
Chapter 1

Introduction

1.1 The Problem
Media processing applications, such as image-processing, signal processing, and graphics,

motivate new processor architectures that place new burdens on the compiler. These appli-

cations demand very high arithmetic rates on the order of 10-100 billion operations per

second. They also demand correspondingly high data bandwidth, and have little to no data

reuse, i.e. most data are read only once after being written. [11][46]

Conventional processors, like the one shown in Figure 1-1, cannot meet the demands of

media processing applications. They cannot support enough functional units to achieve the

needed arithmetic rates because their register file architecture does not scale. As shown in

Figure 1-1, each functional unit input or output is connected by a dedicated bus and regis-

ter file port to a single register file. The size of the register file is proportional to the cube

of the number of functional units [44]. Conventional processors cannot supply the needed

data bandwidth because their on-chip memory is in the form of a cache that relies on data

reuse to reduce memory traffic. A cache never reduces memory traffic by more than half

for an application without data reuse, in which all data is written once and read once. The

cache cannot anticipate that the data is never reused so it must propagate the write to

memory. Further, the random-access design of a cache limits the amount of bandwidth it

can provide to the processor core.
1

The Imagine Media Processor (Imagine), shown in Figure 1-2, introduces two innovations

that enable it to meet the demands of media processing applications. First, Imagine

replaces the single register file with distributed register files: multiple two-ported register

files connected to the functional units by shared buses and register file ports. These dis-

tributed register files can efficiently support a large number of functional units. Each func-

tion unit output is connected to a bus that is connected to all shared register file write

ports. Second, Imagine uses a Stream Register File (SRF) instead of a cache. The SRF

allows the application to explicitly load and store long sequences of data records called

streams. Loading and storing streams only when necessary significantly reduces memory

traffic. The SRF is optimized for sequential access to these streams, allowing it to provide

much higher bandwidth to the processor core than a cache.

Other architectures designed for media processing have incorporated limited support for

similar features. For example, the Texas Instruments C6X [48] has two partitioned register

files and the Equator MAP-CA [2] has a programmer controlled DMA unit for accessing

streams through an existing cache. However, Imagine is designed around the concepts of

partitioned register files and streaming memory access: register files are partitioned down

FIGURE 1-1. Simplified diagram of a conventional processor

Conventional Processor

Cache

Memory

l/s

Single Register File
2

to a single register file per functional unit input and streams are used for all memory

accesses.

These architectural innovations place additional burdens on the compiler. Distributed reg-

ister files require the compiler to allocate the shared buses and register file ports and to

manage the movement of data between the multiple register files. A stream register file

requires the compiler to explicitly allocate space in the stream register file to hold streams

and manage the loading and storing of streams.

This thesis presents a programming system for the Imagine Media Processor that consists

two C-like languages called KernelC and StreamC that implement the stream program-

FIGURE 1-2. Simplified diagram of an Imagine processor

Stream Register File

Memory

8 Processing Elements

Multiple Register Files

Shared Interconnect

Imagine Media Processor
3

ming model, and two compilers, one for each language. The two compilers introduce new

techniques to handle Imagine’s architectural innovations.

The stream programming model divides a media processing application into one or more

kernels that define each processing step in the application, and a stream program that

defines the high-level control- and data- flow between kernels. A kernel, written in Ker-

nelC, is a function that operates on streams. Internally, a kernel usually consists of a com-

putation-intensive loop that iterates over the records in the input stream(s) and produces

the records in the output stream(s). The stream program, written using StreamC in combi-

nation with C++, consists of a series of operations performed on streams, the most com-

mon of which are kernels. Figure 1-3 graphically depicts a simplified version of a polygon

rendering application written using the stream programming model. The first kernel takes

a stream of triangles as input and produces a stream of spans (lines of pixels) as output, the

second kernel takes the stream of spans as input and produces a stream of fragments (pix-

els) as output.

FIGURE 1-3. Simplified polygon rendering using stream programming model

kernel

stream
program

span
convert

rasterize

stream
4

The KernelC compiler introduces communication scheduling to allocate shared intercon-

nect resources and manage data movement between multiple register files and functional

units. With a single register file, all functional units can access all data. With multiple reg-

ister files this is no longer the case. Communication scheduling ensures that the result of

each operation is available to the operations that use that result. It assigns each communi-

cation, the logical transfer of a value from the operation that computed it to an operation

that uses it, to a route that defines the resources used to move the value between the func-

tional units that perform the operations, as depicted in Figure 1-4. Communication sched-

uling composes each route from three components: a write stub that defines how the result

is written to an initial register file, zero or more copy operations to move the value

between register files, and a read stub that defines how the operand is read from the final

register file.

The StreamC compiler introduces stream scheduling to allocate the SRF and determine

when to load and store streams. It assigns each stream access to a buffer in the SRF as

depicted in Figure 1-5. Stream scheduling attempts to minimize memory traffic and maxi-

mize parallelism of kernels and memory accesses. Ideally, a stream is kept in the SRF

between accesses, reducing memory traffic. When a stream must be loaded or stored, it is

allocated a buffer that is disjoint from the buffers used by nearby kernels, enabling the

memory access to occur in parallel with those kernels. Stream scheduling allocates the

SRF as a two dimensional space. One dimension of this space is the SRF address space,

FIGURE 1-4. Communication scheduling assigns each communication to a route

write operation

read operation

result

operand

co
m

m
un

ic
at

io
n

write operation

read operation

ro
ut

e

5

the other dimension is time, the duration of the stream program. It assigns all stream

accesses in the stream program to rectangular buffers with appropriate size (width) and

duration (height), then tries to position all of the buffers in the two dimensional space. If

all of the buffers do not fit, stream scheduling reduces the size or duration of a buffer and

then tries again until it succeeds.

Experimental results demonstrate that this programming system can be used to implement

sophisticated, high-performance applications including stereo depth extraction, MPEG2

encoding, and polygon rendering for the Imagine Media Processor. For a set of bench-

marks that includes these applications, communication scheduling delivers performance

with shared interconnect and multiple partitioned register files that is comparable to one

multi-ported register file and stream scheduling manages the SRF as well as or better than

experienced Imagine programmers can by hand.

FIGURE 1-5. Stream scheduling assigns each stream access to a buffer in the SRF

stream
accessoperation

stream

buffer

SRF

stream program
6

1.2 Contributions
The main contributions of this thesis are:

1. An implementation of the stream programming model which introduces the StreamC

and KernelC languages to enable efficient development of stream programs and ker-

nels. This implementation allows programmers to write high-performance applications

for stream processors like Imagine without detailed knowledge of the target architec-

ture and facilitates high-level optimization.

2. Communication scheduling, a compiler technique for allocating shared interconnect

between functional units and multiple register files. Communications scheduling has

several key innovations and supporting optimizations:

• use of stubs, partial routes between functional units, to allow independent
assignment of operations to functional units

• a method for incrementally composing routes from stubs during the scheduling
process

• communication cost, a heuristic component for assigning operations to func-
tional units that reflects the impact of copy operations on schedule length

• heuristics for ordering operations and assigning them to functional units tailored
to wide VLIWs with shared interconnect, including the use of a random com-
ponent to explore several possible schedules

Communication scheduling can be incorporated into a variety of VLIW scheduling

algorithms, extending them to a large class of architectures that includes the very effi-

cient distributed register file architecture.

3. Stream scheduling, a compiler technique for allocating a stream register file and man-

aging the loading and storing of streams. Stream scheduling has several key innova-

tions and supporting optimizations including:

• a unique allocation process that combines compile-time allocation of on-chip
memory with spilling and double-buffering

• application of data-flow analysis to streams of records

• use of a profile of the stream program to allow efficient allocation of on-chip
memory
7

• a method for estimating batch size when stripmining stream programs

• a software-pipelining algorithm for covering sequential memory latency in
stream programs

Stream scheduling combines the performance benefits of managing on-chip memory

explicitly with much of the ease of an implicit on-chip memory like a cache.

1.3 Thesis Roadmap
This thesis is organized into a series of chapters that present background material, describe

the components of the Imagine programming system, and evaluate their performance.

Each of these chapters is briefly summarized in the remainder of this section.

Chapter 2 presents background on VLIW scheduling, streams, and the Imagine Media

Processor. In particular, it discusses the limitations of prior VLIW scheduling techniques

for multiple register file architectures, describes prior uses of the concept of streams, and

provides an overview of the Imagine architecture.

Chapter 3 introduces an implementation of the stream programming model. It describes

how the stream programming model divides a media processing application into a stream

program and one or more kernels. It provides an overview of StreamC, a programming

language extension used in combination with C++ to write stream programs, and KernelC,

a C-like language used to write kernels.

