)

(1)

The raw functional unit usage values are then normalized relative to the highest raw func-

tional unit usage. For the example, functional unit usage is calculated as shown in Figure

5-14.

IN ADDO ADD1 MUL ouT
2:in0>> x 1.00
3:in0>>y 1.00
4.a=y+z 0.50 0.50
5:b=a*a 1.00
6:v=-b 0.33 0.33 0.33
7. C=X*X 1.00
8 u=c+v 0.50 0.50
9: outO<<u 1.00
10: outO << v 1.00
11:z=z+1.0 0.50 0.50
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12:v=v 0.33 0.33 0.33

raw functional unit 2.00 2.17 2.17 2.67 2.00
usage(u)
functional unit usage(u) 0.75 0.81 0.81 1.00 0.75

FIGURE 5-14. Functional unit usage calculation

The Kernel C compiler then prioritizes operations that can only occur on units with high
functional unit usages. More specifically, it computes the average functional unit usage for

all units that support each operation using Equation 2:

Z functionalUnitUsage(u)

averageFunctional UnitUsage(o) = 4-€Y(0)

|U(0)| @

It then prioritizes operations that are supported by functional units with high average func-
tional unit usage. For instance, in the example multiply operations are prioritized because
the average functional unit usage for the functional unit(s) that support those operations,

the multiplier, is 1.0.

Lastly, the Kernel C compiler prioritizes operations that are close to the bottom edge of the
dependency graph over those that are close to the top. This component of the heuristic
counters the fact that slack considers the number of cycles an operation could be sched-
uled on, but ignores resource conflicts on those cycles. As high priority (low slack) opera-
tions are scheduled they occupy resources which could have been used by low priority
(high slack) operations. If al high priority operations are scheduled first without regard
for distance from the edge of the dependency graph, along chain of low priority opera-
tionsleft until the end may be unable to fit into the body of the basic block dueto resource

conflicts, resulting in a“tail” of operations that significantly increases schedule length.

The kernel scheduler combines these four factors (slack, latency, average functional unit

usage, and distance from the edge of the dependency graph) into a single weight using

Equation 3, with high priority operations having the lowest wel ght.1



weight = (1 + slack) ©)

« (1 —08xmi n('_@ii)ﬁy, 1))

x (1-0.8 x averageFunctionalUnitUsage)

x (1+0.2x distFromEdge)

The Kernel C compiler not only considers the intrinsic priority of an operation, it also con-
siders the priority of the operations that the operation must be scheduled before. If an
operation with high priority must be scheduled before an operation with alow priority, the
low priority operation should be scheduled so that the high priority operation can be
scheduled. Thus, the Kernel C compiler gives each operation afinal weight equal to the
geometric mean of its own intrinsic weight and that of the lowest weight operation that it
depends on (in the case of top-down scheduling) or that depends on it (in the case of bot-

tom-up scheduling). For ssimplicity, weights are not updated transitively.

5.2.4 Functional unit assignment
The Kernel C compiler determines which available functional unit to schedule an opera-

tion on using an heuristic that considers communication cost, functional unit usage, and
least recent use. Functional unit selection is also more important in an architecture with
multiple register files or shared interconnect because it determines how communications

between that operation and other operations can be scheduled.

The Kernel C compiler tries to assign the operation to afunctional unit with low communi-
cation cost. Communication cost reflects the likelihood that assigning an operation to a
functional unit will require copy operations to complete open communications, and the
likelihood that those copy operations will increase schedule length. Assigning an opera-
tion to a particular functional unit can require copy operations to complete communica-
tions to or from that operation, to operations issued on the same cycle, or from operations

that complete on the same cycle. This set of communicationsis the union of the sets Cto

1. The weight of each individua factor was determined experimentally.
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and Cfromintroduced in Section 4.3. As shown in Equation 4, communication cost is cal-
culated by taking the sum over this set of the minimum number of copy operations
required to complete aroute for each communication divided by the estimated size of the

copy range for that communication, the cycles on which those copies could be schedul ed.

communication cost = 3 requiredCopies (%)
1+ |copyRange]
communicationsin Cto and Cfrom

The Kernel C compiler uses communication scheduling to estimate the number of required
copy operations by finding permutations of stubs for the open and closing communica
tionsin Cto and Cfrom (see Section 4.3) as though the operation were assigned to the
functional unit in question, then counting the number of stubs that cannot form aroute
without a copy operation regardless of which functional units the unscheduled operations
are assigned to. The copy range for each open communication is estimated by assuming
that all unscheduled operations are scheduled on the latest possible cycle without increas-
ing schedule length.

In the example, communication cost is critical when assigning operation 4 to an adder.
Since no other operations are scheduled on cycle 3 when operation 4 is being scheduled,
Cto and Cfrom only contain the communications to and from operation 4, shown in Figure
5-14. Operation 4 can be scheduled on either adder. However, only adder 1 is connected to
the second shared bus. All communications to operation 4 are from operations that con-
nect to the first shared bus, so none require a copy operation regardless of which adder
operation 4 is scheduled on. However, both communications from operation 4 (shown in
bold) areto operation 5, amultiply, and the multiplier is only connected to the second bus.
Both communications require a copy operation if operation 4 is scheduled on adder 0.
Since operation 5 is on the critical path immediately after operation 4, the copy rangeis
estimated as O cycles. The communication cost for adder 0is2* (1/ (1 + 0)) = 2. For

adder 1, no communications require a copy operation so the communication cost is 0.
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FIGURE 5-15. Communicationsto and from operation 4

The Kernel C compiler also tries to assign the operation to afunctional unit with low func-
tional unit usage, as defined in Equation 1 in the previous section. This factor is crucial
when assigning an operation that can be performed by many kinds of functional unitsto a
functional unit, such as a copy operation. If abasic block contains a large number of oper-
ations that only one type of functional unit can perform, it isimportant that other opera-

tions be scheduled on other types of functional units whenever possible.

Returning to the example, operation 6, a negation operation, can be performed by either an
adder (as“0- V") or amultiplier (as“-1* v"). Since an adder has lower functional unit
usage than amultiplier, it is scheduled on adder 1. This heuristic hel ps produce the optimal

schedule, since a multiply scheduled later must occur on the same cycle.

Lastly, the Kernel C compiler triesto assign the operation to aless recently used functional
unit. Thisfactor isweighted so asto be insignificant given a difference in communication
cost or functional unit usage, but serves to distribute operations in the absence of such dif-

ferences.
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The KernelC compiler combines these three factors, communication cost, functional unit

usage, and least recent use into a single weight, with the best functional unit having the

lowest weight:*

weight = (1 + 10 x communicationCost) (5)
x (1+ 2 x functionalUnitUsage)
x (1+ 0.01 x leastRecentUseRank)

5.2.5 Randomization
By introducing arandom component to the heuristics, the Kernel C compiler uses multiple

iterations of the scheduling process to explore the solution space for the best schedule. The
KernelC compiler first schedules the kernel without any randomization, then schedules it
again with thefinal weight of each heuristic multiplied by arandom value between 0.5 and
1.5. The best schedule, selected by summing the schedule length of the most deeply nested
basic blocks, is chosen as the final schedule. This simple technique isimpractical for a
standard compiler. It reduces the schedule length by at most one or two cycles, but that

difference can be important for small, performance critical media processing kernels.

5.3 Post-scheduling

The post-scheduling process transl ates schedul ed operations into machine code executable
on the Imagine processing elements. The Kernel C compiler allocates registers then gener-

ates the machine code.

5.3.1 Register allocation
The Kernel C compiler allocates registers for each register file separately using conven-

tional techniques [37]. It constructs webs, collections of uses of a variable that can be
assigned to the same register, directly from the communication graph, then uses graph col-

oring to assign webs to registers.

1. Again, the weight of each individual factor was determined experimentally.
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To construct the webs for aregister file, the Kernel C compiler only considers communica-
tions assigned to routes through that register file. It iterates through all such communica
tions. If it encounters a communication that has not been assigned to aweb, it initializes a
new web and an empty worklist. It then pushes the communication onto the worklist. As
long asthe worklist is not empty, it pops acommunication, c, off the top of the worklist. If
¢ has not been added to a web then the Kernel C compiler adds c to the web. It also pushes
every communication that is either of the same result from the same operation as c, or of
the same operand to the same operation as ¢, that has not been added to a web onto the

worklist. When the worklist is empty, the web is complete.

Returning to the example, consider constructing the web for the left register file of adder
0. The KernelC compiler only considers the communications shown in Figure 5-16, since
those are the only communications assigned to routes through that register file as shownin
Figure 5-17. First, it selects the communication, c1, from operation 1 to operation 11, ini-
tializes aweb and worklist, and adds c1 to the worklist. Next, it pops c1 off the worklist
and adds it to the web. It then pushes the communication from operation 11 to itself, c2,
onto the worklist. It then pops c2 and adds it the web.

FIGURE 5-16. Communications with routes through left register file of adder 0

Once the Kernel C compiler has constructed the webs for a given register file, it assigns

webs to registers using a standard interference graph and graph coloring.

Since the Kernel C compiler does not consider registers during the scheduling processit is

possible for more registersto berequired than are available in aregister file. Register pres-
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FIGURE 5-17. Routesthrough left register file of adder O

e

sureis not as important for amedia processor because the working set of most media pro-
cessing kernelsisrelatively small and a distributed register file architecture supports a
large number of registers. Asimplemented, the Kernel C compiler does not incorporate a
spilling mechanism. However, more complicated kernels (e.g. graphics kernels) and opti-
mizations that increase the size of the working set such as software pipelining make con-

sideration of register pressure during the scheduling process and/or spilling desirable.
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5.3.2 Machine code generation
The Kernel C compiler generates an instruction word encoding which operation to perform

on each functional unit, which register to read or write through each register file port, and
which driver drives each shared interconnect resource (bus or register file write port). This
last component of the instruction word is unique to shared interconnect architectures. The
instruction word can encode which driver drives each shared interconnect resource
(resource encoding), or which resource is driven by each driver (driver encoding). The
choice of encoding method is driven in part by instruction word size and in part by hard-
ware implementation of the switches used to connect multiple drivers to each shared

resource.

The example architecture contains four shared interconnect resources. the two shared
buses and the shared register file port of each of two register files connected to adderl.
Each shared bus can be driven by one of several functional unit outputs, and each shared
register pile port can be driven by either bus. Consider cycle 3 of the example, shown in
Figure 5-18. Adder0 drives the top shared bus (denoted bus0), adderl drivers the bottom
shared bus (denoted busl), and busO drives the right register file of adderl (denoted
add1.rf1). The shared interconnect component of the instruction word can be encoded
using driver encoding as shown in Figure 5-19 or using resource encoding shown in Fig-
ure 5-20.

IN ADDO ADD1 MUL | ouT

3
11:z= 4:a=
z+1 y+ z

FIGURE 5-18. Cycle 3 of final schedule
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5.4 Summary

This chapter described the Kernel C compiler, a VLIW scheduler for the processing ele-
ments of the Imagine media processor. The Kernel C compiler incorporates communica-
tion scheduling to allocate Imagine’s shared interconnect, and stream input/output
ordering to handle the sequential access requirement of almagine's stream register file. It
uses heuristics optimized for scheduling small, performance critical media processing ker-
nels to atarget architecture with many functional units and shared interconnect to priori-

tize operations and assign each operation to a functional unit.

In comparison to general-purpose applications, media processing kernels motivate sub-
stantialy different compiler design tradeoffs. Most media processing kernels center
around a single computation intensive loop. Performance of that loop is critical, leading
some programmers to resort to hand-placed operations. However, by focusing on opera-
tion placement and incorporating techniques such as randomization, the Kernel C compiler
yields results comparable to hand placement. The Kernel C compiler allows programmers
to concentrate on exploring agorithmic optimizations, and makes it easy to retarget high-

performance code to new architectures.
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Chapter 6

Sream Scheduling

This chapter presents stream scheduling, acompiler extension that efficiently managesthe
Stream Register File, an on-chip memory used by a stream processor like Imagine instead
of a cache. Stream processors are optimized for media processing applications written
using the steam programming model presented in Chapter 3. Sream programs consist of a
series of operations on streams, sequences of records. Stream programs typically operate
on large numbers of records with little data reuse, but access memory in avery predictable
fashion. These characteristics make a hardware-managed cache unsuitable for a stream
processor. Instead, a stream processor uses a large software-managed memory called a
Stream Register File (SRF).

Stream scheduling buffers streams in the SRF based on a profile of the stream program in
order to maximize performance by reducing the impact of memory access time. The pro-
file captures the size and access pattern of each stream access and the data flow between
stream operations. Stream scheduling assigns each stream access in the profile to a buffer
in the SRF. Ideally, the results of one operation are buffered until used by another opera-
tion, eliminating memory accesses. Stream scheduling also arranges buffers to allow
memory accesses to occur in parallel with execution. If the streams required for asingle
operation will not fit in the SRF, stream scheduling resorts to double-buffering to cycle the

streams from memory through the SRF.
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This chapter is divided into four sections. Section 6.1 presents the motivation for stream
scheduling. Section 6.2 presents an overview of the stream scheduling algorithm. Section
6.3 describes the stream scheduling algorithm in detail. Section 6.4 discusses several

important special cases for the stream scheduling algorithm.

6.1 Motivation

Efficient management of the SRF is essential for good performance because stream pro-
grams often demand more data bandwidth than the available memory bandwidth. Figure
6-1 shows asimplified diagram of Imagine annotated with available bandwidth. Imagine's
eight processing elements can each read datafrom or write datato the SRF through special
hardware buffers at an effective rate of 2 words/cycle. However, Imagine’'s two memory
controllers can only transfer data between memory and the SRF at arate of approximately
1 word/cycle each. Though most practical stream programs use less data bandwidth than
the processing elements’ maximum aggregate bandwidth of 16 words/cycle, most demand
more than the memory system’s aggregate bandwidth of 2 words/cycle. Thus, the SRF
needs to satisfy a significant portion of most stream programs' data accesses in order to

avoid performance degradation.
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FIGURE 6-1. Available bandwidth in Imagine
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Figure 6-2 shows a stream program that will be used to motivate the need for stream

scheduling to efficiently manage the SRF.! The program consists of six kernels, labeled
Kernel1 through Kernel6. The kernels read and write streams of integers, each of whichis
labeled with either asingle letter or aletter and a* subscript.” Each stream labeled with a
single letter is abasic stream. Each stream labeled with a letter and a subscript (e.g. a0) is
aderived stream that refers to some or all of the records in the basic stream labeled with
that letter. The program contains several important cases. Kernel2 and Kernel 3 both write
to derived streams that refer to half of the basic streamsd and e. Kernel4 then reads all of
d and e. Kernel5 writes to the derived stream fx, a portion of f that is accessed using a

stride of 2. Kernel6 writesto the large stream g, which is bigger than the SRF.

Consider managing the SRF at run-time, using a policy called stream caching that treats
the SRF like a cache that holds streams instead of cache lines. When a stream operation is
issued, stream caching allocates spaces for itsinput and output streams, in their order as
arguments. If there is not enough space for a stream, stream caching g ects the least-
recently-used stream from the SRF until there is enough space. More complex run-time
strategies are possible, but would be difficult to implement given the relatively short exe-

cution time of most kernels on a high-performance processor like Imagine.

Stream caching suffers from four main inefficiencies. First, all output data must be stored
back to memory because it might be g ected from the SRF and later reused. Second, data
that is reused but has been accessed less recently is often g ected in favor of datathat is
never reused but has been accessed more recently. Third, because buffers are allocated at
the first available space in the SRF, buffers can be arranged very inefficiently. For exam-
ple, asmall, recently used buffer in the middle of the SRF divides the SRF until it and all
less-recently-used streams are gjected. Fourth, derived streams that compose a basic
stream for later use can be assigned to buffers that are not adjacent in the SRF forcing the

whole stream to be reloaded in order to be used.

1. For illustrative purposes, this example uses a 9 kiloword SRF. Imagine has a 16 kiloword SRF.
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/1l This exanple assunmes a 9 kiloword SRF (actual SRF is 16 kil owords)
Const int N = 2048;

/'l declare stream variabl es (indented variables are derived streans)
streanxi nt> a(N);

streanxi nt> b(N2);

st reanxi nt > bO(b, 0, N);

st reanxi nt > bl(b, 1, N);

streanxint> c(N);

streanxi nt> d(N);

st reanxi nt > do(d, 0, N2);

st reanxi nt > di(d, N2, N;

streanxi nt> e(N);

st reanxi nt > e0 = e(0, N2);

st reanxi nt > el = e(N2, N;

streancint> f(N);

streanxi nt > fx(f, 0, N, FIXED, STRIDE, 2);

streanxi nt> g(N-10);

/1 call kernels

/1 I NPUTS QUTPUTS

Ker nel 1( a, b0, bl, c );
Ker nel 2( boO, do, e0 )
Ker nel 3( bi, di, el )
Kernel4( ¢, d, e, f, )
Ker nel 5( c, fx )
Kernel 6( a, f, g )

FIGURE 6-2. Example stream program

Stream caching allocates the SRF for the example program as shown by the SRF alloca-
tion graph in Figure 6-3. Each horizontal bar indicates akernel. The large vertical bar rep-
resents the SRF. The intersection of akernel bar and the SRF bar contains the state of the
SRF for that kernel. Shaded rectanglesinside such an intersection indicate a stream access
to that portion of the SRF by that kernel. Light shading indicates aread and dark shading
indicates awrite. Unshaded areas indicate streams that are preserved in the SRF between
accesses. Diagonal cross-hatching indicates memory accesses. For example, the stream a
isloaded from memory and read by Kernel1 but g ected to make room for the output of
Kernel2.
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FIGURE 6-3. SRF allocation graph for stream caching

This example demonstrates all four of the main inefficiencies of stream caching. First,
stream caching stores all three outputs of Kernel1 back to memory because they might be
reused later. However, b0 and b1 are never reused. Second, when alocating space for the
outputs of Kernel3, stream caching g ects c instead of b0 to make room for el because ¢
was accessed |ess recently b0, despite the fact that c is reused and b0 is not. Third, the
small stream el is allocated in the middle of the SRF. If Kernel4 needed alarge buffer, el
would make it impossible to alocate one without gjecting €1 and all streams accessed less
recently than el. Fourth, because stream caching allocates the derived streams that com-
pose d and e when issuing separate kernels, the derived streams are not adjacent in the
SRF so both d and e are reloaded for Kernel 4.

Stream caching also inefficiently sizes buffers for streams that are double-buffered
because they are too large for the SRF. Double-buffering, described in more detail in the
next section, cycles portions of a stream through two alternating halves of a buffer. The
larger the buffer, the fewer times double-buffering needs to swap half-buffers, reducing
overhead. However, that overhead is usually less costly than reloading an € ected stream.
Using stream caching, either the double-buffered stream is buffered in the first available

space, often resulting in avery small buffer, or older streams that might be reused are
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gjected to make room for alarger buffer. In the example, stream caching uses the first pol-

icy and allocates g to an unnecessarily small buffer.

Stream scheduling is a compiler extension that manages the SRF better than a run-time
technique such as stream caching because it alocates buffers ahead of time based on a
profile of the program that enablesit to consider all stream accesses, not just past accesses.
Stream scheduling eliminates all of the inefficiencies of stream caching described above.
Only output data that is gjected from the SRF and reused later needs to be stored to mem-
ory. Stream scheduling determines which streams to buffer in the SRF based on all uses,
not just past uses. It arranges streams to make efficient use of the SRF and tries to assign

derived stream accesses to adjacent buffers.

Stream scheduling allocates the SRF as shown in Figure 6-4, eliminating all unnecessary
memory accesses. Only necessary memory accesses remain. Theinitial input aisloaded,
and the final output g is stored. The streams f and fx are stored in order to combine data
written with different access modes, then f is reloaded. Lastly, the stream a is stored and
reloaded because it cannot fit in the SRF at the same time as the inputs and outputs of
Kernel4. Stream scheduling requires atotal of 18.5 kilowords of memory accesses. Stream
caching requires atotal of 34.5 kilowords of memory accesses. Further, because stream
scheduling allocates a larger buffer for g than stream caching, g needs 5 double buffer
swaps instead of 18. Using stream scheduling to produce the allocation shown in Figure 6-
4 provides examples throughout the rest of this chapter.

6.2 Overview

To alocate the SRF for a program, stream scheduling assigns each stream access in a pro-
file of the program to a buffer in the SRF as depicted in Figure 6-5. The profile lists the
series of operations that compose the program, such as kernels, copies, and transfers to
and from the host and network. For each operation, the profile records all stream accesses,
reads from or writes to a stream, made by that operation. For each stream access, the pro-
file records the start address, end address, and access pattern of the stream. The profile

also notes which stream accesses are to streams that are variable length (access a data-
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FIGURE 6-4. SRF allocation graph for stream scheduling

dependent number of records), or variable bounds (have a data-dependent start and end

addresses).

profile

stream
data

| operation | Steam ‘r-\
(IR EEICCSS
SRF

I buffer I

FIGURE 6-5. Stream scheduling assigns each stream accessto a buffer in SRF

Figure 6-6 graphically depictsthe profile of all the stream accesses in the example pro-

gram. Each horizontal bar in Figure 6-6 represents akernel. Each vertical bar represents a
basic stream. Shaded rectangles where akernel bar intersects a data bar represent a stream
access to that data by that kernel. Light shading indicates a stream read, dark shading indi-

cates a stream write. Vertical cross-hatching indicates stream access with a strided access
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pattern. Figure 6-7 shows the SRF buffer each stream access in the example programis
assigned to. The first stream access to the stream a is highlighted in Figure 6-6, and the
buffer it isassigned to is highlighted in Figure 6-7.
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FIGURE 6-6. Profile of all stream accessesfor the example program

SRF

FIGURE 6-7. Buffersfor each stream accessin the example program
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To avoid resource conflicts, stream scheduling assigns al stream accesses for a given
stream operation to digjoint buffers (except accesses to the same stream). Stream schedul -
ing attempts to assign each stream access to a buffer with a size equal to the size of the
stream. If al of the streams accessed by a given stream operation cannot fit in the SRF,
stream scheduling assigns one or more large streams to smaller buffers. At run time, dou-

ble-buffering is used to cycle those streams through their buffers.

Double-buffering cycles portions of alarge stream through two halves of a smaller buffer.
Figure 6-8 shows the double buffering cycle used to read a stream. Initially, the first por-
tion of the stream isloaded into half buffer 1. Then, the processing elements read the con-
tents of half buffer 1 while a new portion of the stream isloaded into half buffer 2. When
the processing elements are done with the portion of the stream in half buffer 1, the half-
buffers swap roles. A new portion of the stream isloaded into half buffer 1, while the pro-
cessing elements read the contents of half buffer 2. The half-buffers repeatedly swap roles
until the entire stream has been read. Figure 6-9 shows the converse double buffering

cycle used to write a stream.

stream data in stream data in
SRF buffer PEs
memory memory SRF buffer PEs

- N E | e
"Oad ha'f'b“ff’er - buffer 1 m i tter 3
- 1

bi(fjfzral bi(fjfsra 5 ) Store half-buffer r:}fef;ral )
2 2
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inal na
m half-
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FIGURE 6-8. Double-buffered stream FIGURE 6-9. Double buffered stream
read write
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Stream scheduling tries to assign stream accesses to the same data made by different oper-
ations to the same buffer and preserve that buffer between stream accesses in order to
reduce memory accesses. The simplest, but worst method for performing two stream oper-
ationsisto load al inputs from memory, perform the first operation, store all outputs back
to memory, then do the same for the second operation as shown in Figure 6-10. If the two
operations access the same data, assigning both stream accesses to the same buffer and
ensuring that no intervening access is assigned to an overlapping buffer reduces needed
memory accesses. In the best case, one stream operation writes datato a buffer in the SRF,
and alater operation reads that data from the same buffer as shown in Figure 6-11. Even if
one stream operation reads data that is loaded from memory, later operations can still read
that data from the same buffer, eliminating the need for further loads.

memory SRF PEs memory SRF PEs
load input m
= | | </ [ | |
read input read input
[ls] | __/ L]

/  LLs] |

7 [T | ELL

[ls]t] |
storeoutput
[ls]t | Llu] | N/
FIGURE 6-10. Sream operationswith  FIGURE 6-11. Stream oper ations with
accesses assigned to different buffers accesses assigned to the same buffer

102



If a stream access requires a memory access, stream scheduling triesto assign it and the
stream accesses for an adjacent operation to digjoint buffers to allow the memory accesses
to occur in parallel with execution as shown by Figure 6-12. If a stream read for one oper-
ation requires aload, stream scheduling triesto assign it to a buffer that does not overlap
with abuffer assigned to an access made by the previous operation aswith theload of uin
Figure 6-12. Similarly, if a stream write for one operation requires a store, stream schedul -
ing triesto assign it to a buffer that does not overlap with an access made by the next oper-

ation, as with the store of t in Figure 6-12.

memory SRF PEs

[ S]] | |

load input

Pt read input

[ [s[m] |
[ls]m | mlt]] \__/
write output

f
(W | B 7

FIGURE 6-12. Buffersarranged to allow parallel execution and memory accesses

In order to reduce memory accesses and allow required memory accesses to occur in par-
allel with execution, stream scheduling allocates buffersin two dimensions: space and
time. Each word in the SRF defines a unit of space. Each stream operation defines a unit
of time. A stream access has a fixed height and width and a fixed location in time, but can
be assigned to any location in space. Stream scheduling allocates a buffer asarectanglein
thistwo dimensional space that encloses the stream accesses assigned toit. By allocating a
buffer shared by multiple accesses over time as well as space, stream-scheduling ensures

that intervening stream accesses do not overwrite data contained in the buffer. Stream
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scheduling extends the buffer in time slightly before the first accessiif it requires aload,
and dlightly after the last accessif it requires a store. These extensions, called load shad-
ows and store shadows, prevent overlapping buffers from being allocated for adjacent

operations allowing the memory accesses to occur in parallel with execution.

Figure 6-13 shows the buffers for the example program in two dimensions. Two buffers
are highlighted. The leftmost highlighted buffer shows how all stream accessesto c are
assigned to the same buffer and no intervening stream access is assigned to an overlapping
buffer, eliminating memory accesses. The rightmost highlighted buffer shows how the
load shadow for the required load of the stream a prevents an overlapping buffer from
being assigned to a stream access for the previous operation, allowing the load to occur in

parallel with execution of Kernel5.

space >
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FIGURE 6-13. Buffersin two-dimensionsfor the example program
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6.3 Algorithm

In essence, stream scheduling initially assigns each group of compatible stream accesses
to a buffer, then repeatedly divides or shrinks buffers until all buffersfit in the SRF. More
precisely, stream scheduling performs the following steps, each of which is described in

detail later in this section:

Determine which stream accesses are double-buffered

Assign each group of compatible accesses to the same buffer

Mark stream accesses that require memory accesses

Repeatedly divide each buffer in time and space if it is possible to do so without
requiring additional memory accesses

Extend buffers with load or store shadows

Position buffersin the SRF

If the buffers do not fit in the SRF, reduce a buffer and repeat steps 3-7

El AN o

No o

Sep 1. Determine which stream accesses are double-buffered

First, stream scheduling determines which stream accesses for each operation need to be
double-buffered in order to ensure that all streams accessed by that operation can fit in the
SRF simultaneoudly. It initializes the double-buffer size for each stream accessto the size
of the accessed stream, indicating that the stream access does not need to be double-buff-
ered. If thetotal double-buffer size of the stream accesses for an operation exceedsthe size
of the SRF then stream scheduling reduces the double-buffer size of the stream accessto
the largest stream, forcing it to be double-buffered at run time. It sets the double-buffer
size for that stream access equal to the size of the SRF minus the total of all other double-
buffer sizes or a minimum double-buffer size, which ever is greater. If the total double-
buffer size still exceeds the size of the SRF, it repeats the process with the stream accessto
the second largest stream, then with the stream access to the third largest stream, and so on
until the total double-buffer size does not exceed the size of the SRF.

This policy isdictated by the fact that the cost of double-buffering one stream in a smaller

buffer and reloading it later is usually less than the cost of double buffering two streamsin

larger buffers and reloading both streams later. The minimum double-buffer size isthe
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double-buffer size for which these costs are equal under reasonable assumptions. The
overhead of double-buffering a stream is proportional to the number of half-buffer swaps,
equal to the size of the stream divided by the size of a half-buffer. The cost of reloading a
stream is equal to the size of the stream divided by the memory system bandwidth. A sim-
ple mathematical analysis shows that the minimum double-buffer sizeisequal to twicethe
overhead of a half-buffer swap divided by the memory system bandwidth, assuming two
streams with sizes equal to the SRF size. For Imagine, the overhead of a half-buffer swap
is approximately 300 cycles and memory system bandwidth is approximately 1 cycle per

word so the absolute minimum buffer sizeis roughly 600 words.

Figure 6-14 shows the stream accesses in the example program with double cross-hatch-
ing used to indicate double-buffering. In the example, Kernel 6 reads two 2 kiloword input
streams, a and f, and writes a 10 kiloword output stream, g. Initially, the total double-
buffer size for these stream accessesis 14 kilowords which is greater than the size of the 9
kiloword SRF. Stream scheduling reduces the double-buffer size of the stream access to
the largest stream, g, highlighted below, to the total SRF size minus the double-buffer size

of the other two stream accesses, or 9 - (2 + 2) = 5 kilowords.

FIGURE 6-14. Example program with double-buffering
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Sep 2. Assign accesses to buffers

Stream scheduling initially tries to assign as many compatible stream accesses to each
buffer as possible. Two stream accesses are compatible if they access subsequences of a
common supersequence of records. For example, a stream accessto thefirst ten recordsin
abasic stream is compatible with a stream access to the last ten records, but not with a
stream access to all the odd records. A double-buffered stream access is inherently incom-
patible with all other stream accesses because it cycles data through a buffer, overwriting

the contents.

SRF design limitations also restrict which stream accesses are compatible. If the SRF
requiresthat all stream accesses start at an SRF addresses divisible by afixed factor, then
compatible streams must be portions of the same sequence of records that are offset by an
amount divisible by that factor. For Imagine, the SRF requires that all accesses start with
an SRF address divisible by 32. Assuming records are one word in size, an access to
records O to 31 is compatible with an access to records 64 to 95, but not with an accessto
records 65 to 96.

Stream scheduling sets theinitial size and time span of each buffer based on the stream
accesses it encloses. The width of the buffer is equal to the size of the smallest common
supersequence of records for all stream accesses assigned to the buffer, or the minimum
double-buffer size of the double-buffered stream access assigned to the buffer. For exam-
ple, abuffer that includes a stream access to records 30 to 39 and a stream access to
records 50 to 59 has an initial width of 30 since the smallest common supersequence is
records 30 to 59. Stream accesses are offset into the buffer by an amount equal to their off-
set into this smallest common supersequence. In the previous example, the access to
records 50 to 59 is offset into the buffer by the size of 20 records. The initial time span of
abuffer isfrom the operation that makes the first stream access assigned to it to the opera-

tion that makes the last stream access assigned to it.

Figure 6-15 shows theinitial buffers for the example program. Two buffers are high-

lighted. The leftmost highlighted buffer contains three compatible stream accesses: to the

107



first half, second half, and all records of d. The buffer is sized to enclose all the accesses.
The access to d1, the second half of d, is offset into the buffer by half the size of d. The
rightmost highlighted buffer contains an access to fx which is not compatible with the

stream accesses to f because it uses a different stride.
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FIGURE 6-15. Example program with initial buffers

Sep 3. Mark stream accesses that require memory accesses

Stream scheduling marks all stream accesses that require memory accesses to synchronize
data between buffers. Stream accesses assigned to different buffers can access the same
data. If astream write modifies data used by a stream read assigned to a different buffer
then the stream write needs to store to memory and the stream read needs to load from
memory to propagate the changes between buffers. If a stream write modifies data used by
astream read assigned to the same buffer that requires aload from memory then that

stream write al so needs to store to memory to incorporate the changes into the loaded data.

Stream scheduling first determines which stream writes reach which stream reads using
dataflow analysis. A stream write reaches a stream read if any of the records that it modi-
fies could be used by that stream read. To make this determination, stream scheduling
traces all paths of execution backward from each stream read, noting stream writes it
encountersthat could modify the records used by the stream read. It also accumulates a set

of intervening accesses: all stream writes encountered and all stream reads encountered

108



that require loads to the same buffer as the current stream read. It terminates the current
path when the set of intervening accesses covers the stream read. A set of stream accesses
covers a specific stream access if the union of all records accessed by the set of stream
accessesis asuperset of all records accessed by the specific stream access. For instance, a
set of two stream accesses, one to records O to 9 and one to records 10 to 19, covers a
stream access to records O to 14, but not a stream access to records 0 to 29. To make sure
the analysis terminates, stream scheduling records the set of intervening accesses when it
enters a basic block and terminates a path when attempting to enter abasic block if it has
already entered that basic block with the same set or a smaller subset of intervening

accesses.

When it has determined which stream writes reach which stream reads, stream scheduling
marks stream reads and then streams writes that require memory accesses. A stream read
requires amemory accessiif it isreached by a stream write in a different buffer. A stream
write requires amemory accessiif it reaches a stream read in a different buffer or a stream
read which requires a memory load. Figure 6-16 shows a case in which a stream write in
one buffer does not reach a stream read in another buffer, because intervening accesses
cover the stream read. Figure 6-17 shows a case in which a stream write in one buffer

reaches a stream read in another buffer, so both require memory accesses.
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In the exampl e program, the stream accesses to f and fx involve the same data but are
assigned to different buffers as shown in Figure 6-18. Stream scheduling analyzes the
stream read of f as described above and finds that the stream writes to f and fx reach the
stream read. Since the stream write to fx reaches the stream read and is assigned to a dif-
ferent buffer, the stream read requires aload. Both stream writes also require stores since

they reach a stream read that requires aload.
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FIGURE 6-18. Example program with required memory loads

Sep 4. Repeatedly divide each buffer in space and time

Stream scheduling repeatedly divides each buffer in space or intimeif it is possible to do
so without inducing additional memory accesses. It is possible to divide a buffer in space
if the stream accesses assigned to the buffer can be divided into two groups that access dis-
joint ranges of records. Stream scheduling divides the buffer at the separation between
ranges as shown in Figure 6-19. It is possible to divide a buffer in time if the stream
accesses assigned to the buffer can be divided into two groups such that no stream writein
one group reaches a stream read in the other group that does not require aload and the
span from the earliest access to the last access in each group isdigoint in time. Stream

scheduling divides the two buffers as shown in Figure 6-20.