Chapter 4 introduces communication scheduling, and describes how it allocates shared

interconnect resources and manages data transfers between multiple register files and

functional units. Chapter 5 presents the KernelC compiler, which uses communication

scheduling to compile KernelC for Imagine.

Chapter 6 introduces stream scheduling, and describes how it allocates space in a stream

register file and manages the loading and storing of streams for applications written using

the stream programming model. Chapter 7 presents the StreamC compiler, which uses

stream scheduling to compile StreamC for Imagine.
8

Chapter 8 presents a quantitative evaluation of the KernelC and StreamC compilers, with

emphasis on communication scheduling and stream scheduling. It describes a testing

methodology and a set of benchmarks for each compiler, then presents and analyzes the

results obtained by applying the methodology to the benchmarks.

Finally, Chapter 9 summarizes this thesis and discusses future areas of exploration.
9

10

Chapter 2

Background

This chapter presents background for the programming system described in this thesis. It

provides an overview of VLIW scheduling algorithms, and discusses the limitations of

existing algorithms when applied to architectures with multiple register files and shared

interconnect. It describes prior uses of the concept of streams, which have primarily

involved adding hardware to accelerate memory access. Lastly, it presents an overview of

the Imagine Media Processor Architecture.

2.1 VLIW Scheduling
A very long instruction word (VLIW) scheduler takes a set of operations and produces a

schedule that specifies which operations to issue to which functional unit on a given cycle.

The key problems in VLIW scheduling are finding enough parallel operations, and sched-

uling those operations to occur on a particular functional unit on a particular cycle in a

way that effectively utilizes this parallelism. There are two approaches to increasing the

number of parallel operations: expand the size of the region of operations that can be

scheduled beyond a basic block, and transform the operations within a basic block to

increase parallelism. The first approach is used by trace scheduling [15], which schedules

a series of basic blocks that are likely to occur in sequence, and superblock scheduling

[21], which schedules multiple basic blocks with a single entry point but multiple exit

points. The second approach is used by loop unrolling [29], which duplicates a loop body

allowing multiple iterations to overlap and software pipelining [28][41], which divides a
11

loop into stages and then overlays the stages so that successive iterations can occur simul-

taneously.

The second key problem, assigning operations to functional units and scheduling them to

be issued as part of a particular cycle, is NP-complete. A variety of heuristic VLIW sched-

uling methods have been developed. Most algorithms, such as Bottom-Up-Greedy (BUG)

perform these tasks using separate phases [5][10][12][32][38]. Typically, each operation is

first assigned to a functional unit. Operations are then assigned to cycles using a top-down

or bottom-up traversal of an acyclic version of the data dependency graph. The earliest

cycle on which an operation can be issued is the cycle after the last operation it is depen-

dent on completes (or visa versa in the case of a bottom-up traversal). However, the multi-

phase approach either imposes constraints on the scheduling process by preassigning

operations to functional units, or visa versa. For instance, two operations may be assigned

to the same functional unit ahead of time. During scheduling, it may be desirable to sched-

ule both operations on the same cycle. Under a multi-phase approach this is not possible

even if there is more than one functional unit available. In contrast, Unified Assign and

Schedule (UAS) [40] assigns operations to functional units and cycles in a single phase.

UAS attempts to assign each operation to the earliest possible cycle. If an appropriate

functional unit is available on that cycle then UAS assigns the operation to that functional

unit. Otherwise, it delays it until the next earliest cycle, and so on.

Prior VLIW scheduling algorithms have concentrated on architectures with either a single

register file architecture or a clustered register file architecture. In a single register file

architecture, all functional units are connected to the same register file by dedicated inter-

connect. Every functional unit always reads from and writes to the same register file, so

assigning operations to functional units is sufficient. In a clustered register file architec-

ture, functional units are grouped into clusters and all functional units in a cluster are con-

nected to the same register file by dedicated interconnect. Values can be transferred

between cluster register files across global buses by means of copy operations. For these

architectures, VLIW scheduling also needs to add and schedule a copy operation when the

operation that computes a value and an operation that uses it are assigned to functional
12

units in different clusters. UAS and the multiphase algorithm presented in [38] both target

clustered register file architectures.

Some scheduling algorithms target specific architectures that take incremental steps

beyond a clustered register file architecture. The polycyclic compiler [42] targets an archi-

tecture that allows functional units to read from/write to multiple register files, but pro-

vides a dedicated register file between every functional unit output and every functional

unit input to avoid resource conflicts. The Cydra5 [9] compiler targets architectures in

which each functional unit input can read from multiple register files, but provides each

input with a dedicated bus and a dedicated register file port to access each register file.

Both the polycyclic and Cydra5 architectures allow the compiler to consider only func-

tional units when scheduling operations, with all shared interconnect allocated implicitly.

The TMS320C6x compiler [48] targets an architecture with two cluster register files that

includes a small number of cross-cluster buses, but which still provides each functional

unit input and output with a dedicated bus and register file port to access its cluster register

file. This architecture guarantees a conflict-free way to read operands and write results,

allowing the compiler to use a version of the slack scheduling algorithm for clustered

architectures presented in [20] that is modified to be single-phase for better performance.

Distributed modulo scheduling [14], another single-phase scheduling algorithm, targets a

clustered register file architecture that places special communication queue register files

between adjacent clusters. (“distributed” does not refer to the distributed register file

architecture used by Imagine). It uses a modified modulo scheduling algorithm that tries to

schedule communicating operations on the same or adjacent clusters so that it can use

these communication queue register files to avoid the need for copy operations. It adds

copy operations if it unable to schedule communicating operations on adjacent clusters,

and backtracks if all else fails. The Multiflow compiler [32] targets architectures with

some shared interconnect using a multiphase algorithm based on BUG that assigns opera-

tions to functional units before scheduling.

A few scheduling algorithms address unique architectures that include shared interconnect

but add special purpose hardware to handle conflicts. Transport-triggered architectures
13

(TTA) [19] place a special register (not a register file) at each input and output of func-

tional unit, then connects these special registers with shared buses. The TTA compiler

resolves conflicts by delaying a result in the register at the functional unit output as long as

necessary, which stalls other operations in that functional unit’s pipeline. The RAW

machine [31] consists of a grid of connected tiles each containing one functional unit. It

uses small routers between tiles to handle conflicts.

2.2 Streams
A stream is a sequence of data records defined by a regular access pattern. For example,

the simplest access pattern is constant stride, in which records are separated by a fixed

amount. Though some work on automatically converting regular access patterns into

streams has been done [3], most implementations require manual specification of streams

in the program [2][6][35].

Several hardware optimizations have taken advantage of the concept of streams. At a

hardware level streams offer the potential to hide latency by allowing data to be loaded in

advance of execution, optimize memory access patterns by reordering accesses, compact

data within a cache, and enable higher bandwidth access to on chip-data. The WM archi-

tecture [3] separates memory access from computation by routing all loads and stores

through FIFOs, then supports stream accesses that load or store all records in a stream to

or from a FIFO. The Stream Memory Controller [35] uses FIFO stream buffers in parallel

with a cache. The records that compose a stream can be sequentially read from or written

to these buffers, bypassing the cache. The Impulse Memory Controller [6] implements two

optimizations based on streams that work with a conventional cache. First, it adds an extra

stage to address translation that remaps the records in a stream into a sequential series of

addresses in unused address space, allowing it to be stored as compactly as possible in the

cache. Second, it uses the stream’s access pattern to perform prefetching. The DataS-

treamer [2] in the Equator MAP-CA architecture allows the programmer to load or store a

block of data and into or out of the cache independent of the main thread of execution.
14

2.3 Imagine Media Processor
The Imagine Media Processor is designed to process streams [25][43][45]. Imagine works

in conjunction with a conventional host processor that executes a scalar application and

sends operations to Imagine. Imagine, shown in Figure 2-1, consists of five major compo-

nents. The stream controller/host interface, numbered 1 in Figure 2-1, receives operations

from the host and issues them to the components of Imagine. It also transfers streams

between Imagine and the host. The stream register file, numbered 2 in Figure 2-1, contains

the current working set of streams. The memory system, numbered 3 in Figure 2-1, loads

and stores streams to and from off-chip memory. The processor core, numbered 4 in Fig-

ure 2-1, processes streams. Each of these four components is described in more detail

below. The fifth component, the network interface, sends and receives streams to and from

a high-speed network. It is not shown and is outside the scope of this thesis.