The example program contains two buffersthat can be divided, highlighted in Figure 6-21.

The buffer that contains accesses to b0 and b1, the first and second halves of b, can be
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FIGURE 6-19. Buffer divided in space  FIGURE 6-20. Buffer divided in time

divided in space into one buffer for each half. The buffer that contains accessesto f can be
divided in time because the stream write to f only reaches a stream read that requires a
load. Figure 6-22 shows the divided buffers.
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FIGURE 6-21. Buffersthat can bedivided in the example program

Sep 5. Extend bufferswith load and store shadows

Stream scheduling extends buffersin time to allow memory accesses to occur in parallel
with execution. By extending a buffer into an adjacent stream operation’s unit of time,
stream scheduling prevents buffers containing the adjacent operation’s stream accesses

from being allocated the same space in the SRF as the extended buffer. Thus, the memory
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FIGURE 6-22. Example program with divided buffers

system can load or store the contents of the extended buffer in parallel with execution of
the adjacent operation. However, if the adjacent operation writes the data that is |oaded or
reads the data that is stored, there is no point in extending the buffer because there is no

possibility of parallelism.

Stream scheduling extends buffers based on the earliest and latest stream access assigned
to each buffer. If the earliest stream access assigned to a buffer is a stream read, stream
scheduling extends the buffer into the previous operation with aload shadow unless the
previous operation writes the data that is being loaded. Similarly, if the latest stream
access assigned to abuffer is a stream write, stream scheduling extends the buffer into the
next operation with a store shadow unless the next operation reads the data that is being
stored.

The example program contains three buffers that are extended with load and store shad-
ows, highlighted in Figure 6-23. The buffer for the stream write to fx is extended with a
store shadow because the next operation, Kernel 6, does not read the data that is stored.
Conversely, the buffer for the stream read to f is not extended with aload shadow because
the previous operation, Kernel5, writes the data that is being loaded

Sep 6. Position buffersin the SRF
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FIGURE 6-23. Example program with load and store shadows

Once stream scheduling has constructed the buffers, it attempts to position them in the
SRF. Positioning the buffersin the SRF requires packing the rectangular buffersinto a
two-dimensional space with afixed width equal to the size of the SRF. Each buffer hasa
fixed vertical position, but can have any horizontal position inside this space. This packing
problem isthe NP-hard * dynamic storage allocation” problem examined in [13][16]. Visu-
alizing the buffers as rectangular wooden blocks on arectangular grid, if thereisan
arrangement of buffers such that all of the buffersfit on the grid, it is possible to remove
the buffers one at atime by dliding the rightmost buffer off to the right. Therefore, itis
possible to position all of the buffersin the space by sliding each buffer asfar left as possi-

blein the reverse order of removal.

Stream scheduling selects buffers one at atime using a heuristic and positions each buffer
at the leftmost possible position. The heuristic is based on the intuitive notion of trying to
form long vertical strips of densely packed buffers. It tries to complete the current strip
before starting another, and positions the largest buffersfirst so that smaller buffers can fill
in the cracks. Stream scheduling selects a buffer based on three comparisons of succes-
sively lessimportance. It selects the buffer that can be positioned at the |eftmost possible

position among all buffers. If there is more than one such buffer, it selects the largest
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buffer, based onits area. If there is more than one such buffer, it sal ects the buffer that con-

tains the earliest stream access among those buffers.

Though stream scheduling nominally treats each buffer as a rectangle, buffers can be
packed more densely by treating each buffer as a convex shell that “shrink-wraps’ the
stream accesses assigned to it. For this purpose, load and store shadows are treated as

extending the earliest and latest accesses assigned to the buffer, respectively.

The buffers in the example program are positioned in the SRF in the order shown in Fig-
ure 6-24 to produce the arrangement shown in Figure 6-25. The first three buffers to be
positioned are numbered. Initially, all buffers can be positioned at the leftmost margin so
stream scheduling selects the largest buffer, buffer 1. All remaining buffers can be posi-
tioned at the right edge of buffer 1, so stream scheduling selects the largest remaining
buffer, buffer 2. Next, only buffer 3 or the buffer containing the stream read of f by
Kernel6 can still be positioned at the right side of buffer 1. Stream scheduling selects the
largest of the two buffers, buffer 3. Unfortunately, this arrangement of buffers does not fit

in the SRF (for this set of buffersthere is no valid arrangement).

Order of positioning >
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FIGURE 6-24. Order of positioning for buffersin the example program
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FIGURE 6-25. First arrangement of buffersfor the example program

Sep 7. If the buffersdo not fit, reduce a buffer and repeat Steps 3-7

If the arrangement of buffers produced in Step 6 does not fit in the SRF then stream sched-
uling reduces a buffer. Reducing a buffer involves one of two courses of action: shrinking

abuffer that contains a double-buffered access or dividing a buffer in time.

To decide which buffer to reduce, stream scheduling first decides on which time step to
reduce abuffer. If thetotal size of all the buffers on any time step is greater than the size of
the SRF then there is no possible arrangement of buffers that will fit in the SRF. If such a
time step exists, stream scheduling selects that time step. If no such time step exists,
stream scheduling selects the time step with the buffer containing the stream access with
the rightmost edge. If multiple time steps meet one of these criteria, stream scheduling
selects the first such time step.

Next, stream scheduling decides which buffer on the chosen time step to reduce. Asdis-
cussed in the description of Step 1, double-buffering overhead isless costly than reloading
a stream, so stream scheduling shrinks a buffer that contains a double-buffered access

whenever possible. If the chosen time step contains a double-buffered accessthat is larger
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than the minimum double buffer size, stream scheduling shrinks that buffer. The logic of
Step 1 ensures that there is at most one such buffer. If there is no such buffer, stream
scheduling divides the buffer that makes the worst use of SRF space. In principle, the
buffer with the most time between accesses makes the worst use of SRF space. However,
dividing alarge buffer that makes poor use of SRF space rather than a small buffer that
makes good use of SRF space is bad trade-off if only a small amount of additional SRF
space is needed. Hence, stream scheduling reduces the buffer with the greatest weight cal-
culated by Equation 6.

time between accesses 6)
buffer size 1.0)
needed size’™

weight =

max (

Thetime between accesses isthe number of time steps between the latest access before the
chosen time step and the earliest access after the chosen time step. Buffers with an access
on the chosen time step have a time between accesses of 0. Buffers with load or store
shadows on the chosen time step are treated as having a time between accesses of 2. The
needed sizeis estimated by subtracting the size of the SRF from the total size of al buffers
on the time step if the time step was chosen using the first criteria, or from the position of
the edge of the rightmost buffer on that time step if the time step was chosen using the sec-

ond criteria

Stream scheduling then reduces the chosen buffer and tries to fit the buffersin the SRF
again. It shrinks a buffer containing a double-buffered access by an amount equal to the
needed size up to the minimum double-buffer size. It divides a buffer in time at the chosen
time step. If only the load shadow or store shadow of the buffer crosses the chosen time
step, it eliminates that shadow. After reducing the buffer, stream scheduling repeats Steps
3 through 7.

For the example program, stream scheduling chooses the time step on which Kernel4

occurs because the total size of the buffers on that time step exceeds the size of the SRF.
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There are no double-buffered stream accesses on that time step, so it divides the buffer
that makes the worst use of SRF space. Stream scheduling divides the buffer containing
both reads from a as shown in Figure 6-26 because it has four time steps between accesses

and a size equal to the needed space.

K2 | bo | ]
[a1]
d

K3 bl

FIGURE 6-26. Example program showing the buffer that isdivided in time

Stream scheduling then repeats Steps 3-7. Step 6 positions the buffers in the order shown

in Figure 6-27 to produce the final arrangement of buffers shown in Figure 6-28.

6.3.1 Completion
Stream scheduling completes once al buffersfit in the SRF. Stream scheduling always

completes. In the worst case, each buffer is repeatedly reduced until it contains only asin-
gle access and all load and store shadows are eliminated. Since Step 1 ensures that all
accesses for each operation fit it the SRF, these single-access, shadowless buffers will

awaysfit.

6.4 Special Cases

This section details several special cases that deviate from the general stream scheduling

algorithm presented in the previous section. It describes the specia handling and restric-
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FIGURE 6-27. Revised order of positioning for buffersin the example program

FIGURE 6-28. Final arrangement of buffersfor the example program

SRF
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tions for streams with variable lengths or bounds, streams with indexed access patterns,

and stream operations other than kernels.
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6.4.1 Variablelength and variable bounds streams
Stream scheduling handles the unpredictability of variable length and variable bounds

stream accesses by assuming the worst case. A variable length stream contains a number
of records determined at run time. Stream scheduling assumes that a variable length
stream access has maximum length when determining which streams it reachesor is
reached by during data-flow analysisin Step 3, as shown in Figure 6-29. However, stream
scheduling assumes that it has length zero when determining which stream accesses it
covers, except for accesses to the same variable length stream, as shown in Figure 6-30.
Variable bounds streams have start and end addresses that are determined at run time. An
access to a variable bounds stream is not compatible with an access to any other stream
since the two accesses could violate hardware restrictions regarding their start addresses.
Since a variable bounds stream could access al or none of the records in the basic stream

itisderived from it istreated like a variable length stream in Step 3.

i

assumed to assumed to
be maximum SV be zero
length length
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FIGURE 6-29. writetosvreachesread FIGURE 6-30. svdoesn’'t cover sl so
of sl writeto salso reachesread of sl

6.4.2 Indexed Streams
Stream scheduling treats any operation that uses a stream with an indexed access pattern

as having theindex stream as an additional input. Theindex stream contains the indexes of
the recordsin the indexed stream within the basic stream that it is derived from. The index
stream is only needed to load or store the indexed stream. Stream scheduling conserva-
tively assumes that all uses of an indexed stream require the index stream, because divi-

sion of buffers could force any stream accessto load or store the stream. A more complex
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approach would be to add and remove index stream accesses in Step 3 based on which
indexed stream accesses require memory accesses. Since an indexed stream accesses an
unpredictable set of records, an indexed stream access is handled like avariable length

stream in the data-flow analysis of Step 3.

6.4.3 Other Sream Operations
Stream operations can be grouped into kernels, transfer operations, and copy operations. A

kernel reads some input streams from the SRF and writes some output streams to the SRF.
A transfer operation transfers a stream between the SRF and an explicit unit such as the
host processor, network, or microcode store. A transfer operation istreated asakernel that

only reads one input stream or writes one output stream.

A copy operation requires special handling because it is performed by the implicit mem-
ory system. A copy operation makes two stream accesses. a stream read to the source
stream and a stream write to the destination stream. However, it does not need to have a
buffer in the SRF for both streams. If the source stream is written closer to the copy than
the destination stream is read, the copy saves the source stream as the destination stream
as shownin Figure 6-31. Otherwise, it loads the source stream as the destination stream as
shown in Figure 6-32. In either case, the stream in the SRF is called the primary stream
and the stream in memory is called the secondary stream. To handle a copy operation dur-
ing SRF alocation, stream scheduling assigns the secondary stream access to a special
buffer in Step 2. Thisbuffer in never positioned in the SRF. Stream scheduling handlesthe
primary stream access normally. Since the secondary stream access is the only stream
access assigned to the specia buffer, it always requires a memory access. In a postpass,
stream scheduling maps the secondary steam access to the same location in the SRF asthe

primary stream access.

6.5 Summary

This chapter presented stream scheduling, a compiler extension for allocating the stream
register file that replaces the cache in a stream processor. Stream scheduling allocates the

SRF more efficiently than a run-time approach like stream caching because it uses a pro-
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file of the program that enablesit to consider all stream accesses, not just past ones.
Stream scheduling allocates the SRF in two-dimensions: space and in time. Essentialy, it
assigns all stream accesses in the profile to two-dimensional buffers, then triesto position
all of the buffersin the SRF over time. If the buffers do not fit in the SRF, stream schedul-
ing shrinks a buffer in space or divides a buffer in time and then tries again until it suc-
ceeds.

Stream scheduling uses the structure of a stream program to combine the performance
advantages of programmer controlled memory access and the implementation efficiency
of implicit memory access. Programmer controlled memory access usually yields better
performance for media processing applications. However, hand-coding memory accesses
is time consuming and architecture specific. Stream scheduling maps a stream program to

any stream processor without programmer involvement.
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Chapter 7

SreamC Compiler and Dispatcher

This chapter presents the SreamC compiler and run-time dispatcher used to compile
stream programs and execute them on the Imagine media processor system, respectively,
as shown in Figure 7-1. A stream program consists of a conventional program that con-
tains kernel calls and stream copies and transfers as described in Chapter 3, hereafter col-
lectively called stream operations. The StreamC compiler converts each stream operation
in a stream program into a series of primitive operations executable by the Imagine pro-
cessor, hereafter called Imagine operations. When the host processor is executing the
stream program and encounters a stream operation, it invokes the run-time dispatcher, a
software component that handles interaction with Imagine. The run-time dispatcher sends
the corresponding Imagine operations produced by the StreamC compiler to the Imagine
processor’s issue buffer, a small on-chip buffer from which the Imagine processor issues
operations. For example, the StreamC compiler might convert akernel call into a series of
four Imagine operations: writing two control registers, loading a stream, and executing the
kernel. At run time, when the host processor reaches the kernel call, it invokes the run-

time dispatcher which sends the four imagine operations to the issue buffer on Imagine.

This chapter describes how the StreamC compiler converts stream operationsinto Imagine
operations using profile compilation. Profile compilation exploits the limited amount of
data-dependent processing in a stream program by generating one or more near-static pro-
files of the program and compiling each profile. This technique makes the stream opera-

tionsin the program more predictable, enabling the StreamC compiler to be more
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FIGURE 7-1. Roles of the SreamC compiler and run-time dispatcher

efficient. To compile a profile, the StreamC compiler converts each stream operation into
one or more Imagine operations. First, the StreamC compiler allocates resources such as
the stream register file. Next, it generates the Imagine operations. Lastly, it assigns each
Imagine operation to an issue slot in the Imagine processor’s issue buffer, and encodes

dependencies on other Imagine operations that could be in the issue buffer.

The run-time dispatcher coordinates all communications between the host processor and
the Imagine processor needed to execute a primitive operation. The primary role of the
run-time dispatcher is to dispatch Imagine operations to the |magine processor. It updates
each Imagine operation to reflect any data-dependent streams, waits for the issue slot
assigned to the Imagine operation to become empty, and places the Imagine operation in
theissue dot. The run-time dispatcher also manages data transfers between the host pro-

cessor and the Imagine processor and coordinates double-buffered stream accesses.

124



This chapter consists of three sections. Section 7.1 describes the StreamC compiler. Sec-
tion 7.2 describes the run-time dispatcher. Section 7.3 discusses stream program optimiza-

tions that can be used to improve performance.

7.1 SreamC Compiler

This section presents the StreamC compiler. It discusses how the StreamC compiler uses
profile compilation. It describes the three steps the StreamC compiler uses to convert each
stream operation into Imagine operations: allocating resources, generating a sequence of
I magine operations, and assigning each Imagine operation to an issue slot and encoding its

dependencies on other Imagine operations in the issue buffer.

7.1.1 Profile compilation
The StreamC compiler is optimized for stream programs, media processing applications

written using the stream programming model that involve a predictable sequence of
stream operations under a specific set of parameters. Media processing applications are
characterized by a consistent transformation from an input data structure to an output data
structure. The sequence of stream operations used to perform this transformation is dic-
tated almost entirely by a small set of parameters, such asimage size. For afixed set of
parameters, there are few data-dependent variations in the control flow between stream
operations or the stream accesses made by those stream operations. Most data-dependent
variationsthat do occur are simpleiterative or conditional control-flow, or stream accesses
with data-dependent length or bounds. StreamC requires the programmer to annotate these

data-dependent variations as described in Chapter 3.

Figure 7-2 shows a stream program called EyeMatch that illustrates these properties. Eye-
Match isthe core of asimple optical identification system. It triesto find amatch for aref-
erence image of an eyein aliveimage using five steps, numbered 1-5 in Figure 7-2. First,
it transfers the live image and the reference image into streams. Second, it computes a

color histogram of the eye using akernel called GenHist. Third, it compares the histogram
of the eye to a histogram of each eye-size block of the image, recording the results as pos-

sible matches. Fourth, it sorts the possible matches and eliminates all possible matches
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that do not meet a specific threshold. Lastly, it tests each remaining possible match using
two comparison methods until a good match is found. For specific image sizes, there are
few data-dependent variations in EyeMatch. Only the length of the stream of sorted possi-
ble matches, the position of each possible match tested, and the number of possible
matches that are tested before a match is found are data-dependent. These variations are
annotated as described in Section in Figure 7-2.

The StreamC compiler exploits the relative lack of data dependent variations by generat-
ing aprofile of the stream program for afixed set of parameters and compiling the profile.
A profile isthe actual sequence of stream operations used to execute a program. If the
stream program contains any data-dependent control-flow, the program is divided into
basic blocks based on the data-dependent control flow constructs. The sequence of stream
operations used to execute each basic block is recorded only the first time the basic block
is executed. For each stream operation, the profile contains the stream accesses that opera-
tion makes. For each stream access, the profile contains a unique identifier for the under-
lying basic stream, and the start address, end address, data dependence parameter, and

access pattern (if applicable).