2.3.1 Stream controller/host interface
The stream controller/host interface receives Imagine operations from the host and issues

them to the components of Imagine. Imagine operations include loading, storing, or trans-

ferring a stream, executing a kernel (a small program that has streams as inputs and out-

puts), and reading or writing a control register such as an SDR or MAR (see below). The

stream controller contains an operation buffer into which the host processor can write

Imagine operations and information about dependencies between operations. The stream

controller then issues these operations to the appropriate Imagine component. It can issue

the operations out-of-order, subject to dependency constraints. The stream controller/host

interface also transfers streams between the host processor and Imagine.

2.3.2 Stream register file
The stream register file (SRF) contains the current working set of streams. The SRF is a

very wide single-ported memory. Despite being single-ported, it effectively supports

simultaneous access to different streams by multiple clients by writing or reading a very

wide word containing a portion of the stream into or out of a buffer dedicated to a particu-

lar client on each cycle. The client then writes or reads data into or out of the buffer at a

lower granularity as often as every cycle. The location and length of a stream in the SRF is
15

stored in a stream descriptor register (SDR) in the SDR register file. Imagine operations

specify which streams they operate on by referring to the appropriate SDR.

2.3.3 Memory system
The memory system loads and stores streams to and from off-chip memory. The memory

system consists of the Memory Access Register (MAR) register file and two memory con-

FIGURE 2-1. Imagine Media Processor

Off-chip
memory

Memory
controller

Memory
controller

Stream
register file 8

Processing
elements

Imagine

SDR
register file

MAR
register file

Microcode
store

Stream controller/
host interface

Micro-
controller

Imagine
operation

buffer

Host
processor

2

1

3

4

16

trollers. Each MAR contains the start address in memory and access pattern for a stream.

Each memory controller is capable of loading or storing a stream between a location in the

SRF described by an SDR and a location in memory described by an MAR.

2.3.4 Processor core
Imagine’s processor core executes small programs called kernels on eight identical pro-

cessing elements. It consists of the eight SIMD processing elements, the microcontroller,

and the microcode store. The eight processing elements operate in a SIMD fashion; each

processing element executes the same set of operations each cycle. However, the process-

ing elements are physically distinct and operate on full word data types. Each processing

element contains eight functional units and multiple local register files. The ALUs within

a processing element also support segmented operations on 16-bit or 8-bit data. Since the

processing elements operate in SIMD fashion, the single microcontroller can decode and

issue instructions to all eight processing elements. The microcontroller reads instructions

from the on-chip microcode store. It also contains a small register file that holds special

microcontroller variables used to pass arguments between the host processor and Imagine.

2.4 Summary
This chapter presented background for the programming system described in this thesis.

First, it provided an overview of VLIW scheduling algorithms and discussed the limita-

tions of the register file architectures these algorithms target, and some common optimiza-

tions. Next, it summarized the concept of streams and the hardware optimizations that

have been developed to take advantage of streams. Lastly, it presented an overview of the

major components of Imagine Media Processor: the stream controller/host interface,

stream register file, memory system, and processor core.
17

18

Chapter 3

Stream Programming Model

This chapter presents an implementation of the stream programming model [43], a pro-

gramming model for media processors. General purpose programming languages are not

well suited to media processing applications. They emphasize expressiveness and flexibil-

ity, allowing development of a wide range of applications. However, their lack of a consis-

tent structure obscures the high-level data flow and memory access patterns, which makes

high-level optimizations difficult. Their abundant low-level control divides programs into

many small basic blocks, limiting instruction level parallelism. This implementation of the

stream programming model provides a consistent structure that is specialized for media

processing applications. This structure makes high-level data flow and memory access

patterns explicit. It also limits low-level control flow. The stream programming model

divides a media processing application into a stream program that specifies the high-level

structure of the application and one or more kernels that define each processing step. Each

kernel is a function that operates on streams, sequences of records. This chapter describes

StreamC, a set of classes and functions used in combination with C++ to write stream pro-

grams, and KernelC, a simple programming language used to write kernels. The steam

program is executed on a host processor; the computation intensive kernels are executed

on Imagine.

This chapter consists of three sections. Section 3.1 presents an overview of the stream pro-

gramming model. Section 3.2 presents KernelC. Section 3.3 presents StreamC.
19

3.1 Overview
The stream programming model divides a media processing application into one or more

kernels and a stream program as depicted in Figure 3-1. A kernel is a computation inten-

sive function that operates on sequences of records called streams. Each kernel takes

streams of records as input and produces streams of records as output. Kernels are written

using a C-like language called KernelC. The stream program declares the streams and

defines the high-level control- and data-flow between kernels. Stream programs are writ-

ten using a programming language extension called StreamC intermixed with C++.

Figure 1-3 graphically depicts a simplified polygon rendering application written using

the stream programming model. The application is structured as a stream program that

declares three streams: triangles, spans (lines of pixels), and fragments (pixels), and calls

two kernels. The first kernel takes a stream of triangles as input and produces a stream of

spans as output, the second kernel takes the stream of spans produced by the first kernel as

input and produces a stream of fragments as output.

The implementation of the stream programming model described in this chapter can be

thought of as a code transformation on programs that consist of a series of loops that pro-

cess arrays of records. The access pattern of each loop with respect to each array is

FIGURE 3-1. Stream programming model

Stream
Program

Kernel
Streams

Kernel
20

extracted into one or more streams, and the computation performed by each loop is encap-

sulated inside a kernel. The remaining code composes the stream program. In reality, most

applications need to be restructured to make efficient use of the stream programming

model but this code transformation serves as a useful starting point.

Figure 3-3 shows an example of example of a conventional program and the correspond-

ing stream program and kernel. The conventional code consists of a loop that reads all

records from the arrays a and b and writes the even records in the array c. The correspond-

ing stream program declares four streams: three that correspond to the three arrays and a

fourth, cEven, that refers to the even records in the stream c. The stream cEven is specified

as a subset of the stream c that starts with record 0 and ends at record 512, with a stride, or

fixed interval between records, of 2. After declaring the streams, the stream program then

calls a kernel that processes the streams a and b to produce the stream cEven. Scalar argu-

ments to the kernel such as uc_amul and uc_bmul are encapsulated as microcontroller

(“uc”) variables. The kernel is declared as taking two input streams (“istreams”), one out-

put stream (“ostream”) and two microcontroller variables as arguments. If first reads the

values of the microcontroller variables, then loops over the records in the input streams

FIGURE 3-2. Simplified polygon rendering using stream programming model

kernel

stream
program

span
convert

rasterize

stream
21

computing records in the output stream. This stream program and kernel are explained in

detail in the remainder of this chapter.

Conventional program:

void main()
{
 int a[256];
 int b[256];
 int c[512];
 int amul = 2;
 int bmul = 3;
 ...
 for (int i = 0; i < 256; i++) {
 if (a[i] > 0) {
 c[i * 2] = a[i] * amul;
 } else {
 c[i * 2] = b[i] * bmul;
 }
 }
 ...
}

Stream Program:

void main()
{
 stream<int> a(256);
 stream<int> b(256);
 stream<int> c(512);
 stream<int> cEven =
 c(0, 512, FIXED, STRIDE, 2)
 uc<int> uc_amul = 2;
 uc<int> uc_bmul = 3;
 ...
 example1(a, b, cEven,
 uc_amul, uc_bmul);
 ...
}

Kernel:

KERNEL example1(istream<int> a,
 istream<int> b,
 ostream<int> c,
 uc<int> uc_amul,
 uc<int> uc_bmul)
{
 int amul = ucRead(uc_amul);
 int bmul = ucRead(uc_bmul);
 loop_stream(a) {
 int ai, bi, ci;
 a >> ai;
 b >> bi;
 ci = select(ai > 0,
 ai * amul,
 bi * bmul);
 c << ci;
 }
}

FIGURE 3-3. Code transformation to stream programming model
22

3.2 KernelC
Kernels are written using a language called KernelC, which uses a limited C-like syntax.

Figure 3-4 gives an abbreviated definition of KernelC. The purpose of this definition is to

summarize the language; it includes minor changes to the actual syntax and omits some

non-essential details. KernelC is more restrictive than C. It does not allow global vari-

ables, pointers, function calls, or control-flow constructs other than loops. However, it can

be compiled more efficiently and retains considerable flexibility. KernelC has four impor-

tant features:

• Structured data access: KernelC only allows global data to be accessed through spe-
cial arguments passed to the kernel.

• Limited control flow: KernelC only allows loops, but supports conditional assign-
ments, stream reads, and stream writes.

• Packed data types and DSP math operators: KernelC supports several additional
data types and math operators useful for digital signal processing.

• SIMD processing support: KernelC supports multiple SIMD processing elements.

The remainder of this section discusses each of these features in detail.

3.2.1 Structured data access
KernelC only allows access to global data through arguments to the kernel. All arguments

to the kernel are passed by reference. Writing a record in an output stream or setting the

value of a microcontroller variable changes that record or variable outside of the kernel. A

kernel takes a small number of input streams (“istream”) and output stream (“ostream”)

arguments. The kernel sequentially reads records from the input streams and sequentially

writes records to the output streams using the << and >> operators, respectively. Kernels

also can take special microcontroller (“uc”) variables as arguments, which encapsulate

scalar values. This encapsulation is required because the variables are passed from the

stream program running on the host to the microcontroller that controls execution of the

kernel on Imagine. The kernel reads and writes the microcontroller variables using the

ucRead and ucWrite functions.
23

basic-type:
 int
 unsigned int
 half2
 unsigned half2
 byte4
 unsigned byte4
 float

record-type-definition:
 RECORD record-type { field-definition, ... };

field-definition:
 complex-type id

complex-type:
 basic-type
 record-type

kernel-definition:
 KERNEL identifier (argument, ...) { statement ... }

argument:
 istream<complex-type> istream-id
 ostream<complex-type> ostream-id
 uc<basic-type> uc-id

statement:
 declaration
 assignment
 input
 output
 loop

declaration:
 basic-type id;
 basic-type id = expression;
 record-type id;
 array<basic-type> array-id(constant);
 uc<basic-type> uc-id;
 uc<basic-type> uc-id = constant;
24

assignment:
 lvalue = expression;
 uc-id = ucWrite(PE-index, expression);

lvalue:
 id
 id.id
 array-id[expression]

expression:
 rvalue
 math-expression
 permute(PE-permutation, expression)
 select(expression, expression, expression)
 ucRead(uc-id)

rvalue:
 constant
 id
 id.id
 array-id[expression]

math-expression:
 unary-operator id
 id binary-operator id
 unary-operation(id)
 binary-operation(id, id)

input:
 istream-id >> lvalue;
 istream-id(expression, lvalue) >> lvalue;

output:
 ostream-id << expression;
 ostream-id(expression) << expression;

loop:
 loop-count (uc-id) { statements }
 loop-whileany (expression) { statements }
 loop-whileall (expression) { statements }
 loop-untilany (expression) { statements }
 loop-untilall (expression) { statements }
 loop-stream (istream-id) { statements }

FIGURE 3-4. Abbreviated definition of KernelC
25

Figure 3-5 highlights the data access in the example kernel introduced in Figure 3-3. The

example takes five arguments: two input streams, a and b, an output stream, c, and two

microcontroller variable arguments, uc_amul and uc_bmul. It reads the two microcontrol-

ler variables, uc_amul and uc_bmul, into local variables which it uses repeatedly in the

main loop. On each iteration of the main loop, it reads a record from the input streams a

and b and writes a record to the output stream c. This kernel loops over the stream a, and

assumes that the streams b and c are the same length.

3.2.2 Limited control flow
KernelC limits control flow in order to maximize instruction level parallelism. The only

control flow that KernelC allows are loops. In addition to count, while, and until loops,

KernelC introduces a new looping construct “loop_stream(input stream)” that iterates

until all records have been read from the specified input stream. Instead of if-statements,

KernelC supports conditional assignment using the “select” function (similar to the C ?:

operator) to choose between two values based on a condition. For instance, “select(cond,

x, y)” returns the value of x if cond is true or y if cond is false. It also supports conditional

reads from streams and conditional writes to streams [23]. For instance, “ostream1(cond)

<< x” only writes the value of x to ostream1 if cond is true.

KERNEL example1(istream<int> a,
 istream<int> b,
 ostream<int> c,
 uc<int> uc_amul,
 uc<int> uc_bmul)
{
 int amul = ucRead(uc_amul);
 int bmul = ucRead(uc_bmul);
 loop_stream(a) {
 int ai, bi, ci;
 a >> ai;
 b >> bi;
 ci = select(ai > 0,
 ai * amul,
 bi * bmul);
 c << ci;
 }
}

FIGURE 3-5. Example with data access highlighted
26

Figure 3-6 highlights the limited control flow in the example kernel. It loops over the input

stream a until all records in the stream have been read. It uses a select statement to deter-

mine the output each iteration. If ai is greater than 0, it outputs ai multiplied by amul, oth-

erwise it outputs bi multiplied by bmul.

3.2.3 Additional data types and math operators
KernelC adds packed data types and DSP math operations. KernelC includes two new

packed data types: (unsigned) byte4, four bytes packed into one 32-bit word, and

(unsigned) half2, two 16-bit half-words packed into one 32-bit word. Operations per-

formed on these packed data types affect each of the packed components in a SIMD fash-

ion. KernelC also includes various mathematical operations that are useful for signal- and

image processing such as saturating add and subtract.

The simple kernel shown in Figure 3-7 uses packed data types and saturating addition to

brighten an 8-bit grayscale image. The single saturating add operation increments four 8-

bit pixel values by the value of mod (which, in the context of this kernel, must contain the

same value in each byte.)

KERNEL example1(istream<int> a,
 istream<int> b,
 ostream<int> c,
 uc<int> uc_amul,
 uc<int> uc_bmul)
{
 int amul = ucRead(uc_amul);
 int bmul = ucRead(uc_bmul);
 loop_stream(a) {
 int ai, bi, ci;
 a >> ai;
 b >> bi;
 ci = select(ai > 0,
 ai * amul,
 bi * bmul);
 c << ci;
 }
}

FIGURE 3-6. Example with limited control flow highlighted
27

3.2.4 SIMD processing support
KernelC supports Imagine’s eight SIMD processing elements. All eight processing ele-

ments execute a kernel in parallel. Every cycle, all processing elements execute the same

operations on different data. Each processing element reads every eighth record from the

input stream(s) and writes every eighth record to the output stream(s). For example, pro-

cessing element 3 reads or writes records 3, 11, 19, etc. from or to each stream.

The permute operation is used to explicitly interchanges values between processing ele-

ments. The permute operation takes a constant describing the permutation and the value to

be permuted as arguments. The permutation is an integer in which the nth nibble specifies

the index of the processing element from which the nth processing element gets the value

of the permuted variable. For instance, “permute(0x65432107, x)”, rotates the value of x

in each of the processing elements to the left by specifying that processing element 7 gets

the value from processing element 6, and so on.

Microcontroller variables, which encapsulate scalar arguments passed from the host pro-

cessor to the microcontroller, are not replicated across Imagine’s eight processing ele-

ments. The ucWrite function, which is used to write a value from one of the processing

elements to a microcontroller variable takes two arguments, the index of the processing

element to read the value from, and the value. For instance, “uc_x = ucWrite(0, x)” writes

the value of x in processing element 0 to the microcontroller variable uc_x.

KERNEL brighten(istream<unsigned byte4> in,
 ostream<unsigned byte4> out,
 uc<unsigned byte4> uc_mod)
{
 unsigned byte4 mod = ucRead(uc_mod);
 loop_stream(in) {
 unsigned byte4 ini, outi;
 in >> ini;
 outi = addsat(ini, mod);
 out << outi;
}

FIGURE 3-7. Kernel to brighten an 8-bit grayscale image
28

The simple kernel shown in Figure 3-8 computes the sum of a stream of integers. First, it

loops through the stream and sums all of the integers processed by each processing ele-

ment. Next, it adds the totals in the processing elements together in a tree-like fashion. The

kernel adds the total in each processing element to the total one processing element to the

left, then adds that total to the total two processing elements to the left, then adds that total

to the total four processing elements to the left. Lastly, it writes the final total in process-

ing element 0 to a microcontroller variable.

3.3 StreamC
Stream programs are written using a small number of classes and functions collectively

called StreamC that are intermixed with arbitrary C++. The StreamC functions, which

consist of kernel calls and functions to copy and transfer streams, are compiled for execu-

tion on Imagine by the StreamC compiler as described in Chapter 6. StreamC includes the

following components:

• stream class
• microcontroller variable class
• kernels exposed as functions
• functions for copying streams and transferring data between streams and arrays
• conventions for specifying data-dependent streams and control flow

KERNEL sumStream(istream<int> in,
 uc<int> uc_total)
{
 int total = 0;
 loop_stream(in) {
 int ini;
 in >> ini;
 total = total + ini;
 }
 total = total + permute(LROTATE, total);
 total = total + permute(LROTATE2, total);
 total = total + permute(LROTATE4, total);
 uc_total = ucWrite(0, total);
}

FIGURE 3-8. Kernel to sum a stream of integers
29

Figure 3-9 shows the C++ declarations for these components. The StreamC presented in

Figure 3-9 is a cleaner version of the actual implementation of StreamC and is used

throughout this thesis for clarity and as a basis for future implementations. Each of these

components is discussed in more detail in the remainder of this section.