A profile can be generated dynamically based on actual execution, or statically using com-
piler analysis. Dynamic profile generation involves compiling the stream program using
naive resource allocation, executing it, and recording the actual sequence of stream opera-
tions. Dynamic profile generation requires a test program that executes all stream opera-
tionsin the stream program at least once to ensure a complete profile. However, it is
simple to implement and provides typical length information for variable length streams.
Static profile generation requires inlining all functions, unrolling al loops that are not
data-dependent, applying very strong constant propagation, and extracting the stream
operations. It is more robust than dynamic profile generation but more complex to imple-

ment and provides no information on variable length streams.
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/1 tries to find a match for a reference image of an eye in another inmage
/1 returns true if successful
bool EyeMatch(int* ingPtr, int ingW int ingH // live imge to search
int* eyePtr, int eyeW int eyeH) /'l reference i mage of eye

{

streanxbyt e4> i mage(i mgW* i ngH);

streanxbyt e4> eye(eyeW* eyeH);

st reanxbyt e4> eyeH st (256);

int nunBl ocks = ((imgW/ eyeW * (ingH / eyeH));

/1 struct Possiblevatch { int x; int y; float quality; };

st reanxPossi bl eMat ch> possi bl eMat ches( nunBl ocks) ;

st reanxPossi bl eMat ch> sort edMat ches(nunBl ocks, VARIABLE_LENGTH);

Possi bl eMat ch* possi bl eMat chesPtr = new Possi bl eivat ch[ nunBl ocks] ;

/1 1. load image and eye into streans
StreanloadBi n(i nmage, inmgPtr, inmgW?* ingH);
StreanLoadBi n(eye, eyePtr, eyeW* eyeH);

/1 2. conpute color histogramfor the eye
GenHi st (eye, eyeHist);

/1 3. with each block of the inage, conpute col or histogram
/1 conmpare to eye histogram and add entry to possible natches
int i =0;
for (int x =0; x <ingW x += eyeW {
for (int y =0; v <inmH y += eyeH i++) {
streanxbyt e4> bl ock(i mage, y*i mgW+ x, (y+eyeH1)*ingW+ x + eyeW
FI XED, STRIDE, ingW eyeW;
st reanxbyt e4> bl ockHi st (256) ;
GenHi st (bl ock, bl ockHist);
ConpHi st (bl ockHi st, eyeHi st, possibleMatches(i, i + 1), X, y);
}
}

/1 4. sort the possible matches

Sort Mat ches( possi bl evat ches, sortedMat ches);

/1 save sorted matches from stream

i nt nunPossi bl eMat ches = possi bl eMat ches. readLengt h();
St reanaveBi n(sort edMvat ches, possi bl evat chesPtr);

/1 5. test possible matches until a match is found
bool natch = fal se;
for_VARIABLE (int i = 0; i < nunPossibleMatches & !'match; i++) {
int x = possibleMatchesPtr[i].x;
int y = possibleMatchesPtr[i].y;
streanxbyt e4> bl ock(i mage, y*imgW+ x, (y+eyeH 1)*i ngW x + eyeW
VARIABLE_BOUNDS, STRIDE, ingW eyeW;
uc<i nt> mat chUC1, matchUC2;
Conpl mageA( bl ock, eye, matchUCl);
Conpl mageB( bl ock, eye, matchUC2);
mat ch = mat chUCL. readUC() || matchUC2.readUC();
}

del et e possi bl eMat ches;
return(match);

}
FIGURE 7-2. Stream program EyeM atch
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Figure 7-3 shows the profile of EyeMatch for a 200x200 live image and a 100x100 refer-
ence image. The profile lists each stream operation and all stream accesses made by each

stream operation in EyeMatch.

/1 BASI C BLOCK 0O
St r eanioad
wite image[0, 40000]

St r eanload
wite eye[0, 10000]

GenHi st
read eye[0, 10000]
wite eyeHist[0, 256]

CGenHi st
read image[0, 19900, FIXED, STRIDE, 200, 50]
wite bl ockHi st0[0, 256]

ConpHi st
read bl ockHi st00[0, 256]
read eyeHist[0, 256]
write possibl emvatches[0, 1]

GenHi st
read image[20100, 40000, FIXED, STRIDE, 200, 50]
write bl ockHist3[0, 256]

ConpHi st
read bl ockHi st3[0, 256]
read eyeHist[0, 256]
write possiblemvatches[3, 4, VARI ABLE_LENGTH|

Sort Mat ches
read possibleMatches[0, 4]
write sortedPossi bl evat ches[ 0, 4, VARI ABLE_LENGTH]

StreanSave WAIT
read sortedPossibleMatches[0, 4, VAR ABLE_LENGTH|

/1 BASI C BLOCK 1
for_VARI ABLE st art

Conpl mageA
read image[0, 19900, VARI ABLE_BOUNDS, STRI DE, 200, 50]
read eye[0, 10000]

Conpl mageB
read image[0, 19900, VARI ABLE_BOUNDS, STRI DE, 200, 50]
read eye[0, 10000]

f or _VARI ABLE end

FIGURE 7-3. Profile of EyeM atch(--, 200, 200, --, 100, 100)
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Profile compilation allows the StreamC compiler to manage critical resources such as the
stream register file much more efficiently, resulting in better performance. Without profile
compilation, the StreamC compiler has to deal with more complex control flow and can-
not determine the position and length of most streams. Consider allocating the stream reg-
ister file under these conditions. The obvious policy involves afixed number of buffers of
constant size. This policy wastes SRF space by assigning small streamsto buffersthat are
too large, and forces large streams to be double-buffered unnecessarily. Further, more
complex control flow and inability to predict which stream accesses will be compatible
would require frequent memory accesses to synchronize the contents of the SRF with
memory. The SRF could be managed at run-time when more information about the current
stream accesses is available, but inability to predict future stream accesses leads to signif-
icant inefficiencies as described in Section 6.1. Further, making the run-time dispatcher
too complex can negatively impact performance if it takes more time to determine how to

perform an operation than to perform the operation.

7.1.2 Resource allocation
The StreamC compiler allocates four types of resources for each stream operation in the

profile: space in the stream register file (SRF), space in off-chip memory, space in the
microcode store, and control registers. These resources are all explained in more detail in
Section 2.3. The SRF is an on-chip memory that holds the working set of streams. The off-
chip memory holds streams that cannot fit in the SRF. The microcode store is an on-chip
memory used to store the compiled microcode for kernels that are executed by the pro-
cessing elements. The control registers consist of stream descriptor registers (SDRs) that
hold the position and length of a stream in the SRF and memory address registers (MARS)
that hold the start address and access pattern of a stream in memory. Imagine operations

do not specify thisinformation, just refer to appropriate control registers.

The StreamC compiler allocates resources to each stream operation based on the type of
operation and the stream accesses it makes. Later, it translates each stream operation into
multiple Imagine operations that use those resources. The most important resource alo-

cated by the StreamC compiler is the SRF, which is allocated using stream scheduling as
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presented in Chapter 6. The StreamC compiler also uses variations on the stream schedul-
ing algorithm to allocate the other resources. Stream scheduling is used to alocate a dif-
ferent kind of memory like the microcode store or the off-chip memory by redefining
reads, writes, loads, and stores appropriately, removing any references to double-buffer-
ing, and making other minor changes specific to the resource. Stream scheduling is also
used for ad hoc register alocation by treating each variable as a unit length “ stream.” This
use of stream scheduling is primarily an implementation convenience. Conventional regis-
ter allocation could aso be used.

The StreamC compiler allocates the resources in a specific order because allocation of
some resources influences allocation of other resources. It allocates the microcode store
before the SRF because kernels that need to be loaded into the microcode store must pass
through the SRF. It allocates the SRF before memory because streams that are spilled need
be allocated space in memory. It alocates control registers last because they are used to

refer to space in the SRF and memory.

First, the StreamC compiler allocates the microcode store. It uses aversion of stream
scheduling that only considers kernel calls. Each kernel call reads the microcode for that
kernel. If amicrocode read requires aload, that |oad indicates that the microcode needs to
be loaded from memory into the SRF then read from the SRF into the microcode store. To
handle these |oads, the StreamC compiler inserts a specia stream operation called aKer-
nelLoad before each such kernel call after the microcode store has been allocated.

Figure 7-4 shows the microcode store allocation for EyeMatch, using the conventions
introduced in Chapter 6. Only kernels are considered, and each kernel makes asingle
microcode read. Cross-hatched accesses indicate kernel calls that require loading the ker-
nel from memory. The ellipsis indicates omitted kernel calls. The kernel GenHist, high-
lighted in Figure 7-4, is representative. It isloaded at the start of the allocation and

remains in the microcode store until the last call to the kernel.

130



Microcode Store

| GenHist |

|Gen Hist GenHist |

|CompHist  Comphist |

| GenHist GenHist

| CompHist CompHist

| N R

|SortMatches SoriMaiches |

Compiiagen |

Complimagel
R

|ComplmageA

%49

|ComplmageB oM

FIGURE 7-4. Microcode store allocation for EyeM atch

Second, the StreamC compiler allocates the SRF using the stream scheduling algorithm as
presented in Chapter 6. Stream scheduling assigns each stream access to alocation in the
SRF, and determines which accesses require memory |loads and/or stores. Stream schedul -

ing also determines which stream accesses are double-buffered.

Figure 7-5 shows the SRF allocation for EyeMatch. This application contains arelatively
high amount of memory traffic. However, all memory traffic shown is required for this

application given the size of the SRF, not induced by poor SRF allocation.
Third, the StreamC compiler allocates off-chip memory. Again, it uses a variation of the

stream scheduling algorithm. It considers only stream reads that require loads and stream

writes that require stores. Since memory does not have many of limitations of the SRF, it
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FIGURE 7-5. SRF allocation for EyeMatch

simply assigns all stream accesses to the same underlying basic stream to a buffer and

packs those buffersinto the SRF. If it fails, it terminates with an out of memory error.

Figure 7-6 shows the memory allocation for EyeMatch. Only stream accesses that require
memory accesses are considered in memory allocation. Visually, only accesses that are
cross-hatched in Figure 7-5 appear in Figure 7-6. The memory allocation for the basic
stream image is highlighted in Figure 7-6. The stream program starts with a StreamL oad-

Bin that stores the entire basic stream. Next, the loop that computes a histogram for each
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block in the image loads a series of derived streams that each refer parts of the basic
stream image. Lastly, the final loop that eval uates possible matches loads one or more
derived streams that refer to a data-dependent parts of the basic stream Image, indicated
with dotted rectangles.

| StreamLoad

| StreamLoad

|KernelLoad

| GenHist

| GenHist

| Imaged ]

|KernelLoad
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| maaes

| CompHist

|KernelLoad

| SortMatches
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|KernelLoad

o
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|KernelLoad

Juluuuuuu

|CompimageB

FIGURE 7-6. Memory allocation for EyeM atch

Fourth, the StreamC compiler allocates control registers for each stream access. The
StreamC compiler allocates control registers for each stream access a stream operation
makes. The StreamC compiler allocates one SDR for each stream access to describe the
location in the SRF that is accessed (or two SDRsif the stream access is double-buffered,
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one to describe each half-buffer in the SRF). If the stream access requires a memory

access, it allocates one MAR to describe the location in memory that is accessed.

Control register allocation is motivated by the unique way in which control registers are
used. All control register values are either fixed or computed at run-time for a data-depen-
dent stream. Imagine operations only read control registers. (There is one exception. If a
kernel writesto avariable length stream it updates the SDR that contains the length of that
stream, but the new value is always read by the host.) Hence, control register allocation
consists of assigning each read to aregister and deciding when the host needs to write
those registers. Additional writes by the host may be needed to reinitialize registers if
more registers are needed than are available. The StreamC compiler allocates control reg-
isters using another variation of the stream scheduling algorithm which treats register val-
ues as unit length streams. Control register readsto fixed values are compatible if they are
equal regardless of what the register is used for. Control register reads to values that are
determined at run time for a data dependent stream are only compatible with other reads to
the same value for that stream. Control register reads that are marked as “requiring loads’
need writes by the host.

Figure 7-7 shows the SDR and MAR allocation for EyeMatch. Cross-hatching indicates
control register uses that require register writes by the host. Dotted-fill isfor clarity only.
The abbreviation DB indicates control registers for a double-buffered access. Visualy,
each SDR read corresponds to a stream access in Figure 7-5, and each MAR read corre-
sponds to a memory access in Figure 7-6. The highlighted SDR value is representative. It
describes the space in the SRF used to hold each block of the live image for the loop that
computes the histogram of each block. The SDR value is written by the host when it is
first read for astream access. Since the valueisfixed, it isreused for later stream accesses

even though those accesses are to different streams.
Once the StreamC compiler completes resource allocation, it has assigned each kernel to a

location in the microcode store, each stream access to alocation in the SRF, each memory

access to alocation in memory, and each control register read to aregister. It has also
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FIGURE 7-7. Control register allocation for EyeMatch

determined which kernels require kernel loads, which stream accesses require memory

accesses, and which control register reads require writes by the host.

7.1.3 Operation trandation
The StreamC compiler tranglates each stream operation into one or more I magine opera-

tions. In general, an Imagine operation writes or (rarely) reads a control register, transfers
a stream between the SRF and another destination, or starts or restarts akernel. Figure 7-8

lists the Imagine operations by purpose.
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I magine oper ation

Description

General purpose

SDR Write writes a stream descriptor register
MAR Write writes a memory access register
Memory Load loads a stream from memory to the SRF

Memory Store

stores a stream from the SRF to memory

Kernels

UCR Write writes a microcontroller register, used to passinitial
microcontroller variable values

UCR Read reads a microcontroller register, used to return final
microcontroller variable values

SDR Length Read reads the final length of a variable length stream output

Microcode Load

loads kernel microcode from the SRF into the microcode
store

Kernel Start starts a kernel

Kernel Restart continues a kernel with a new stream replacing an
exhausted stream

Host transfers

Host Send sends a stream from the SRF to the host

Host Receive receives a stream from the host to the SRF

FIGURE 7-8. Imagine operations by purpose

Essentially, the StreamC compiler translates a stream operation into a sequence of Imagine

operations that write control registers as needed, load input streams from memory as

needed, perform one or more core operations specific to the type of stream operation, and

store output streams to memory as needed. More specifically, it trandates each stream

operation into the following sequence of Imagine operations, with stream operation spe-

cific portions given by Figure 7-9:
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1. SDR Write(s) for each stream access
2. Other register writes (see Figure 7-9)
3. MAR Write for each stream access that requires a memory access
4. Memory Load for each stream read that requires a memory access
5. Core operations (see Figure 7-9)
6. Memory Store for each stream write that requires a memory access
7. Register reads (see Figure 7-9)
Stream operation | Other register Coreoperation(s) | Register reads
writes
<Kernel Name> UCR Writefor each | Kernel Start UCR Read for each
UC argument UC argument
Kernel Restart for
each double-buff- SDR Length Read
ered stream access | for each variable
length stream write
KernelLoad - Microcode Load -
StreamL oadBin - Host Receive -
StreamSaveBin - Host Send -
StreamCopy - - -

FIGURE 7-9. Stream oper ation specific magine oper ations

The StreamC compiler trangdlates the first stream operation in EyeMatch, the StreamL oad-
Bin of image, into five Imagine operations as shown in Figure 7-10. The StreamL oadBin
makes a single stream access, a stream writeto image. That stream access reads two SDRs
sinceit is double-buffered and one MAR sinceit requires a memory write. All three of
these reads require writes by the host, as shown in Figure 7-7. The core operation of a
StreamL oadBin isaHost Receive. Lastly, the stream write requires a Memory Store as
shown in Figure 7-6. The MAR Write, Host Receive, and Memory Store are used for dou-
ble-buffering, indicated in Figure 7-8 with the abbreviation DB.

Figure 7-10 also shows how the StreamC compiler translates the second through fourth

stream operation in EyeMatch. The second stream operation is another StreamLoadBin,
which istrandated much like the first StreamL oadBin except that is not double-buffered

137



so it only requires one SDR Write. The third operation is a Kernel Load which makes a
single stream read that requires amemory load. It is trandated into an SDR Write, an
MAR Write, aMemory Load, and a Microcode Load (the core operation of a Kernel-
Load). The fourth operation is akernel call. It reads one stream and writes another, but
only requires an SDR Write for the later since the SDR value used for the stream read was
already written by the second StreamL oadBin. The only other Imagine operation it

requiresisaKernel Start, the core operation of akernel call.

Stream operation I magine oper ations
St reamLoadBi n SDR Wite (SDR 0, pos 10256, |en 3064)
wite image[ 0, 40000] SDR Wite (SDR 1, pos 13320, |en 3064)

MAR Wite (MAR O, pos 0) DB
Host Receive (SDRO) DB
Menory Save (SDRO, MARO) DB

St reamLoadBi n SDR Wite (SDR 2, pos 256, |en 10000)
wite eye[0, 10000] MAR Wite (MAR 1, pos 0)

Host Receive (SDR 2)

Menory Save (SDR 2, MAR 1)

Ker nel Load SDR Wite (SDR 1, pos 10256, |en 3500)
read GenHist[O0, 3500] MAR Wite (MAR 0, pos 1045076)

Menory Load (SDR 1, MAR 0)

M crocode Load (SDR 1, instr 0)

GenHi st SDR Wite (SDR 0, pos 0, |len 256)
read eye[0, 10000] Kernel Start (instr 0, SDR 2, SDR 0)
wite eyeH st[0, 256]

FIGURE 7-10. Imagine operationsfor first four stream operationsin EyeMatch

7.1.4 |ssue dot assignment and dependency analysis
The StreamC compiler assigns each Imagine operation to an issue slot in the Imagine pro-

cessor’sissue buffer at compile time. When the run-time dispatcher tries to send an opera-
tion to Imagine, it waits until the issue slot assigned to the operation becomes available.
The StreamC compiler tries to assign operations that could occur near one another to dif-
ferent issue dots. The StreamC compiler assigns issues slots to Imagine operations in the
order they appear in the stream program, using amodified round robin policy. Essentially,

it assigns the first operation to issue slot 0, then assigns the next operation to issue slot 1,
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and so on until it reaches the last issue dlot. Then it starts over and assigns the next opera-

tion to issue slot O.