// 1. Streams

enum AccessPatternEnum { SEQUENTIAL, STRIDED, INDEXED };

template<class type>
class stream {
 public:
 stream()
 // basic stream
 stream(int _size,
 DataDependenceEnum _dataDependence = FIXED);

 // sequential derived stream (default)
 stream<type> operator()(
 int _start, int _end, DataDependenceEnum _dataDependence = FIXED,
 AccessPatternEnum _accessPattern = SEQUENTIAL,
 int _recordLengthOverride = 1);

 // strided derived stream
 stream<type> operator()(
 int _start, int _end, DataDependenceEnum _dataDependence,
 AccessPatternEnum _accessPattern, int _stride,
 int _recordLengthOverride = 1);

 // indexed derived stream
 stream<type> operator()(
 int _start, int _end, DataDependenceEnum _dataDependence,
 AccessPatternEnum _accessPattern, stream<int> _index,
 int _recordLengthOverride = 1);

 int getLength();
};

// 2. Microcontroller variables

template<class type> class uc {
 public:
 uc<type>()
 uc<type> operator=(const type rvalue);
}

template<class type> type ucRead(uc<type>& uc);

// 3. Kernels

// kernels exposed as C++ functions, varies with application
// example:
void example1(istream<int>& a, istream<int>& b, ostream<int>& c,
 uc<int>& uc_amul, uc<int>& uc_bmul);
30

3.3.1 Streams
The stream class can be used for two kinds of streams, basic streams and derived streams.

A basic stream is an array of records. A basic stream is defined by a size as shown in Fig-

ure 3-10. A derived stream is a reference to a subset of the records in a basic stream. A

derived stream defined by a basic stream and a start, end, and access pattern within that

stream as shown in Figure 3-11. The start is the index of the first record in the stream. The

end is the index of the record after the last record that could be in the stream. The access

pattern defines which records between the start and the end are in the stream. Both stream

definitions also include a data dependence parameter. The data dependence parameter is

used to annotate streams with characteristics that vary depending on the data being pro-

cessed. It is described in Section 3.3.5.

// 4. Copies and transfers

template<class type>
void streamCopy(stream<type>& streamFrom, stream<type>& streamTo);

template<class type>
void streamLoadBin(stream<type>& stream, type* array, int length);

template<class type>
void streamSaveBin(stream<type>& stream, type* array);

// 5. Data-dependence annotations

enum DataDependenceEnum { FIXED, VARIABLE_LENGTH, VARIABLE_BOUNDS };

// macros used to note entry and exit into/out of control-flow
// that depends on the data being processed
#define if_VARIABLE ...
#define while_VARIABLE ...
#define for_VARIABLE ...

FIGURE 3-9. C++ declarations for StreamC components

stream<type> name(size, dataDependence);

FIGURE 3-10. A basic stream is an array of records

basic stream
31

Conceptually, an access pattern can define any series of records. In reality, only a few

access patterns are useful enough to be supported in hardware. The three most common

access patterns are: sequential, strided, and indexed, depicted in Figure 3-12 through Fig-

ure 3-14. A sequential stream refers to all records from the start record up to, but not

including, the end record. A strided stream refers to records separated by a constant offset

called the stride. It refers to every strideth record from the start record up to the end record

(i.e. start, start + stride, start + 2*stride, etc.). An indexed stream accesses records at off-

sets given by a stream of integers called the index stream. An indexed stream includes one

record for each value in the index stream, at an offset from the start equal to that value (i.e.

start + first index, start + second index, etc.). Since the effective access pattern of an

indexed stream depends entirely on the index values it can provide any desired access pat-

tern.

The example stream program introduced in Figure 3-3 contains three basic stream declara-

tions and one derived stream declaration, all highlighted in Figure 3-15. The basic streams

a and b contain 256 records. The basic stream c contains 512 records. The derived stream

cEven refers to the even records in the basic stream c. It is specified with a start of 0, an

end of 512, and a strided access pattern with a stride of 2. This derived stream replaces a

conventional array access in which a loop index is multiplied by two.

stream<type> name = basic-stream(start, end, dataDependence, access-
pattern);

FIGURE 3-11. A derived stream is a subset of the records in a basic stream defined
by a start, end, and access pattern

basic stream

access pattern

derived stream

start end
32

A derived stream can also be defined in terms of another derived stream. Internally, the

start, end, and stride of the new derived stream are recalculated in terms of the underlying

FIGURE 3-12. Sequential access pattern includes every record

FIGURE 3-13. Strided access pattern includes every strideth record

FIGURE 3-14. Indexed access pattern includes records with positions given by
index stream

void main()
{
 stream<int> a(256);
 stream<int> b(256);
 stream<int> c(512);
 stream<int> cEven =
 c(0, 512, FIXED, STRIDE, 2)
 uc<int> uc_amul = 2;
 uc<int> uc_bmul = 3;
 ...
 example1(a, b, cEven,
 uc_amul, uc_bmul);
 ...
}

FIGURE 3-15. Example with streams highlighted

sequential

start end

strided (stride = 3)

start end

6 5 9 7 3indexed (index stream =)

start end
33

basic stream. As a simple example, if a new stream with a start of 5 is defined in terms of

an old stream with a start of 10, it actually has a start of 15 in terms of the underlying basic

stream. More specifically, the start of the new stream is multiplied by the stride of the old

derived stream since each record in the old stream is separated by the stride, then added to

the start of the old stream since the first record in the old stream is offset by that amount.

To avoid multiple levels of indirection, indexed streams can only be derived in terms of

sequential streams, and streams cannot be derived from indexed streams.

Figure 3-16 shows a graphical table that illustrates this concepts. The first column con-

tains a stream definition. The second column shows how the records in that stream corre-

spond to records in a basic stream. The first declaration is of the basic stream x. It refers to

an array of eight integer records. The second declaration is of the derived stream y that

accesses every odd record of x. The third declaration is of the derived stream z that

accesses every odd record in y. The stream z is remapped to x, the underlying basic stream

of y. The actual start of z is equal to the specified start times the stride of y plus the start of

y = (1 * 2) + 1 = 3. The end and stride are remapped similarly. Z maps to every fourth

record of the underlying basic stream x, starting with record 3.

The derived stream definition also takes an optional parameter, recordLengthOverride,

which overrides the length of a record to force the stream to treat multiple records as a sin-

gle record. For instance, this parameter can be used to access a 2D block of an image by

overriding the record length with the width of the block and specifying a stride equal to

the width of the image. Each row of the block is then treated as a single record.

3.3.2 Microcontroller variables
StreamC uses microcontroller variables to pass scalar arguments to kernels. A microcon-

troller variable encapsulates a single integer or floating point variable. The value of a

microcontroller variable can be set in a stream program using standard assignment. When

a kernel is called with a microcontroller variable as an argument, its current value is sent

to the microcontroller on Imagine. The stream program can only read the new value of the
34

microcontroller variable computed by the kernel using the ucRead function, which pauses

execution of the stream program until the kernel finishes.

Figure 3-17 shows an extended version of the example that includes a call to the sum-

Stream kernel defined in Figure 3-8, with the uses of microcontroller variables high-

lighted. The kernel example1 takes two microcontroller variable arguments uc_amul and

uc_bmul, which are set using standard assignment. The kernel sumStream takes a micro-

controller variable argument uc_sum which is read using the ucRead function.

3.3.3 Kernels
Kernels are called in StreamC just like normal functions that take streams and microcon-

troller variables as arguments. All arguments to kernels are passed by reference. Figure 3-

18 highlights the kernel call in the example.