The StreamC compiler deviates from this simple progression dlightly to ensure that Imag-
ine operations that could occur close to one another depending on control flow are not
assigned the same issue slot. Using the simple progression, it could assign the Imagine
operation before the body of an if statement to issue slot 3, assign the Imagine operations
in the body to other issue dots, then, having come full-circle, also assign the operation
after the body to issue slot 3. If theif-statement is not taken, the run-time dispatcher would
have to wait before it could send the second I|magine operation assigned to issue slot 3. To
avoid this problem, it skips occasional issue slots in basic blocks that contain more than
half as many Imagine operations as there are issue sots. It skips a number of issue sots so
that the last Imagine operation in the basic block is assigned to the same issue ot as the
Imagine operation immediately before the basic block. Returning to the example involv-
ing overuse of issue slot 3, skipping one slot inside the basic block would result in the

operation immediately afterward being assigned to issue slot 4.

The StreamC compiler implements this policy by skipping anumber of issue slots after the
Imagine operations that compose each stream operation as given by the following equa-

tion:

Imagine ops in block MOD number of issue slots )

issue slot increment = ———
stream operations in block

Thefirst basic block in EyeMatch consists of 16 stream operations that translate into 48
Imagine operations. Theissue dot increment assuming 32 issue otsisthus (48 MOD 32)
/16 = 1.0. Thus, the five Imagine operations that compose the first stream operation are
assigned to issue slots O through 4, one issue slot is skipped, and the four Imagine opera-
tions that compose the second stream operation are assigned to issues sots 6 through 9,
and so on. These skipped issue slots ensure that the last operation in the basic block is

assigned to slot 31, the same as the operation before the basic block (if there was one).
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The StreamC compiler then analyzes the dependencies of each Imagine operation upon
other operations that could be in the issue buffer when it dispatched. The current Imagine
operation is dependent on a previous Imagine operation if both operations access the same
SRF, memory, or microcode store space or use the same control register and either or both
Imagine operations modify the contents. The dependency is classified as read-after-write
(RAW) if only the previous |magine operation modifies the contents, write-after-read
(WAR) if only the current Imagine operation modifies the contents, or write-after-write
(WAW) if both Imagine operations modify the contents. A kernel restart operation is also
considered WAR dependent upon the kernel operations it restarts.

For each Imagine operation, the StreamC compiler determinesif it is dependent on any
operation that could be in the issue buffer when it is dispatched. The StreamC compiler
considers the latest previous Imagine operation in the current basic block that is assigned
to each issue dot. If no previous Imagine operation in the current basic block is assigned
to a particular issue slot then the StreamC compiler also considers the latest Imagine oper-
ation assigned to that issue slot in each basic block that could immediately precede the

current basic block, and so on.

The StreamC compiler encodes the dependencies of each Imagine operation in three bit-
masks called the dependency masks. Each dependency mask contains a bit corresponding
to each issue ot in theissue buffer. If the current operation is dependent on any operation
that could be in an issue sot as determined above, then the bit corresponding to that issue
slot is set in the appropriate mask(s). Two of these dependency masks, the RAW mask and
the WAR mask, are used by the Imagine processor to determine when to issue the opera-
tion. The RAW mask encodes all RAW and WAW dependencies. The WAR mask encodes
all WAR dependencies. The other dependency mask, the DifferentDB mask, is used by the
run-time dispatcher for determining when the Imagine operation can be dispatched. The
DifferentDB mask encodes all dependencies upon Imagine operations that are repeatedly

dispatched for the purpose of double-buffering a different stream access.
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The StreamC compiler also constructs two special dependency masks for any Imagine
operation that is repeatedly dispatched for a double-buffered access. These masks, called
the RAW DB mask and the WAR DB mask, are constructed like the normal RAW and
WA R masks except that the StreamC compiler considers only operations used for the same
stream access, but considers al such operations both before and after the current opera-

tion.

Figure 7-11 shows the RAW masks for the first fifteen Imagine operations in EyeMatch.
Each row contains an Imagine operation, the issue slot it is assigned to, and the part of its
dependency mask corresponding to the issue slots shown. The last Imagine operation isa
the kernel GenHist, shown in bold in Figure 7-11. It is RAW dependent on three SDR
Write operationsin issue slots 0, 6, and 16 that write SDRs it uses, the Host Receivein
issue dot 8 that writes a stream that it reads, and the Microcode Load in issue slot 14 that
writes the GenHist microcode. The RAW dependency mask for the GenHist kernel hasthe
bits corresponding to issue slots of these operations set: 0, 6, 8, 14, and 16.

7.2 Run-time Dispatcher
This section presents the run-time dispatcher. It describes how the run-time dispatcher
sends Imagine operations to the issue buffer. It aso discusses how the run-time dispatcher

coordinates data transfers between the host and Imagine and manages doubl e-buffering.

7.2.1 Imagine operation dispatching
The primary role of the run-time dispatcher isto dispatch |magine operations from the

host processor to the Imagine processor’s issue buffer. When the host processor encoun-
ters astream operation, it callsamethod of the run-time dispatcher to send the correspond-
ing Imagine operations to the Imagine processor. The run time dispatcher updates the
Imagine operation as required, waits until the Imagine operation can be dispatched, and

sends it to the issue buffer.

First, the run-time dispatcher updates the Imagine operation to reflect any data-dependent
streams that affect it. A data-dependent stream has a variable length or bounds. These val-
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I magine operation Slot | RAW dependency mask...
O 1 2 3 45 6 78 1 1 1] 1] 11 1} 1| 4
0 1 2| 3 4] 5 6| 7
SDRWite (SDR 0, pos 10256, |en 3064) 0
SDRWite (SDR 1, pos 13320, |en 3064) 1
MARWite (MAR O, pos 0) DB 2
Host Recei ve ( SDRO/ SDR1) DB 3 1 1
Meror ySt ore ( SDRO/ SDR1, MARO) DB 4 11 141
(skipped by issue slot assignment) 5
SDRWite (SDR 2, pos 256, |en 10000) 6
MARWite (MAR 1, pos 0) 7
Host Recei ve (SDR 2) 8 1
MermoryStore (SDR 2, MAR 1) 9 1 1 1
(skipped by issue slot assignment) 10
SDRWite (SDR 1, pos 10256, |en 3500) 11 1
MARWite (MAR O, pos 1045076) 12 1
MeroryLoad (SDR 1, MAR 0) 13 1 1 1 1
M crocodeLoad (SDR 1, start 0) 14 1 1 1
(skipped by issue slot assignment) 15
SDRWite (SDR 0, pos 0, |en 256) 16 11
GenHist (SDR 2, SDR 0) 17 | 1 1 |1 1 |1

FIGURE 7-11. RAW masksfor first fifteen Imagine operationsin EyeMatch

ues are reflected in the location of the stream in the SRF and in memory, which are
encoded in the SDR and MAR used to access the stream. The run time dispatcher modifies
the SDR Write(s) and MAR Write for stream accesses to data-dependent streams to reflect

the actual length, start, and end of the streams.

For example, thefinal loop of EyeMatch evaluates a data-dependent series of blocks of the
live image looking for a match. The current block of the live image is accessed by the
derived stream block, which has variable bounds since it could refer to any part of image.
Before dispatching the MAR Write for a stream access to block, the dispatcher updates it

to reflect the actual start and end of the stream. For instance, if the imageislocated at
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memory address 0, the second 50x50 block of the image starts at memory address 50. If
the final loop were to try and match the second block, the dispatcher would modify the
MAR Write for the operation write a start address of 50.

Second, the run-time dispatcher waits until the Imagine operation can be dispatched. The
run-time dispatcher determines if an Imagine operation can be dispatched based on two
criteria. Thefirst criteriais that the issue slot assigned to the Imagine operation must be
empty. Before sending any I magine operations, the run-time dispatcher queries the Imag-
ine processor to determine which slots are empty. It sends as many Imagine operations as
it can before it encounters an Imagine operation that is assigned to an occupied issue slot.
The run-time dispatcher then queries the Imagine processor again to determine which
issue slots have become empty since it last checked. When an issue slot becomes empty,
the run-time dispatcher also knows that whatever operation it last sent to that slot has com-
pleted.

The second criteriaisthat, if the Imagine operation depends on any other Imagine opera-
tion that is repeatedly dispatched as part of a different double-buffered access, that other

I magine operation must be dispatched for the last time. The run-time dispatcher uses a bit-
mask called the CurrentDB mask to track the status of double-buffering operations so that
it can enforce this requirement. The CurrentDB mask contains abit corresponding to each
issue slot. When a double-buffering operation is dispatched for the first time, the bit corre-
sponding to the issue slot that operation is assigned to is set. When the repeated operation
is dispatched for the last time, that bit cleared. In order to dispatch an operation, the Cur-
rentDB mask ANDed with the DifferentDB mask of that operation must be empty.

For example, the first StreamLoad in EyeMatch requires adouble-buffered stream write to
store the live image to memory. The StreamC compiler translates the StreamL oad into sev-
eral Imagine operations as shown in Figure 7-10, one of which isaMAR Write that the
run-time dispatcher repeatedly dispatches for the double-buffered stream write. The first
time it dispatches that operation, it setsabit in the CurrentDB mask. The run-time dis-
patcher waits to dispatch any |magine operation that depends on that MAR Write but isfor
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adifferent stream access until after the last time it dispatches the MAR Write. To make
this determination, it ANDs the Imagine operation’s DifferentDB mask with the Cur-
rentDB mask and only sendsit if the result is empty.

Finally, the run-time dispatcher sends the operation to the Imagine processor along with
the RAW and WAR masks for that I magine operation. The Imagine processor then issues
the operations in the issue buffer out of order, using the dependency masks to preserve

consistency.

7.2.2 Host/Imagine data transfers
The run-time dispatcher coordinates two kinds of data transfers between the Imagine pro-

cessor and the host: registers reads and stream transfers. There are two kinds of register

reads. SDR Read L ength reads the length component of an SDR and updates the length of
avariable length stream. UCR Read reads a UCR and updates a microcontroller variable.
There are aso two kinds of stream transfers. Host Receive sends a stream from the host to

Imagine and Host Send sends a stream from Imagine to the host.

The run-time dispatcher handles all register reads without stopping execution of the
stream program on the host, unless the variable that is updated by the register read is
needed. The run-time dispatcher sends the register read operation to Imagine like any
other Imagine operation. When the Imagine processor completes the register read, it
places the value that was read in a special register corresponding to the issue slot assigned
to the register read operation. When the run-time dispatcher checks the status of the avail-
able issue dots and finds a completed read, it retrieves the value from that special register
and updates the appropriate variable. If the stream program attempts to read that variable
before a pending register read completes, it invokes the run-time dispatcher to continually
poll the status of the available issue slots until the variable is updated.

In the final loop of EyeMatch, two kernel calls are used to determine if a possible match

between a block of the live image and the reference image is actually amatch. Each kernel

call writesitsresult to amicrocontroller variable argument. Since both kernels are called
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before either microcontroller variableis read in the stream program, the run-time dis-
patcher dispatches the Imagine operations for both kernel calls, including register reads to
update the microcontroller variables with the result of each kernel. When the stream pro-
gram tries to read one of the microcontroller variables, it invokes the run-time dispatcher

to wait for the corresponding register read to complete.

The dispatcher handles host transfers by stopping the execution of the stream program on
the host until the transfer completes. It sends all of the Imagine operations for the stream
operation that includes the transfer, waits for the transfer to begin, transfers the data

between the host processor and Imagine, then continues with the stream program.

For example, the first stream operation in EyeMatch contains a StreamLoadBin used to
send the live image to the Imagine processor. It trand ates into five |magine operations as
shown in Figure 7-10. The run-time dispatcher sends these operationsto the host, waits for

the Host Receive to begin, transfers the data, then continues with the stream program.

7.2.3 Double-buffering
A double-buffered stream access involves cycling portions of alarge stream through two

halves of asmaller buffer in the SRF. One cycle of a double-buffered stream read consists
of three Imagine operations: a Write MAR to increment the address of the current portion
of the stream, aMemory Load to load that portion into a half-buffer, and a core operation
to read the contents of that half-buffer. One cycle of double-buffered stream write consists
of asimilar sequence of three operations: a Write MAR to increment the address of the

current portion of the stream, a core operation to write that portion into a half-buffer, and a
Memory Storeto store the contents of that half-buffer. To implement double-buffering, the
run-time dispatcher repeatedly dispatches the three double-buffering operations that com-
pose acycle, in order. A complete double-buffered access involves a number of cycles

equal to the length of the stream divided by the size of a half-buffer, rounded up.

Each time the run-time dispatcher redispatches an operation in the cycle, it updates it to

reflect the current portion of the stream and/or half-buffer. The run-time dispatcher
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replaces the operation's RAW and WAR masks with the operation's RAW DB and WAR
DB masks. The run-time dispatcher increments the memory address of the MAR Write. It
toggles between the two SDRs that describe the two half-buffersin the case of the Mem-
ory Load, Memory Store, or core operation. Since the length of a stream is not always
divisible by the size of ahalf-buffer, the run-time dispatcher performs aspecial SDR Write
before dispatching the MAR write for the last time to update one of the SDRsto reflect the
length of the remainder of the stream.

Thefirst StreamL oad in EyeMatch requires a double-buffered stream write to store the
40000-word live image to memory through two 3064-word half buffers. The StreamC
compiler trandates that StreamL oad into the Imagine operations shown in Figure 7-10.
The run-time dispatcher repeatedly dispatches the operations marked with DB in Figure 7-
10, resulting in the actual sequence of Imagine operations shown in Figure 7-12.

/] init

SDR Wite (SDR 0, pos 10256, |en 3064)
SDR Wite (SDR 1, pos 13320, |en 3064)
/1 cycle 1

MAR Wite (MAR O, pos 0)

Host Receive (SDRO)

Menory Save (SDRO, MARO)

/1 cycle 2

MAR Wite (MAR O, pos 3064)

Host Receive (SDR1)

Menory Save (SDR1, MARO)

/1 cycle 13

MAR Wite (MAR O, pos 36768)

Host Receive (SDRO)

Menory Save (SDRO, MARO)

/1 cycle 14

SDR Wite (SDR 1, pos 13320, |len 168)
MAR Wite (MAR O, pos 39832)

Host Receive (SDR1)

Menory Save (SDR1, MARO)

FIGURE 7-12. Imagine operations for double-buffered stream write to image
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7.3 Optimizations

This section presents two optimizations used to improve the performance of stream pro-
grams. Strip-mining involves processing alarge input stream in small batches so that
intermediate streamswill fit in the SRF. Software-pipelining divides aloop into stages and
overlaps the stages to increase parallelism. The StreamC compiler performs both of these
optimizations in a semi-automated manner: it suggests the strip-mining batch size and pro-
cesses a specially tagged source file to produce a source file containing a software pipe-

lined loop.

7.3.1 Strip-mining

Strip-mining [49] involves processing alarge input stream in smaller batches so that the
intermediate streams produced while processing a batch will al fit in the SRF. Since most
stream programs operate on inputs that are larger than the SRF by themselves, this optimi-
zation is essential for good performance. A typical stream program consists of a series of
stream operations that process an initial input to produce afinal output. Each stream oper-
ation in the series writes one or more outputs that are read as inputs by the next stream
operation. If the output of a stream operation is larger than the SRF, that stream operation
writes it to memory using double-buffering, and the next stream operation reads it from
memory using double-buffering. This sequential double-buffering limits the throughput of
those operations to the available memory bandwidth. To eliminate this bottleneck, strip-
mining applies the series of stream operations to asmall portion of the initial input to pro-
duce asmall portion of the final output, such that the output of every stream operation fits
in the SRF. It then applies the series to another small portion of theinitial input to produce
another small portion of the final output, and so on until al of theinitial input has been
processed. The size of the largest portion of initial input such that the output of every
stream operation fits in the SRF istermed the strip size. Figure 7-13 illustrates basic and

strip-mined dataflow for a simple stream program containing three kernels.
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Basic Strip-mined

| a (initial input) | | a0 i al l a2
{Kernell Kernell
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¢ ]
{KerneIB Kernel3
| d (final output) | m

Kernell

Kernel2

Kernel3
L do | d1 | d2 |

FIGURE 7-13. Basic and strip-mined data flow

The StreamC compiler estimates a strip size when it compiles a program and writes that
result to alog file, but leaves the actual strip-mining of the stream program to the pro-
grammer. Most stream programs do not fit the ideal strip-mining model. Often, there are
application-specific constraints on how the initial input or final output can be divided.
Sometimes, kernels must be changed depending on the amount of data being processed.
These constraints make automatic strip-mining difficult to implement in ageneral manner.
Therefore, the StreamC compiler provides a mechanism for determining the approximate
size of aportion of theinitial input such that the output of every operation in the serieswill

fit in the SRF. The mechanism assumes that the length of al streamsis proportionate to
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the strip size. It allocates the SRF as though it were infinite size to determine the amount
of space needed to process the entire input. It then multiplies the length of theinitial input
stream by the actual size of the SRF divided by the size needed to process the entire input.

For example, suppose the loop in EyeMatch that computes the histogram for each block in
the live image also applied a preprocessing kernel to each block. The input and output of
this preprocessing kernel would be too large to fit in the SRF. The preprocessing kernel
and histogram generation kernel could be strip-mined as shown in Figure 7-14. Rather
than preprocess and compute a histogram for the entire block, a strip-mined loop pro-
cesses a small number of rows each time. This change requires replacing the GenHist ker-
nel with an AddHist kernel which takes the old histogram as an additional input and adds

the new rows to produce a new histogram

/1 3. with each block of the inage, conpute col or histogram
/1 compare to eye histogram and add entry to possible matches if simlar
for (int x =0; x <inmgW x += eyeW {
for (int' y =0; vy <inmgH y += eyeH {
streanxbyt e4> bl ock(i mage, y*imgW+ x, (y+eyeH 1)*imgW+ x + eyeW
FI XED, STRIDE, imgW eyeW;
st reanxbyt e4> bl ockHi st (256) ;
// add small number of rows of block to histogram each iteration
for (int i = 0; 1 < eyeH; 1 += stripRows) {
stream<byte4> blockRows = block(i * stripRows, (i + 1) * stripRows);
Preprocess(blockRows, preProcBlockRows) ;
Addhist(preProcBlockRows, blockHist, blockHist)

}
ConpHi st (bl ockHi st, eyeHi st, possibleMatches(i, i + 1), X, y);

}
}

FIGURE 7-14. Srip-mined loop

7.3.2 Software-pipelining
Software-pipelining involves dividing aloop into stages and overlapping execution of one

stage of one iteration with execution of another stage of another iteration. Software-pipe-
lining can be used to hide the memory access time of a sequential memory access, a mem-
ory access that must occur between a pair of sequential kernels. A sequential memory
access occurs when the result of one kernel is stored to memory and then reloaded using a

different access pattern as an input to the next kernel, or when the result of akernel isused
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as anindex stream for an indexed stream loaded as an input to the next kernel. In either of
these cases, the second kernel cannot start immediately after the first kernel, it must wait
for the intervening memory load to complete as shown in Figure 7-15. Software pipelining
can hide the latency for this memory access by overlapping execution of akernel from

another stage with the sequential memory access as shown in Figure 7-16.

iteration i, iteration i-1,

kernell stage 1 stage 2
memory kernel2

= access

3 5 | kernelt

® kernel2 g eme

memory kernel3
kernel3 v access
\j
FIGURE 7-15. L oop with sequential FIGURE 7-16. Software-pipelined loop

memaory access

The StreamC compiler implements a software-pipelining algorithm that is designed to

handle the varying latencies of kernels and memory accesses. It tries dividing theloop into
two stages after each stream operation in the loop. For each pair of possible stages, it splits
each stage into aseries of alternating groups of kernels and sequential memory accesses. It
splits each stage into the same number of groups, some of which may be empty, such that
each memory access group in one stage has a corresponding kernel group in the other

stage as shown in Figure 7-17. Initially, kernels and memory accesses are assigned to the
first possible group, preserving ordering and dependencies between operationsin different

stages.

The StreamC compiler then repeatedly moves operations between groups. It can move the
first or last operation in a particular group to the previous or next group of similar opera-
tions, respectively, as shown in Figure 7-18, provided that it preserves ordering and does

not violate dependencies between operationsin different stages. It moves an operation if
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doing so reduces estimated run time. It also moves an operation if doing so does not
increase estimated run time and reduces the highest ratio between the total memory access
time of one group and the total kernel execution time in the corresponding group. This
second criteria avoids covering one memory access with a minimum number of kernels
while covering another with an excessive number of kernels. For these purposes, the
StreamC compiler estimates memory access time and kernel execution time based on data
gathered during the profiling run. The total run timeis calculated by summing the higher
of the total memory access time or the total kernel execution time for all pairs of corre-
sponding groups. The StreamC compiler also moves operations counter to these criteria
with a diminishing random chance to avoid becoming stuck in alocal minima, similar to
simulated annealing [26].

kernel2 kernel2

s|aulay
fowaw
SEEY

kernel3 kernel3

fowaw

kernell kernell

SEVIEY]
Aowaw
SEVIEY]
Alowaw

memory memory | Ly
access access

kernel3

Aiowaw
s|aulay
Aiowaw
s|aulay

FIGURE 7-17. Software-pipelining FIGURE 7-18. Moving an operation
groups between groupsto reducerun time

Once the StreamC compiler has divided the operations into groups for each possible pair
of stages, it selectsthe pair of stages with the minimum run time or, given equal run times,
the minimum highest ratio of memory access time to kernel execution time. It then orders
the operations starting with the first group of memory accesses followed by the corre-
sponding group of kernels, then the next group of memory accesses followed by the corre-

sponding group of kernels, and so on. Based on this ordering, it transforms a source file
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that contains a loop with specially tagged pieces of code as shown in Figure 7-19% and

produces a source file with a software-pipelined loop as shown in Figure 7-20.

while(...) { /1 stage 1 prol ogue
kernel 1(...); kernel 1(...);
kernel 2(...);
kernel 3(...); while (...) {
} /1 stage 2
kernel 2(...);
/1 stage 1
kernel 1(...);
/1 stage 2
kernel 3(...);

}

/1 stage 2 epil ogue
kernel 2(...);
kernel 3(c, d);

FIGURE 7-19. Input to SreamC com-  FIGURE 7-20. Output from StreamC
piler software-pipelining compiler software-pipelining

7.4 Summary

This chapter presented the StreamC compiler and the run-time dispatcher, the two compo-
nents required to compile and execute a stream program on the Imagine media processor.
First, it described how the StreamC compiler efficiently translates stream operations into
Imagine operations. Second, it covered how the run-time dispatcher dispatches these
Imagine operations to the issue buffer of the Imagine processor. Lastly, it discussed two

optimizations used to improve performance of stream programs.

The StreamC compiler presented in this chapter is not integrated with the normal C++
compiler used to compile the rest of the stream program; integration of the two would
allow additional optimizations. For example, an integrated compiler with accessto all data

flow information could reorder StreamC operations to improve performance.

1. To make parsing the source file easier, the actual implementation requires “tagging” the code
containing each kernel or other stream operation. These tags are omitted for simplicity.
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Chapter 8

Evaluation

This chapter presents a quantitative evaluation of the KernelC compiler and the StreamC
compiler. For each compiler, it describes an evaluation methodology and a set of bench-
marks, then presents and analyzes the results of applying the methodology to the bench-
marks. The evaluation methodology used for both compilers compares the compiler to an
aternative that is very expensive in terms of hardware cost and/or programmer effort, but
delivers very good performance. In both cases, the compilers are shown to deliver equiva

lent or superior performance with significantly less hardware and/or programmer effort.

This chapter consists of two sections. Section 8.1 evaluates the Kernel C compiler, with
emphasis on communication scheduling. Section 8.2 evaluates the StreamC compiler, with

emphasis on stream scheduling.

8.1 KernelC Compiler

8.1.1 Evaluation Architectures
The Kernel C compiler was evaluated by compiling a set of benchmark kernels for two

variations of the Imagine stream processor: one with asingle register file and onewith dis-
tributed register files (DRF). The single register file architecture provides a performance
baseline. The distributed register file architecture tests the effectiveness of communication
scheduling on an architecture that makes extensive use of shared interconnect and multi-

ple register files.
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In the single register file architecture shown in Figure 8-1, each functional unit input or
output is connected to the same register file by dedicated interconnect. In the DRF archi-
tecture shown in Figure 8-2, each functional unit input is connected to a small two-ported
register file. Each functional output can drive any one of ten global buses connected to all
register files, though each register file can only be written by one of those buseson a
cycle. Thisarchitectureis nearly identical to the architecture used to implement Imagine,
though it has fewer buses in order to be a better test of communication scheduling. Figure
8-1 through Figure 8-2 also show the area, power consumption, and register file access
delay estimated for each architecture using the methods in [44], normalized relative to

estimates for the single register file architecture.

ST T =

FIGURE 8-1. Singleregister file architecture

S

SN S 7V T e/ |\ sp SR:::W"

FIGURE 8-2. Distributed register file architecture

Both architectures include the same mix of eight functional units: three adders, two multi-
pliers, adivider, a permutation unit (pu), and a scratchpad (sp). The permutation unit per-
mutes val ues between Imagine’'s eight SIMD processing elements. The scratchpad is a

small word-addressable memory used for local arrays. All functional units except the
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scratchpad unit implement the copy operation. The functional units have identical laten-

ciesin both architectures, with representative latencies shown in Figure 8-3.

Operation Lat. | Operation L at.
Adder Divider
Logical operation 1| Integer divide 22
Integer add/subtract 2 | Floating-point divide 16
Floating-point add/subtract 4 | Permutation Unit
Multiplier Permute 1
Integer multiply 4 | Scratch Pad
Floating-point multiply 4 | Scratch pad read/write 1
All
Copy 1

FIGURE 8-3. Representative latencies

8.1.2 Evaluation Benchmarks
Figure 8-4 shows the benchmarks used to evaluate the Kernel C compiler. These bench-

marksinclude al of the kernelsin the StreamC compiler benchmarks (except for program-
mable polygon rendering, since the kernels are similar to span-based polygon rendering),
and several other image-processing, signal-processing, and sorting benchmarks. In gen-
eral, each benchmark kernel consists of single loop that iterates over the records of an
input stream, along with a short prologue and epilogue. Most of these |loops are software
pipelined using modul o software pipelining [28]. The loops dominate kernel execution
time, so the performance of a given kernel isinversely proportional to the schedule length
of the loop. Figure 8-4 also show the number of operations in the inner loop of each

benchmark.

8.1.3 Results
This section presents the schedul e length, operation count, and register demand results for

the DRF architecture relative to the single RF architecture. Each is presented as a distribu-
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Kernel Description Ops
Blockwarp

blockwarp blockwarp for image-based renderer 105
Depth Extraction

blockfill fills a stream with a constant value 11
blocksad sum of absolute difference over a diding window 109
byte2word unpacks 8-bit pixelsinto 16-bit pixels 12
convfx3x3 convolves arow with a 3x3 filter 56
convix7x7 convolves arow with a 7x7 filter 174
exdepth extracts depth from SAD values 16
extemp3 handles final rows for 3x3 convolution 11
extemp?7 handles final rows for 7x7 convolution 23
FFT

fft1024 1024-point fast fourier transform 340
MPEG2 Encoding

blocksearch searches reference image to determine motion vector 409
corr correlates current macroblock with reference macroblock | 262
dct discrete cosine transform 207
diff computes the difference between two macroblocks 208
icolor color space conversion from RGB to YCrCb 70
idct inverse discrete cosine transform 249
idxgen generate addresses to access a macroblock 87
mv2idx converts a motion vector into addresses 151
pcolor color space conversion from RGB to Y CrCh 705
rle run-length encodes a macroblock 25
Span-based Polygon Rendering

compact_recycle compacts conflicting fragments 46
glshader computes shading and lighting values 295
hash hashes conflicting fragments 107

156




mergefrag merges two streams of sorted fragments 148

project perspective projection 164
sort32frag sorts groups of 32 fragments 826
Spanrast converts a span into fragments 154
Spansgen converts atriangle into spans 355
spansprep prepares atriangle for span generation 540
xform transforms a triangle from object space to screen space 50
zcompare compares z values of two streams of fragments 22

Q-R Matrix Decomposition

backsubl performs forward elimination before back substitution 16
backsub2 performs first part of back substitution 20
backsub3 performs second part of back substitution 34
house2 Householder transformation 159
sumsgr computes the sum of squares 73
updatel computes matrix transformation for row update 101
update2 applies matrix transformation for row update 104
Sorting

bisort bitonic sorts a stream of integers 74
merge merges two streams of sorted integers 68
sort32 sorts groups of 32 integers 231

FIGURE 8-4. KernelC benchmarks

tion for the set of benchmark kernels. Specific results for each benchmark kernel can be

found in Appendix A.
Figure 8-5 through Figure 8-7 present the performance results for the benchmarks. Figure

8-5 and Figure 8-6 show the distribution of the relative and actual differences between the
schedule length for the DRF architecture and that for the single register file architecture.
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Relative increase in schedule length for DRF over single RF

Average: +1%
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25

20
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Kernels
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-10%  -8% -6%  -4% -2% 0% 2% 4% 6% 8% 10%

Increase in schedule length

FIGURE 8-5. Relativeincrease in schedule length for DRF over single RF

Figure 8-7 shows the distribution of the relative differences between the DRF schedule
length and a computable lower bound (CLB) on schedule length. The CLB is equal to the
maximum of two component bounds, one dictated by dependencies between operations
and the other by available resources. For a non-software pipelined loop, the first such
bound isthe critical path. The critical path is the maximum sum of operation latencies
along a path from an operation at the top of the dependency graph to an operation at the
bottom of the dependency graph. For a software-pipelined loop the first bound is the reoc-
currence minimum iteration interval (RMI1). The RMII is the maximum sum of operation
latencies along a path between any two operations with a write-after-read dependency
(such operations can be at most one iteration interval, the length of an iteration of the soft-
ware-pipelined loop, apart). The second bound isthe resource limit, equal to the maximum
number of operations that can only be scheduled on one kind of functional unit divided by
the total number of such functional units available. Figure 8-7 also shows which of these

limits dictates the bound for each kernel.
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Absolute increase in schedule length for DRF over single RF
Average: +0.5
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FIGURE 8-6. Increasein schedule length for DRF over single RF in cycles

Relative difference between DRF schedule length and CLB

Average: +12%
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FIGURE 8-7. Relative difference between DRF schedulelength and CLB
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Figure 8-8 shows the distribution of the increase in the number of operations in the sched-
ules for the DRF architecture over those for the SRF architecture due to the addition of

copy operations to move data between register files.

Relative increase in operation count for DRF over single RF
due to copies

Average: +5%
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FIGURE 8-8. Relativeincrease in operation count for DRF over single RF dueto
copies

Figure 8-9 through Figure 8-11 show the increase in register demand for the DRF architec-
ture over the SRF architecture. Figure 8-9 shows the distribution of the increase in register
demand due to duplication among multiple registersfiles, calculated by comparing the
total number of registersused in all register files. Figure 8-10 shows the increase in regis-
ter demand due to load imbalance among register files. It is calculated by comparing the
maximum number of registers used in any one register file multiplied by the number of
register files and divided by the total number of registers used. Lastly, Figure 8-11 shows

the increase in register demand, the product of these two factors.
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Relative increase in register demand due to duplication

Average: +140%
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FIGURE 8-9. Relativeincreasein register demand dueto duplication
Relative increase in register demand due to load imbalance
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FIGURE 8-10. Relativeincreasein register demand dueto load imbalance
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Relative increase in register demand

Average: +328%
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FIGURE 8-11. Relativeincreasein register demand

8.1.4 General analysis
These results demonstrate that the Kernel C compiler, using communication scheduling

with supporting optimizations, effectively schedules media processing kernels for an
architecture with shared interconnect and multiple register files. The schedule lengths for
the DRF architecture are on average within 1% of those for the single register file archi-
tecture, and within 12% of a computable lower bound on schedule length. The increasein
operation count due to copy operationsis low, averaging only 5%. The Kernel C compiler
does not consider register pressure during scheduling, and duplication and load imbalance
among multiple register filesresult in average increase in register demand of 348%. Since
the size of aregister in the evaluation DRF architecture is less than 2.5% that of aregister
in the single RF architecture [44], even the increase in register pressure without any

attempt at minimization is more than countered by the lower hardware cost of registers.

The Kernel C compiler’s ability to manage shared interconnect and multiple register files

isvalidated primarily by comparing the schedule lengths for the DRF architecture to those
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for the single register file architecture, which are approximate lower bounds under the
assumptions of this evaluation. This evaluation assumes that both architectures have the
same number of functional units and the same operation latencies. In reality, a DRF archi-
tecture could support many more functional units with the same total area and power. Fur-
ther, dueto lower register file accesstime, a DRF architecture would offer lower operation
latencies than a single register file architecture. The results given in this section ignore
these advantages. With the same number of functiona units and the same operation laten-
cies, the length of the optimal schedule for any architecture with shared interconnect and
multiple register filesis strictly equal to or worse than that for asingle register file archi-
tecture, since copy operations may be required and operations may be delayed due to

interconnect resource conflicts.

The average increase in schedule length for the DRF architecture over the single RF archi-
tecture, as shown in Figure 8-5, isless than 1%. This result shows that communication
scheduling with supporting optimizations avoids aimost all performance degradation due
to shared interconnect and multiple register files, even when ignoring their advantages. In
general, the differences between schedule lengths for the two architectures fall within the
random variation of the heuristic VLIW scheduling algorithm, about plus or minus one
cycle (due to these random variations, a small number of DRF schedules are slightly
shorter than the corresponding single register file schedule). Only one kernel, spansprep,

has a schedule length increase of more than 5%. It is discussed in more detail below.