FIGURE 3-16. Derived streams mapped to the underlying basic stream

Basic Stream Mapping

endstart

start end

Stream<int> x(8);

Stream<int> y(x, 1, 8,
 FIXED, STRIDE, 2);

Stream<int> z = y(1, 4,
 FIXED, STRIDE, 2);

Stream Declaration

//equivalent to:
//Stream<int> z = x(3, 8,
// FIXED, STRIDE, 4);

x

y

y

z

x

end

x

start

z
end

x

start
35

3.3.4 Stream copies and transfers
In addition to Kernels, StreamC includes several functions used to copy data between

streams and transfer data between arrays and streams. The streamCopy function reads all

of the records from one stream and writes them to another stream. The streamLoadBin

function copies a specified number of records from an array to a stream. The streamSave-

Bin function copies records from a stream to an array of records. Figure 3-19 summarizes

these functions.

void main()
{
 stream<int> a(256);
 stream<int> b(256);
 stream<int> c(512);
 stream<int> cEven =
 c(0, 512, FIXED, STRIDE, 2);
 uc<int> uc_amul = 2;
 uc<int> uc_bmul = 3;
 ...
 example1(a, b, cEven,
 uc_amul, uc_bmul);
 ...
 uc<int> uc_sum;
 sumStream(c, uc_sum);
 int sum = ucRead(uc_sum);
 ...
}

FIGURE 3-17. Extended example with microcontroller variables highlighted

void main()
{
 stream<int> a(256);
 stream<int> b(256);
 stream<int> c(512);
 stream<int> cEven =
 c(0, 512, FIXED, STRIDE, 2);
 uc<int> uc_amul = 2;
 uc<int> uc_bmul = 3;
 ...
 example1(a, b, cEven,
 uc_amul, uc_bmul);
 ...
}

FIGURE 3-18. Kernel call in example
36

Figure 3-20 shows a simple stream program that copies records from an array to a stream,

then to another stream, and finally back to an array.

3.3.5 Data-dependence annotations
The StreamC compiler described in Chapter 6 requires the programmer to set the data

dependence argument in the definition of a stream if it is used to hold the output of a ker-

nel that produces a varying number of records, or is a derived stream with a start or end

that varies depending on the data being processed. The data dependence argument can be

either fixed (the default), variable length, or variable bounds. A fixed stream has the same

definition regardless of the data being processed. A variable length stream is used to hold

the output of a kernel that produces a varying number of records. For instance, a kernel

might rasterize a stream of triangles into a varying number of pixels. When a kernel writes

a variable length stream, it updates the length of the stream to reflect the actual number of

records it contains. The getLength() method is used in the stream program to determine

Function Description

streamCopy(
 stream<type> fromStream,
 stream<type> toStream)

copies records from one stream to another

streamLoadBin(
 stream<type> toStream,
 char* fromPtr, int length)

copies records from an array to a stream

streamSaveBin(
 stream<type> fromStream,
 char* toPtr)

copies records from a stream to an array

FIGURE 3-19. Copies and transfers

void main()
{
 int array1[256];
 int array2[256];
 stream<int> stream1(256);
 stream<int> stream2(256);
 streamLoadBin(stream1, array1, 256);
 streamCopy(stream1, stream2);
 streamSaveBin(stream2, array2);
}

FIGURE 3-20. Simple example of stream copies and transfers
37

the number of records in such a stream. A variable bounds stream is a derived stream with

a start or end that depends on the data being processed. For instance, the location of a ref-

erence block within an image might vary, so a stream used to access that block would have

variable bounds.

StreamC also requires that all control flow that depends on the data being processed be

explicitly annotated. If the number of iterations of a loop or the execution of an if state-

ment depends on the data being processed, that loop or if statement is annotated as shown

in Figure 3-21.

Figure 3-22 shows a simple program that recirculates a stream of records through a kernel

until all records have reached a final state. The number of iterations required depends on

the actual records, so the while loop is marked as data-dependent. The number of records

that still need to be recirculated and the number of records that are finalized each iteration

varies, so the streams remainingRecs and newFinalRecs are variable length. The newly

finalized records need to be appended to the end of the records finalized on previous itera-

tions. Thus, the stream newFinalRecs has a data-dependent start within the accumulated

stream finalRecs and is also variable bounds.

data-dependent loops:

while_VARIABLE(...) {
 // loop body
}

for_VARIABLE(...) {
 // loop body
}

data-dependent if:
if_VARIABLE(...) {
 // if body
}

FIGURE 3-21. Data dependent control flow annotations
38

3.4 Summary
This chapter presented an implementation of the stream programming model. It described

how the stream programing model structures a media processing application as a stream

program and one or more kernels that operate on streams of records. It introduced

StreamC, a set of classes and functions used in combination with C++ to write stream pro-

grams, and KernelC, a simple programming language used to write kernels.

Though designed for stream processors, this implementation of the stream programming

model provides a consistent structure for media processing applications that can be effi-

ciently mapped to other platforms. It makes the high-level control and data flow explicit,

opening the door for powerful compiler optimizations even on general purpose processors.

stream<Rec> remainingRecs(MAX_RECS, VARIABLE_LENGTH);
stream<Rec> finalRecs(MAX_RECS);
...
int finalRecCount = 0;
while_VARIABLE(remainingRecs.getLength() > 0) {
 stream<Rec> newFinalRecs = finalRecs(finalRecCount, MAX_RECS,
 VARIABLE_LENGTH | VARIABLE_BOUNDS);
 processRecs(remainingRecs, // inputs
 newFinalRecs, remainingRecs); // outputs
 finalRecCount += newFinalRecs.getLength();
}
...

FIGURE 3-22. Example of data dependence annotations
39

40

Chapter 4

Communication Scheduling

This chapter presents communication scheduling [34], a new component of VLIW sched-

uling that enables scheduling to shared interconnect architectures in which some or all

functional unit inputs or outputs are connected to multiple registers files by shared buses

and register file ports. Communication scheduling assigns each communication, the logi-

cal transfer of the result of one operation for use as a specific operand of another opera-

tion, to a route that defines the interconnect resources used to transfer the value between

functional units.

Scheduling to shared interconnect architectures is difficult because it requires simulta-

neously allocating functional units to operations and buses and register file ports to the

communications between operations. Communication scheduling solves this problem by

incrementally composing a route for each communication from three components: a write

stub that defines how the result is written to an initial register file, zero or more copy oper-

ations to move the value between register files, and a read stub that defines how the oper-

and is read from the final register file. When the first operation is scheduled, the first stub

is tentatively allocated. When the second operation is scheduled, both stubs are allocated

and any required copy operations are scheduled. This composition allows the communi-

cating operations to be scheduled independently while ensuring that the interconnect

resources will be available to complete the communication.
41

This chapter is divided into four sections. Section 4.1 presents the motivation for commu-

nication scheduling. Section 4.2 presents an overview of the communication scheduling

process and defines required terminology. Section 4.3 presents the communication sched-

uling algorithm. Section 4.4 discusses implementation of communication scheduling.

4.1 Motivation
A VLIW scheduler assigns each operation to a functional unit and schedules it on a partic-

ular cycle; communication scheduling allocates the interconnect resources the operation

uses to read its operands and write its result. In a conventional, single register file architec-

ture every functional unit input and output is connected to the same register file by a dedi-

cated bus and register file port. All functional units read operands from and write results to

the same register file, and can always do so without bus or register file port conflicts. The

scheduler only needs to assign each operation to a functional unit and schedule it on a

cycle. In a shared interconnect architecture, multiple functional unit inputs or outputs

share buses connected to multiple register files. The scheduler needs to specify which reg-

ister file to read each operand from, which register file (or multiple register files) to write

each result to, and which shared buses and register file ports to use for doing so. Some-

times, the scheduler needs to insert copy operations to move a value from one register file

to another. Communication scheduling extends a VLIW scheduler to handle these addi-

tional requirements. It ensures that each result is available to operations that use it as an

operand, and avoids bus or register file conflicts when reading operands and writing

results.

Scheduling the code fragment shown in Figure 4-1 for the single register file architecture

shown in Figure 4-2 only requires assigning operations to functional units and scheduling

them on cycles. Figure 4-3 is a graphical schedule1 that illustrates all functional unit, inter-

connect, and register file activity on each cycle. It shows how each functional unit always

reads its inputs from and writes its outputs to the same register file using the same dedi-

1. For illustrative purposes, all operations have unit latency.
42

cated interconnect. All functional units access the same register file, so every functional

unit can access all data.

1: a = load ...
2: b = ... + ...
3: c = ... + ...
4: ... = a + b
5: ... = a + c

FIGURE 4-1. Example code fragment

FIGURE 4-2. Single register file architecture

FIGURE 4-3. Schedule for single register file architecture

ADD0 L/S ADD1

all inputs and
outputs have

dedicated
buses and RF

ports

all FUs
read from

and write to
same RF

1: b =
... + ...

2: a =
load ...

3: c =
... + ...