The performance of the Kernel C compiler isfurther validated by comparing the schedule
lengths to a computable lower bound (CLB), as shown in Figure 8-7. Most schedule
lengths for both architectures approach the CLB. The CLB is the same for both architec-
tures since it only considers functional units as resources. The average difference between
schedule lengths and the corresponding CLB for the DRF architectureis 12%. The CLB is
astrict lower bound, but it is often not achievable because resource constraints are more
complex than reflected by the resource limit. For instance, the pcolor kernel contains a
large number of one- and two-cycle latency operations that are scheduled on the adders.

Since operations with different latencies cannot be perfectly pipelined, this significantly
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increases schedule length resulting in a very dense schedule that is still 40% higher than
the CLB. As shown in Figure 8-7, the majority of kernels with schedule lengths greater
than the CLB have a CLB equal to the resource limit, indicating at least one type of

heavily utilized functional unit.

Beyond schedule length, a scheduler for multiple register file architectures has two impor-
tant performance objectives: minimizing copy operations and minimizing register
demand. Copy operations used to move val ues between register files occupy hardware
resources and increase power consumption. Increased register demand either requires

larger register files or more spilling.

The Kernel scheduler reduces the number and performance impact of copy operations by
using communication scheduling to manage data movement and the communication cost
heuristic to efficiently assign operations to functional units. The schedule length results
discussed previously support the effectiveness of these techniques in reducing the perfor-
mance impact of copy operations. The results presented in Figure 8-8 further show that the
total number of copy operationsis also relatively low. On average, the additional copy
operations in the schedul es produced for the DRF architecture increase the total number of

operations by only 5% over the schedules for the single register file architecture.

In general, architectures with multiple register files require more total registers for two
reasons [44]. First, the same value may need to be duplicated in multiple register files.
Second, since theregisters are statically divided between register files, registers need to be
over provisioned to meet the varying load distribution among register files. These
demands can be measured for a specific kernel by determining the total number of regis-
tersused in al register files to measure increased demand due to replication, and by multi-
plying the highest number of registers used in any one register file by the number of
register files and dividing by the total number of registers used to measure increased

demand due to load imbalance among register files.
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The KernelC compiler, which is optimized for maximum performance, does not consider
register demands during scheduling. Often, maximizing performance and minimizing reg-
ister usage dictate contrary choices during scheduling. For instance, from a performance
point of view it is often desirable to store a value in multiple register files to allow opera-
tions that use that value to occur on multiple functional units, but doing so increasesregis-
ter usage. As shown by the resultsin Figure 8-11, the kernel scheduler produces schedules
for a DRF architecture that demand on average of 348% more registers. However, the size
of aregister in the DRF architecture is approximately 2.5% of that required for aregister
in the single RF architecture. The DRF architecture has an estimated areathat is only 13%
of that of the single RF architecture, including thisincrease in registers. Even with the
KernelC compiler’'s emphasis on performance, the increase in register demand is more
than balanced by the decreased hardware cost of registersin a DRF architecture. Reducing
register demand in architectures with multiple register files is outside of the scope of this

thesis, but is an important area of future work.

8.1.5 Benchmark analysis
This section analyzes two interesting kernels to provide specific examples of the effects

described in the previous section: convfx7x7, which convolves an image with a 7x7 filter,

and spansprep, which prepares a span, or line of pixels, for rasterization.

Convfx7x7

Convfx7x7 demonstrates the ability of communication scheduling to handle shared inter-
connect allocation for a dense schedule resulting from a software pipelined kernel with
excess instruction level parallelism. Denser schedules have more competition for
resources, and are more rigorous tests for communication scheduling. Convfx7x7 uses a
software-pipelined loop that contains alarge number of multiplications, additions, and
operations to pack and unpack data values. Figure 8-12 shows the 29-cycle schedule pro-
duced for asingle register file architecture. It displays the functional units on the horizon-
tal axis and the cycles on the vertical access. Operations are shown as rectangles with

height indicating latency. Copy operations are shown with a chevron, and look like enve-
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lopes. A small number of copy operations appear in single register file schedulesto propa-

gate replicated state between software-pipeline stages.

Figure 8-13 shows the 30-cycle schedule produced for a DRF architecture, which is virtu-
ally identical. For this particular kernel, the DRF scheduleis one cycle longer than the sin-
gle register file schedule, but this variation is within the random variation of the heuristic
VLIW scheduling algorithm. Overlaid on the schedule for the DRF architecture are the
communications between operations, shown as lines connecting the communicating oper-
ations. Thisfigureillustrates the general density of communication in this application.
Communi cation scheduling manages the shared interconnect for these communications

without significant performance degradation.

Spansprep

Spansprep is a near worst-case kernel for a DRF architecture because it contains opera-
tions that almost fully occupy all functional units, leaving very little room for copy opera-
tions. However, even for this kernel, the Kernel C compiler produces a schedule for the
DRF architecture that is only 9% longer that for the single RF architecture. In the single
register file schedule for spansprep depicted in Figure 8-14, all seven functional units
capable of performing copy operations (adders, multipliers, divider, permutation unit) are
almost fully occupied. The DRF schedule shown in Figure 8-15 contains an additional 43

copy operations which result in a schedule length increase of 6 cycles.

The Kernel C compiler adds copy operations to the schedule for the DRF architecture pri-
marily to deal with competition for the single write port of each register file. In theory,
competition for register file write ports should never be an issue for the DRF architecture
because all register files can only be read by one functional unit input. Hence, at most one
word can be read per cycle, which can be supplied by a single write port. In reality, opera-
tions that need to write to a particular register file are not evenly distributed. When two
operations need to write to the same register file on asingle cycle, the output of one oper-
ation is written to a different register file then later copied to the destination register file.

Very high levelsof instruction level parallelism make this occurrence morelikely, and aso
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file schedule for convfx7x7 (29 cycles)
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FIGURE 8-13. Distributed register file schedule for convfx7x7 (30 cycles)
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make it more difficult to schedule the resulting copy operation without increasing sched-

ule length.

Figure 8-15 highlights one exampl e of this effect. Two operations, an addition and a
select, need to write to multiplier O'sleft register file on cycle 12. One operation, the addi-
tion, writes directly to that register file. The other operation, the select, instead writes to
one of the permutation unit’'s register files. A copy on cycle 14 moves the value from that

register file to the multiplier’s register file.

8.2 SreamC Compiler

8.2.1 Methodology
The StreamC compiler was evaluated by executing a set of benchmarks on a cycle accu-

rate simulator of the Imagine stream processor, using three different SRF allocation meth-
ods: stream scheduling, stream caching, and by hand. All runs used identical kernels.
Runtime was measured from an initial state with all kernels and the input in off-chip mem-

ory to afinal state with the output in off-chip memory.

All of the StreamC compiler benchmarks except Q-R decomposition and programmable
rendering were implemented in two different languages: StreamC, and macrocode. Macro-
code, which is essentially an assembly language consisting of Imagine operations,
requires the programmer to allocate the SRF and specify all loading and storing of streams
by hand. Figure 8-16 shows a StreamC kernel call and the equivalent macrocode (with
minor syntax simplifications). Compared to StreamC, macrocode has the same disadvan-
tages as any assembly language compared to a high-level language. It has a steeper learn-
ing curve and requires low-level understanding of the hardware. It is more time
consuming to write, debug, and optimize and is not portable. However, properly optimized
macrocode delivers very high performance. The macrocode versions of the benchmarks

were extensively optimized by programmers who were very familiar with the Imagine
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FIGURE 8-14. Singleregister file schedule for spansprep (64 cycles)
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architecture. The StreamC versions were optimized using the StreamC compiler as
described in Section 7.3.

SreamC M acr ocode

foo (a b, ©); /1 wite MARs (nmenory address,

/1 access node, stride)

a_MAR write(0x100100,
node_stride, 1);

b_MAR write(0x100200,
node_stride, 1);

c_MAR write(0x100300,
node_stride, 1);

/1 wite SDRs (SRF address,
/1 length, record size)

a_SDR write(0x100, 256, 1);
b_SDR write(0x200, 256, 1);
c_SDR write(0x300, 256, 1);

/1 load inputs
nenory | oad(a_MAR, a_ SDR);
nmenory | oad(b_MAR, b_SDR);

/1 call kernel
kernel _start(foo, 2, 1,
a_SDR b_SDR c_SDR):

/1l store output
menory_store(c_MAR, c¢_SDR);

FIGURE 8-16. Equivalent SreamC and M acrocode

The StreamC version of each benchmark was executed twice: once with the SRF allocated
at compile time using stream scheduling, and once with the SRF alocated at run time
using stream caching. Stream caching is asimpler alternative to stream scheduling that
manages the SRF as a“ cache of streams’ using aleast-recent-use replacement policy. Itis
described in more detail in Section 6.1.

8.2.2 Benchmarks
The StreamC compiler was evaluated using five benchmarks: depth extraction, MPEG2

encoding, span-based polygon rendering, Q-R decomposition, and programmable polygon

rendering. Each benchmark is described! in detail below:
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Depth extraction

The depth extraction benchmark computes depth information from two 320x240 8-bit
grayscale stereo images. It is based on Kanade's algorithm [22], though two images are

used instead of the multiple cameras used in the video-rate stereo machine.

The depth extraction processis separated into two main steps: filtering the two images and
extracting the depth information from the filtered images. Each input image is filtered by
processing each row of the image using three kernels: one kernel unpacks the input row
from 8-bits per pixel to 16-hits per pixel, and two kernels that convolve the unpacked row
with a 7x7 filter followed by a 3x3 filter. Streams of partial sums are kept between rows to
support the 2D convolution in the 1D streaming model. Next, the depth information is
extracted using a kernel that computes a sliding window sum of absolute differences
between two rows of the two filtered images. The kernel is applied repeatedly with vary-
ing disparities, and the disparity at which the sum of absolute differences about a point is
smallest determines the depth of that point.

MPEG2 encoding

The MPEG2 encoding benchmark encodes three frames of a 320x288 24-bit color image.
The frames are encoded as an |-Frame followed by two P-Frames. The encoding is com-
plete except for the final Huffman bit-coding, which isinherently serial and thus better |eft

to a scalar processor.

The MPEG encoding process for a P-Frame consists of a series of eight kernels that oper-
ate on 16x16 macroblocks. Thefirst kernel converts macroblocks from RGB space into
luminance-chrominance space. The second and third kernels determine motion vectorsto
amacroblock in the reference image that is similar to each macroblock and convert the
motion vectorsinto indices required to load that block, respectively. The fourth, fifth, and
sixth kernels compute the differences between each macroblock and its reference macrob-

lock, take the discrete cosine transform (DCT) of the differences, and run length encode

1. Some portions of the following benchmark descriptions were adapted from [46] and unpub-
lished work by John Owens.
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the results. The last two kernels take the inverse DCT of the results, and correlate them
with the previous reference image for use as part of the next reference image. The MPEG
encoding process for an I-frameis similar, except that it does not involve areference

image and so lacks the second, third, and fourth kernels.

Span-based polygon rendering

The Span-Based Polygon Rendering benchmark renders a 512x512 24-bit color image of
a sphere using a conventional graphics pipeline. The sphereis finely subdivided into
81,920 unmeshed triangles and generates 361,816 fragments. Backface culling is disabled
so each drawn pixel has depth-complexity of 2. The sphere is Gouraud shaded and lit by

three positional lights with diffuse and specular lighting components.

The span-based rendering pipeline has three conceptual stages. geometry, rasterization,
and compositing, each of which isimplemented as a series of kernels. The geometry stage
transforms object space triangles into screen space triangles. It uses three kernels that
transform the coordinates of the triangles from object space to screen space, perspective
project the triangles, and apply shading and lighting to the triangles. The rasterization
stage converts screen space triangles into fragments. It also uses three kernels: one that
prepares the triangles, one that converts each triangle into spans, and one that rasterizes
each span into fragments. The compositing stage composes the final image from the frag-
ments. First, it uses a kernel to hash the fragments based on their coordinates in order to
identify conflicting fragments. Second, it uses two kernels to merge-sort the conflicting
fragments. Lastly it iteratively applies two kernels to compact conflicting fragments and
composite fragments into the final image based on their z-values relative to previously

rendered fragments.
Q-R decomposition

The Q-R Decomposition benchmark decomposes an 192x96 matrix of floating-point num-

bersinto an orthogona Q matrix and an upper triangular R matrix such that their product
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isequal to the input matrix using the compact Y-W representation [47] of the blocked-

Householder transform.

The Q-R decomposition process first computes the matrix R and then computes the matrix
Q using back substitution. To compute the matrix R, it divides the matrix into 8x8 blocks
of elements. It successively transforms each block along the diagonal to upper triangular
form and updates all blocks directly to the right of that block using the househol der kernel.
After transforming each block, all blocks directly below the block are conceptually (not
physically) zeroed. All blocks below the current block and on or to the right of the diago-
nal are updated by successively applying the updatel and update2 kernels. Once the
matrix R has been computed, the matrix Q is computed using forward elimination by the
backsubl kernel, and backward substitution by successive application of the backsub2 and
backsub3 kernels.

Programmable polygon rendering

The Programmabl e Polygon Rendering benchmarks are variations on a flexible polygon
rendering pipeline. The benchmarks use different shading kernels to render six different

scenes:

» Sphere: the same sphere rendered by the span-based rendering benchmark, with back-
face culling enabled.

* ADVS: thefirst frame of the SPECviewperf 6.1.1 Advanced Visualizer benchmark
with lighting and blending disabled and all textures point-sampled from a 512x512
texture map.

» Earth: aglobe with protruding elevations rendered by perturbing the positions and
normals of each vertex of atessellated sphere using a single combined per-vertex dis-
placement/bump map texture lookup. The sceneislit with asingle positional light.

* Verona: aglobe with protruding elevations refl ecting the Cafe Verona. Verona begins
with the same per-vertex position displacement as Earth, and adds an additional “envi-
ronment-mapped-bump-map” calculation that involves a dependent texture read.

* Pin: aredlistic bowling pin shaded with 5 successive textures aswell as aprocedurally
specified light with diffuse and specular components.

* Marble: amarble bowling pin shaded using procedural turbulence involving 4 noise
calculations per fragment and requiring no texture maps.
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Like the span-based rendering pipeline, the programmable rendering pipeline has three
stages. geometry, rasterization, and compositing. The compositing stage isidentical to that
of the span-based rendering pipeline, but the geometry and rasterization stages differ. The
geometry stage takes a“mesh” of connected vertices as input and produces a stream of tri-
angles as output. It consists of a series of kernels which compute and/or lookup texture
information for each vertex, assemble vertices into triangles, divide any triangles which
cross aviewport edge, and cull triangles which face away from the viewport or are outside
of the viewport. The rasterization stage consists of a series of kernelsthat prepare each tri-
angle for rasterization, rasterize each triangle directly into fragments, propagate texture
information from the triangles to the fragments, and compute and/or lookup the final tex-
ture information for each fragment. Thought this conceptual order of kernelsis the same
for al scenes, the scenes use different shaders that have widely varying computation and

memory access requirements and, consequently, varied software pipelining.

8.2.3 Results
Figure 8-17 through Figure 8-20 summarize the results for the benchmarks. All results are

normalized to those for the stream scheduler. The results for programmable polygon ren-
dering are the average of the six scenes. The raw results for each benchmark kernel can be
found in Appendix A. Figure 8-17 presents the performance results for the benchmarks
using each of the three stream register file allocation methods. All run times are measured
in cyclesfrom a state with all inputs stored in memory to a state with all outputs stored in
memory. Figure 8-18 through Figure 8-20 show the strip size, memory traffic, and pro-
cessing element occupancy for each of the benchmarks. Strip size is measured as the size
of the input data processed by each iteration of the strip-mined loop. Memory traffic is
measured as total number of words loaded and stored. Occupancy is measured by dividing

the total time spent executing kernels by the total run time.
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Run time vs. SRF allocation method
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FIGURE 8-17. SreamC benchmark run times

8.2.4 General analysis

These results demonstrate that StreamC compiled using stream scheduling achieves per-
formance that is comparable to, and sometime better than, hand-optimized macrocode.
Stream caching significantly increases memory traffic, resulting in inferior performance.
This section analyzes the underlying factors that dictate performance on Imagine and how

these results derive from those factors.

Imagine application performance (assuming identical kernels) isdictated by three factors:
strip size, memory traffic, and execution/memory parallelism. The strip size is the amount
of data processed by each iteration of the strip-mined loop as described in Section 7.3. The
larger the strip size, the fewer iterations of the strip-mined loop are required to process the
input. Since each iteration adds overhead to start and stop each kernel (e.g. priming and
draining a software pipelined loop), increasing the strip size reduces the total execution
time of the kernels. The total memory traffic is the total number of words loaded and

stored by the application. All applications require some memory traffic to load initial
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Strip size vs. SRF allocation method
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Memory traffic vs. SRFallocation method
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FIGURE 8-19. Memory traffic
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Occupancy vs. SRF allocation method
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FIGURE 8-20. Occupancy

inputs and store final outputs. Additional memory traffic is generated when intermediate
datais spilled from the SRF to memory, possibly increasing run time. The occupancy
defines the fraction of run time spent doing useful work executing kernels. Occupancy
reflects the amount of memory access and execution parallelism achieved in the applica-
tion. Memory traffic that occursin parallel with the execution of kernels does not increase
run time, and therefore does not decrease occupancy. Some execution and memory traffic
isinherently serial within the context of nearby kernels, for instance when akernel pro-
duces a stream of addresses used as an index stream to load the input to the next kernel.
However, this memory traffic can still be hidden by executing kernels from other parts of
the program using a technique such as software pipelining. In practice, most non-parallel
memory traffic is due to either to poor resource allocation (for instance, when a kernel
waits to be executed because it needs to write to alocation in the SRF occupied by a

stream that is being stored) or to excessive memory traffic.

178



These three factors are often inversely related, and maximum performance involves find-
ing the best combination of factors rather than maximizing any one factor. Increasing strip
size can force some intermediate datato be spilled out of the SRF, or prevent some kernels
from occurring in parallel with memory traffic because there is not enough space in the
SRF for the data involved in both operations. Memory traffic can be decreased by keeping
datathat is reused between iterations in the SRF, but doing so often requires decreasing
the strip size or reducing parallelism. Memory/execution parallelism can be increased by
software pipelining the strip-mined loop so that kernels from one stage can be executed at
the same time as serial memory accesses between kernels of the other stage. However,
software pipelining requires intermediate data from different stagesto fit in the SRF

simultaneously, which usually requires decreasing strip size.

Stream scheduling often achieves alarger strip size than a macrocode programme,
improving performance. Macrocode programmers tend to allocate the SRF in aregular,
conceptually straightforward manner. Stream scheduling produces a less regular, non-intu-
itive layout that enables it to fit more data in the SRF. Stream scheduling also handles
loading initial inputs and/or storing final outputs in a more efficient manner. Macrocode
programmers usually software pipeline the loop and place these loads and stores in the
first stage and last stage, respectively. This approach ensures that the memory access can
always occur in parallel with execution but requires allocating space to hold the initial
inputs and final outputs for the entire duration of the loop. In contrast, stream scheduling
uses shadows to ensure that the loads and stores can occur in parallel with one or more
kernels as described in Section 6.3. Occasionally, using shadows causes it to allocate the
SRF so that memory accesses cannot occur completely in parallel with execution. This
loss of parallelism occurs when it reduces the duration of the shadows in order to fit all
streams in the SRF and/or the duration of the shadows encompasses kernels with very
short execution times. However, thelossis usually more than made up for by theincreased

strip size.

The StreamC executed with stream caching does not perform nearly as well asthe

StreamC compiled with stream scheduling. Stream caching increases memory traffic to
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the point where all benchmarks except Q-R decomposition become memory bound, which
severely reduces performance. Since stream caching cannot anticipate future accesses, all
output streams must be stored back to memory. Further, streams are often arranged poorly
in the SRF, resulting in more loads than would otherwise be required. Since identical
StreamC was executed with stream scheduling and stream caching, the strip sizes are
same. However, stream caching often failed to fit al of the intermediate datain the SRF
resulting in even more memory traffic. These problems are discussed in more detail in
Section 6.1. The performance of stream caching is similar to the performance of a conven-
tional cache with perfect prefetching since streams are loaded in advance of execution.
Thus, these results also demonstrate why a conventional cache is poorly suited to stream-

ing applications.

8.2.5 Benchmark analysis
This section analyzes each benchmark to highlight specific examples of the tradeoffs

described in the previous section.

Depth extraction

The depth extraction benchmark demonstrates the importance of minimizing memory traf-
fic for applications with high throughput kernels. Depth extraction has only modest SRF
requirements, but many of the kernelsinvolved have short run timesrelative to the amount
of datathey produce. Stream scheduling and macrocode both make effective use of the
SRF and require the minimum amount of memory traffic, resulting in almost identical run
times (the StreamC run time is slightly higher due to a second-order effect involving the
order of accesses made by the SRF clients). Stream caching, however, requires roughly
twelve times as much memory traffic because it stores all intermediate results, most of
which are never reused. Since there is proportionally little kernel execution time to hide

the memory access time, these unnecessary stores quadruple run time.

MPEG2 encoding
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Though the stream scheduled and macrocode versions of the MPEG benchmark have vir-
tually the same run-time, the stream scheduled version actually does more work. The
MPEG benchmark is strip-mined to process a batch of macroblocks each iteration. Stream
scheduling allocates the SRF efficiently enough to process an entire row of macroblocks
each iteration, primarily because it does not software pipelineloading theinitia inputsand
storing the final outputs. The macrocode only processes half arow of macroblocks each
iteration. The stream scheduled version is able to search an entire row of reference mac-
roblocks using the blocksearch kernel, increasing the total execution time of that kernel.
Excluding the increase in the blocksearch kernel run time, the stream scheduled versionis
3% faster.

Span-based polygon rendering

The polygon rendering benchmark demonstrates the effect of different tradeoffs between
strip size and parallelism. The primary difference between the stream scheduled version
and the macrocode involves how loading the initial triangles and storing the final depth
and color values are software pipelined. The macrocode version pipelines each of these
Memory accesses as a separate software pipeline stage. It devotes SRF space to hold the
datafor the entire loop. The stream scheduled version does not, enabling it to process 256

triangles per batch, while the macrocode can only process 80 triangles per batch.

Both the StreamC and macrocode versions are software pipelined in order to parallelize an
inherently serial memory access. The polygon rendering benchmark consists of the series
of kernels described in Section 8.2.2. The compact kernel produces a stream of addresses
into the depth buffer that is used to load a stream of z-values for the next kernel, zcom-
pare. Thismemory accessisinherently serial. Both versions of polygon rendering are soft-
ware pipelined so that kernels from the next iteration can be executed at the same time as
this memory access. This reduces strip size, but the cost of the memory accessis higher
than the overhead of all the kernelsin the loop.
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Q-R decomposition

Q-R decomposition isthe only benchmark for which stream caching delivers performance
near that of stream scheduling, due to arelatively high ratio of computation to memory
traffic and aworking set which eventually fitsin the SRF. The majority of computation
involves repeated passes by the householder kernel. Each pass generates output which is
used as the input to the next pass. Both stream caching and stream scheduling keep this
datain the SRF, but stream caching writes it back to memory unnecessarily. However, the
time required to store the datais dightly less than the time required to produce it so this
extramemory traffic is hidden. After transforming each block along the diagonal, the
update kernels are used to update each of the remaining rows. Initialy, all the rows do not
fit in the SRF. The least-recently-used replacement policy employed by stream caching
gjects al rows over the course of an update as aresult. The additional time required to
reload the first of these rows slows stream caching relative to stream scheduling, but
reloading later rows is hidden by the update of earlier rows. Eventually, al of the remain-
ing rowsfit in the SRF and both SRF allocation methods keep them there. For this partic-
ular benchmark, the stream caching run-time approaches that of stream scheduling.
However, stream caching still requires 71% more memory traffic due to the unnecessary
writes. Higher computation speed relative to memory access time would rapidly degrade

performance under stream caching.

Programmable polygon rendering

The programmabl e polygon rendering benchmarks pose several significant challenges,
resulting in slightly lower occupancy (average of 83%). First, they contain many sequen-
tial memory accesses due to texture |ook-ups. Second, the size of most streams varies
widely, since a fixed number of vertices assembles into an unpredictable number of trian-
gles, which rasterize into an unpredictable number of pixels, etc. Third, some of the
streams are so small that the time to execute a kernel isless than the time to dispatch the
required operations from the host processor to Imagine. Fourth, handling unpredictable

stream lengths which can sometimes be zero requires data-dependent control flow.
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The factors compound one another. Sequential memory accesses can be made to occur in
parallel with execution using software pipelining, but varying output sizes make the time
required for memory accesses and kernels unpredictable. The software pipelining algo-
rithm described in Section 7.3.2 mitigates this unpredictability by estimating times based
on average lengths and trying to cover all memory accesses with a constant proportion of
execution rather than covering some memory accesses with the minimum amount of exe-
cution and others with more than enough. The time to dispatch operations can be hidden
by dispatching them ahead of time, but operations can be only be dispatched up to the next
data-dependent branch. The stream scheduler mitigates this cost somewhat by minimizing
the number of operations that need to be dispatched by hoisting redundant operations out
of loops. This cost to dispatch operation would be diminished significantly by integrating

the host on the same chip as Imagine.
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8.3 Summary

This chapter presented a quantitative evaluation of the compilers described in thisthesis,
with an emphasis on the communication scheduling portion of the Kernel C compiler and
the stream scheduling portion of the StreamC compiler. The resultsin this chapter demon-
strate that by using communication scheduling the Kernel C compiler can schedule kernels
on adistributed register file architecture with schedule lengths comparable to an ideal sin-
gleregister file architecture. The resultsin this chapter also demonstrate that by using
stream scheduling the StreamC compiler can deliver application performance that is com-
parable to, and in some cases better than, macrocode hand-written and optimized by
expert imagine programmers. Stream caching, a simpler technique that manages the SRF

at run-time, results in significantly worse performance due to increased memory traffic.
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Chapter 9

Conclusion

9.1 Summary

The Imagine Media Processor introduces architectural innovations to meet the demands of
media processing applications, but these innovations place additiona burdens on the com-
piler. Media processing applications demand very high arithmetic rates and data band-
width. To meet the arithmetic demands, Imagine connects functional unitsto multiple
register files with shared interconnect instead of to a single register file with dedicated
interconnect, which enablesit to support many more functional units. To meet the data
bandwidth demands, Imagine uses a stream register file instead of a cache, which requires
an application to explicitly load and store long sequences of data called streams. These
two innovations place additional burdens on the compiler: allocating the shared intercon-

nect and managing the stream register file.

This thesis presents a programming system for the Imagine media processor that intro-
duces an implementation of the stream programming model and two compiler techniques
to support these architectural innovations. The stream programming model divides an
application into two parts: kernels, computation intensive functions that operate on
streams, and a stream program that defines the high-level control- and data-flow between
kernels. The kernels are written using alanguage called Kernel C. The Kernel C compiler
uses communication scheduling to allocate the shared interconnect and manage data

movement between functional units and multiple register files. The stream program is
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written using alanguage called StreamC. The StreamC compiler uses stream scheduling to

manage the stream register file and determine when to load and store streams.

The programming system presented in this thesis enabl es efficient high-performance
application development for Imagine. Multiple applications have been implemented for
Imagine, including stereo depth extraction, MPEG2 encoding, Q-R decomposition, and
polygon rendering. Experimental results presented in this thesis demonstrate that the Ker-
nelC compiler, scheduling kernels used in these applications, can produce schedules for an
architecture with multiple register files with shared interconnect that are comparable to
those for the same architecture with an ideal single register file. Stream scheduling deliv-
ers performance equal to or better than a programmer can achieve with akind of assembly
language called macrocode that requires allocating the SRF by hand, and significantly out-

performs a run-time “stream caching” approach.

9.2 FutureWork

This thesis focused on the essential portions of a programming system for Imagine; there
are several capabilities that would be useful extensions to this system. These capabilities
include extending communication scheduling to consider register pressure and extending

the StreamC compiler to a multiprocessor system.

9.2.1 Communication scheduling with register pressure
Communication scheduling could be improved by considering register pressure when

assigning communications to routes. As described in this thesis, communication schedul-
ing only considers the availability of shared interconnect resources. Considering register
pressure would result in trying to store valuesin as few register files as possible, adding
copy operationsto allow avalue to be stored in aanother register file until just beforeit is
used, and preferentially scheduling operations on functional units that can access register

fileswith relatively low register pressure.
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9.2.2 Multiprocessor systems
Stream programs map to multiprocessor systems with relative ease because the stream

programming model makes high-level data flow and parallelism explicit, but finding the
best arrangement of kernels on processorsis a challenging problem. The simplest arrange-
ment is to run each kernel only on a specific processor. More complicated arrangements
include stripmining the application and running a small number of strip-mined loop itera-

tions simultaneously on different processors.

9.3 Epilogue

Programming models and compilers need to evolve to allow more efficient application
development for media processing architectures. Media processing applications are
becoming the dominant desktop workload and are already prevalent in embedded systems
[11]. Asthe importance of these applications increases, processors optimized for media
processing will become more and more common. At present, applications for these pro-
cessors often are written at avery low level in order to achieve good performance. Asthis
thesis demonstrates, combining the right programming model and compiler techniques

can alow high-level development of these applications without sacrificing performance.

187



188



Appendix A: Detailed Results

The following are the detailed results for the Kernel C compiler:

Loop sched.

Kernel len. Computable lower bound |Operations JRegisters
Crit.
SW |path/ |Res. DRF |DRF

SRF |DRF JCLB | pipe.[RMIl [limit JSRF [DRF ISRF |(dup) |(imb)
Block warper
blockwarp 62 63 58] n 58 22] 105| 109 46 86| 204
Depth Extraction
blockfill 4 4 4 n 4 4 11 11 5 22 34
blocksad 14 14 12] vy 12 12] 117] 128 44 82| 136
byte2word 7 7 7 v 7 5 13 13 9 29 34
convfx3x3 10 11 9] vy 9 7 59 61 40 62| 119
convix7x7 29 30 28] vy 9 28] 175| 200 108 165 374
exdepth 11 11 10] n 10 5 16 16 9 30 34
extemp3 4 4 4 n 4 4 11 11 6 19 34
extemp? 6 6 6] v 6 6 23 23 6 23 34
FET
fft8c1024 42 42 42| vy 32 42] 341] 369 69| 132| 204
IMPEG2 Encoding
blocksearch 96 99 771 n 69 77] _409| 466 91| 187] 323
corr 38 37 32| vy 22 32| 262| 276 51| 109| 187
dct 40 40 36] v 14 36] 220] 242 73| 130] 238
diff 34 34 32] vy 16 32| 208] 218 36 75| 153
icolor 15 15] 12| v 10 12 77 87| 38 73| 136
idct 41 42 37 v 14 37] 250] 281 63| 178] 408
lidxaen 35 35 35| n 35 32 87 87 28 68| 187
mv2idx 44 45 36| v 8 36] _151| 165 36| 100| 238
pcolor 143] 150 107 n 72| 107] 705| 763 86| 191| 272
rle 7 7 71 n 7 5 25 25 47| 130 221
Polygon Rendering
compact recycle 10 10 10] v 10 8 56 59 21 46 68
glshader 118| 117 99| vy 12 99| 328| 326] 144 218 510
hash 18 18 17 vy 10 17] 124] 129 66| 107| 204
mergefrag 45 45 34| n 31 34| 149| 154 39 99| 136
Iproject 27 27 27] vy 27 27] 197] 205 78| 141] 238
sort32fraq 247 245] 208] n 130] 208| 826] 905 50| 132] 204

26 27 21] vy 16 21] 156| 165 40 74| 119

spansgen 61 61 53] vy 30 53] 360] 398 60| 117] 204
spansprep 64 70 57] v 57 54] 564| 607 82| 178| 408
xform 12 12 12| v 12 9 50 50 27 54| 153
zcompare 7 7 7y 7 5 23 23 10 28 51
Q-R Matrix Decomposition
backsubl 14 14 14] n 14 5 16 16 17 46 68|
backsub2 19 19 16] n 16 5 20 20 20 56| 102
backsub3 32 32 31 n 31 10 34 34 16 43 85
house2 23 24 23| v 10 23| 159| 184] 101f 212| 340
sumsqr 10 10 10| vy 10 9 74 78 21 50| 102
updatel 37 37 26] vy 26 16] 101] 102 39 85| 289
update2 16 16 16| v 8 16 110 119 37 79| 204
Sorting
bisort 10 10 10| vy 10 8 75 83 20 59 85
merge 22 22 15] vy 15 13 69 70 20 59| 102
sort32 52 53 52| vy 10 52] 233] 250 32 87| 153

189



The following are the detailed results for the StreamC compiler:

Run Time (cycles) Kernel Exec. Time (cycles)

Stream Stream Macro- Stream Stream Macro-

Sched. Cache code Sched. Cache code
Depth 2128680 8719210| 2067664] 1988066 1988066] 1987936
MPEG2 4304550| 6533840] 4309075] 4121082| 4121082| 4099464
Span-based render 11242940] 28732810 12345158] 10503796| 10503796] 11360700
Q-R Decomposition 7127701 732690 6571401 657140
Programmable render
P.R. - Sphere 13084160 22378320 11633104] 11633104
P.R. - ADVS-1 3552850{ 8210430 2804293| 2804293
P.R. - Earth 13007930 23988590 10479312] 10479312
P.R. - Verona 23353710] 49574070 19372688| 19372688
P.R. - Pin 9975960( 24794120 7933138| 7933138
P.R. - Marble 12130460 21843240 10866323] 10693943

Memory Traffic (words) Strip Size (varies, see unit)

Stream Stream Macro- Stream Stream Macro-

Sched. Cache code Sched. Cache code unit
Depth 907176{ 10551976| 915232 1 1 1|rows
MPEG2 938648[ 3126104 970904 20 20 10|blocks
Span-based render 2480496 24699984] 2400728 256 256 80|triangles
Q-R Decomposition 286400 489616 8 8 rows
Programmable render
P.R. - Sphere 2295600( 16437864 480 480 vertices
P.R. - ADVS-1 797680] 6426944 224 224 vertices
P.R. - Earth 2373696 17319808 64 64 vertices
P.R. - Verona 3163736] 35634312 40 40 vertices
P.R. - Pin 1716448| 21406848 88 88 vertices
P.R. - Marble 976608| 16211176 64 64 vertices
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