5: ... =
a + c

4: ... =
a + b

1

Functional Unit
ADD0 L/S ADD1

2

C
yc

le

c
b
a

43

Now consider scheduling the same code fragment on the shared interconnect architecture

shown in Figure 4-4. Though simple and purposefully non-optimal, the architecture

includes all of the features of a shared interconnect architecture that require communica-

tion scheduling. Each adder output and the load/store unit output is connected by a shared

bus to two register files. Both of the shared buses can drive the shared write port of the

center register file. The scheduler specifies which driver drives each shared interconnect

resource. Unlike a single register file architecture, all functional units cannot access all

register files, so copy operations may be required to move values between register files.

The graphical schedule shown in Figure 4-5 illustrates these differences. On each cycle,

the scheduler specifies which functional unit outputs drive the shared buses, and which

bus drives the shared register file port. For example, on cycle 1 adder 0 uses the top shared

bus to write to the left register file, while the load/store unit uses the bottom shared bus to

write to the other two register files (using the shared write port of the middle register file).

Note that operation 3 could not be scheduled on cycle 1 because the three functional unit

outputs share only two output buses. On cycle 2, the scheduler schedules a copy operation

to move a the result of operation 1 from the middle register file to the left register file so

that operation 4 can use it as an operand.

FIGURE 4-4. Shared interconnect architecture

ADD0 L/S ADD1

output can
drive either

or both buses

either bus
can drive

shared port

either output
can drive

shared bus
44

4.2 Overview
To handle the additional requirements of a shared interconnect architecture, communica-

tion scheduling assigns each communication between operations to a route between the

functional units that perform those operations as depicted in Figure 4-6. A communication

is a scheduler abstraction for the use of the result of one operation as an operand of

another operation. A communication exists from the write operation that computes a

result to each read operation that could use the result as an operand. If multiple operations

could use the result as an operand, or one operation could use the result as multiple oper-

ands, then a separate communication exists for each such read operand. If an operation

could use one of several results as an operand due to different control flows then a separate

communication exists for each such result.

FIGURE 4-5. Schedule for shared interconnect architecture

2: a =
load ...

1: b =
... + ...1

Functional Unit

5: ... =
a + c

4: ... =
a + b3

ab
a c

ADD0 L/S ADD1

a =
copy a

3: c =
 ... + ...2

a ab
C

yc
le
45

A route defines the resources used to transfer a value from a functional unit output to a

functional unit input. A route consists of resources to write the value to a register file from

the functional unit that computes it, resources to read it from a register file to the func-

tional unit that uses it, and, if necessary, copy operation(s) to move the value between reg-

ister files.

The motivating example contains four communications as shown in Figure 4-7 and four

routes, one for each communication, as shown in Figure 4-8. For example, operation 1

computes the value a, which is used by operation 4 and operation 5. There are two com-

munications from operation 1, one to operation 4 and one to operation 5, each of which is

assigned to a route.

FIGURE 4-6. Communication scheduling assigns each communication to a route

FIGURE 4-7. Communications in motivating example

write operation

read operation

result

operand

co
m

m
un

ic
at

io
n

write operation

read operation
ro

ut
e

1: a = load ... 2: b = ... + ... 3: c = ... + ...

4: ... = a + b 5: ... = a + c

1 2 3 4
46

Communication scheduling composes a route for each communication as shown in

Figure 4-9. The write stub consists of the functional unit output, bus, and register file write

port allocated to write the result. The write stub is allocated on the cycle that the writing

operation completes. The read stub consists of the register file read port, bus, and func-

tional unit input allocated to read the operand. The read stub is allocated on the cycle that

reading operation issues. If the write stub and read stub access the same register file, they

form a route. Otherwise, one or more copy operations are used to move the value from one

register file to another to connect the stubs and form a route.

Figure 4-10 shows the write stub, read stub, and copy operation that compose the route for

the communication of a from operation 1 to operation 4 in the motivating example.

FIGURE 4-8. Routes for communications in motivating example

1: a =
load ...

2: b =
... + ...1

Functional Unit

5: ... =
a + c

4: ... =
a + b3

ab
a c

ADD0 L/S ADD1

a =
copy a

3: c =
 ... + ...2

a ab
C

yc
le

1

2

3

41

1

47

Communication scheduling composes routes such that stubs on the same cycle do not con-

flict. Read stubs for different operands or write stubs for different results conflict if they

use the same resource, such as a functional unit input or output, bus, or register file port.

An operand can only be read from one register file, so two read stubs for the same operand

conflict if they are not identical. A result can be written to multiple register files, so two

write stubs for the same result only conflict if they write to the same register file using dif-

ferent buses or register file ports.

4.2.1 Role in a VLIW scheduler
The communication scheduling algorithm presented in this chapter is a general technique

that works as a drop-in addition to a variety of VLIW scheduling algorithms. The VLIW

scheduler is responsible for assigning operations to functional units and scheduling them

on cycles, communication scheduling simply accepts or rejects each placement as shown

in Figure 4-11. The only assumption communication scheduling makes is that repeatedly

rejecting an operation placement will eventually force that operation into an otherwise

empty region of the schedule. However, considering communication scheduling when

placing operations results in better performance. Chapter 5 describes the KernelC com-

FIGURE 4-9. Composition of a route

write operation

read operation
ro

ut
e

output

read port

input

write port

bus

bus

w
rite

stub
read
stub

write operation

read operation

result

operand

co
m

m
un

ic
at

io
n

copy
operation(s)

copy operation
48

piler, a VLIW scheduler that uses communication scheduling, and discusses the ramifica-

tions of communication scheduling for the scheduling process as a whole.

As the VLIW scheduling algorithm selects and schedules operations, communication

scheduling incrementally composes a route for each communication. Figure 4-12 shows

how communication scheduling composes a route for a communication between two arbi-

trary operations, operation 1 and operation 2. In this example, operation 1 is scheduled

before operation 2, the process is the same if the order were reversed. When operation 1 is

being scheduled, the communication is opening: communication scheduling determines

the valid stubs and selects a stub that does not conflict with other stubs on the same cycle.

If it cannot find a stub that does not conflict, it rejects the placement until it succeeds.

FIGURE 4-10. Composition of route for communication of a from operation 1 to
operation 4

1: a =
load ...1

Functional Unit

4: ... =
a + b3

a

ADD0 L/S ADD1

a =
copy a2

a
C

yc
le

write
stub

read
stub

copy
operation
49

Other operations may be scheduled before operation 2 is scheduled depending on the

scheduling algorithm, and often must be scheduled when an operation communicates with

multiple operations since only one can immediately follow it. As each such operation is

scheduled, communication scheduling may change the stub assigned to the open commu-

nication to allow stubs to be found for other communications. When the operation 2 is

being scheduled, the communication is closing: communication scheduling tries to find a

write stub and a read stub that access the same register file to form a route. If necessary, it

tries to insert and schedule copy operations to connect the stubs and form a route. If it is

unable to do so, it unschedules all copy operations and rejects the placement of operation

2. Once a communication has been assigned to a route, the stubs and any copy operations

that compose the route cannot be changed and it is called closed. Once all operations are

scheduled, all communications are closed and have all been assigned to routes.

4.3 Algorithm
For each potential operation placement, communication scheduling performs the follow-

ing steps for the operation that is being scheduled, hereafter called the current operation:

1. determine the valid read stubs for each communication to the current operation and the
valid write stubs for each communication from the current operation

FIGURE 4-11. Flowgraph for a simple scheduler with communication scheduling

mark as scheduled

select and schedule
unscheduled operation

attempt communication
scheduling

success?
Yes No
50

2. find a non-conflicting permutation of read stubs for communications to operations on
the cycle the current operation issues on

3. find a non-conflicting permutation of write stubs for communications from operations
on the cycle current operation completes on

4. for each closing communication, if the read stub and write stub form a route then
assign the communication to that route

5. for each closing communication, if the read stub and write stub do not form a route
then insert and attempt to schedule copy operation(s) to connect the stubs

Each of these steps is described in detail in the remainder of this section.

Step 1. Determine valid stubs

First, communication scheduling determines the valid read stubs for each communication

to the current operation and the valid write stubs for each communication from the current

operation. A read stub connects the read port of a register file to an appropriate input of the

functional unit that the current operation is assigned to. A write stub connects the output of

the functional unit to which the current operation is assigned to a write port of a register

file. For a communication from operation o1 to operation o2, zero or more copy operations

can be used to move a value from any register file written to by a valid write stub for o1 to

any register file read from by a valid read stub for o2, regardless of which functional units

the operations are assigned to.

Figure 4-13 shows all four valid write stubs for the communication from operation 1,

scheduled on the load/store unit on cycle 1, to operation 4. The four stubs are, described

opening open closing closed

FIGURE 4-12. Incremental composition of a route (left to right)

scheduling
operation 1

operation 2 is
unscheduled

operation 1 is
scheduled

operation 2 is
unscheduled

operation 1 is
scheduled

scheduling
operation 2

operation 1 is
scheduled

operation 2 is
scheduled
51

left to right then top to bottom: using the left bus to write to adder 0’s register file, using

the right bus to write to adder 1’s register file, using the left bus to write to the load/store

unit’s register file, and using the right bus to write to the load/store unit’s register file.

Figure 4-14 shows the valid read stubs for operation 4 when, after scheduling several

other operations, it is scheduled on adder 0 on cycle 3. Since addition is a commutative

operation, adder 0 can read the value of a from its register file using either input port. Zero

or more copy operations can be used to connect any write stub in Figure 4-13 to any read

stub in Figure 4-14.

Step 2. Find permutation of read stubs

Second, communication scheduling attempts to find a permutation of read stubs for all

communications to the current operation and previously scheduled operations that are

issued on the same cycle. This set of communications is called Cto. Since communication

scheduling can't change the read stub assigned to a closed communication, the stubs it

FIGURE 4-13. Valid write stubs

1: a =
load ...1

ADD0 L/S ADD1

1: a =
load ...1

ADD0 L/S ADD1

1: a =
load ...1

ADD0 L/S ADD1

1: a =
load ...1

ADD0 L/S ADD1
52

finds for other communications must not conflict with those stubs. Therefore, it removes

all closed communications in Cto and eliminates all valid stubs for the remaining commu-

nications that conflict with any read stub assigned to a closed communication. Communi-

cation scheduling then attempts to find a valid stub for each communication remaining in

Cto. It can choose any stub for each open communication, but tries to choose a read stub

for each closing communication that forms a route. When selecting a read stub for a clos-

ing communication c from a scheduled operation os, communication scheduling also

attempts to find a permutation of write stubs for communications to operations that com-

plete on the same cycle as os such that the write stub for c accesses the same register file as

the read stub and forms a route.

Step 3. Find permutation of write stubs

Third, communication scheduling analogously attempts to find a permutation of write

stubs for all communications from the current operation or operations that complete on the

same cycle as the current operation. This set of communications is called Cfrom. If commu-

nication scheduling cannot find a permutation of read stubs or a permutation of write

stubs, it rejects the current operation placement.

In the motivating example, communication scheduling finds different permutations of

write stubs for the communications from operations on cycle 1 as each of the first two

operations are scheduled. Communication scheduling chooses the permutation of write

stubs shown in Figure 4-15 when operation 1 is scheduled, then changes to the permuta-

tion shown in Figure 4-16 when operation 2 is scheduled. Operation 3 cannot be sched-

FIGURE 4-14. Valid read stubs

4: ... =
a + b3 4: ... =

a + b3
53

uled on cycle 1 because a permutation of write stubs cannot be found due to stub conflicts

as shown in Figure 4-17.

FIGURE 4-15. Permutation of write stubs when scheduling operation 1

FIGURE 4-16. Permutation of write stubs when scheduling operation 2

FIGURE 4-17. Operation 3 cannot be scheduled due to stub conflicts

1: a =
load ...1

ADD0 L/S ADD1

1: a =
load ...1

ADD0 L/S ADD1

2: b =
... + ...

1: a =
load ...

3: c =
... + ...1

ADD0 L/S ADD1

2: b =
... + ...
54

Step 4. Assign routes

Fourth, communication scheduling examines each closing communication and assigns a

route if possible. If the read stub and write stub access the same register file and form a

route, communication scheduling immediately assigns the communication to that route.

When scheduling operation 4 in the motivating example, the write stub and a read stub

form a route for the closing communication of b from operation 2, so communication

scheduling immediately assigns it to that route as shown in Figure 4-18. The stubs for the

closing communication of a from operation 1 do not form a route.

FIGURE 4-18. Route for communication of b from operation 2 to operation 4

1: a =
load ...

2: b =
... + ...1

Functional Unit

4: ... =
a + b3

b

ADD0 L/S ADD1

3: c =
 ... + ...2

b

C
yc

le

stubs form
a route

stubs do
not form a

route
55

Step 5. Insert copy operations

Fifth, communication scheduling inserts and attempts to schedule a copy operation to con-

nect the stubs and form a route for each remaining closing communication. Inserting a

copy operation is equivalent to the code transformation shown in Figure 4-19.

Effectively, this transformation splits the original communication into two communica-

tions, one from the write operation to the copy operation, and one from the copy operation

to the read operation as shown in Figure 4-20. Communication scheduling then calls on

the scheduler to schedule the copy operation.

The copy operation is scheduled just like any other operation, except that it must be sched-

uled on a cycle in the copy range of the original communication. If the write operation is

before the read operation in the same basic block, the copy range is all cycles between the

cycle on which the write operation completes and the cycle on which the read operation

x = ...
...
... = x ...

x = ...
x’ = copy x
...
... = x’ ...

FIGURE 4-19. Copy operation code transformation

FIGURE 4-20. A copy operation effectively splits original communication into two
communications

write operation

read operation

write operation

read operation

copy operation

or
ig

in
al

 c
om

m
un

ic
at

io
n

tw
o

co
m

m
un

ic
at

io
ns
56

issues. Otherwise, the copy range is all cycles in the write operation's basic block after the

write operation. These two cases are shown in Figure 4-21.

Copy operations for communications between operations in different basic blocks (or

from a write operation to a read operation earlier in the same block) are restricted to the

write operation’s basic block so that they do not overwrite the result of other write opera-

tions. Multiple write operations could compute an operand depending on control flow. A

copy operation for a communication from one such write operation scheduled in the read

operation’s basic block would overwrite the result of any other write operation, regardless

of the actual control flow. If necessary, the scheduler inserts additional cycles at the end of

the write operation’s basic block to accommodate copy operations.1

Communication scheduling treats the copy operation just like any other operation, so com-

munication scheduling can recursively insert additional copy operations as needed.

same block different block

FIGURE 4-21. Copy ranges based on location of read operation

1. The implementation of communication scheduling used in the evaluation section backtracks to
the basic block containing the write operation rather than adding additional cycles, but back-
tracking is a costly way to handle a rare special case and not recommended for future implemen-
tations.

write
operation1

2

3

read
operation5

C
yc

le

C
opy range

4

Basic block 2

write
operation1

2

1

read
operation2

C
yc

le C
opy range3

C
yc

le

Basic block 1

Basic block 2
57

Returning to the motivating example, the stubs for the closing communication of a from

operation 2 to operation 4 do not form a route, so communication scheduling inserts and

attempts to schedule a copy operation as shown in Figure 4-22.

Communication scheduling succeeds if it finds a permutation of write stubs and a permu-

tation of read stubs, and assigns each closing communication to a route. If communication

scheduling fails, any routes assigned to communications to/from the current operation are

unassigned, and any copy operations are unscheduled. The scheduler then reschedules the

operation and attempts communication scheduling again. Once all operations have been

scheduled successfully, communication scheduling has assigned all communications to

routes.

FIGURE 4-22. Route for communication of a from operation 1 to operation 4

1: a =
load ...

2: b =
... + ...1

Functional Unit

4: ... =
a + b3

b
a

ADD0 L/S ADD1

3: c =
 ... + ...2

ab

C
yc

le a =
copy a

copy
operation
completes

route
58

4.4 Implementation
This section discusses implementing three key components of the communication sched-

uling algorithm: determining the valid stubs for a communication and finding a permuta-

tion of stubs for a set of communications, and efficiently scheduling copy operations.

4.4.1 Determining valid stubs for a communication
To determine the valid stubs for a communication, communication scheduling first finds

all possible stubs using a transversal of the architecture’s interconnect. In the case of read

stubs, it first determines which functional unit input(s) can be used to read the operand.

Then, for each input, it enumerates all the buses the input is connected to and all the regis-

ter file read ports each such bus is connected to. Each combination of a connected input,

bus, and register file port is a possible read stub.

However, not all possible stubs are valid because communication scheduling requires that,

for a given communication, it must be possible to use copy operations to complete a route

from any valid write stub to any valid read stub. This constraint is fundamental to commu-

nication scheduling because it allows two communicating operations to be scheduled

independently. Regardless of which stub is chosen when scheduling the first operation, the

second operation can still be assigned to any functional unit.

This constraint can only be met for a copy-connected architecture, such as Imagine. A reg-

ister file, rf1, is copy-connected to another register file, rf2, if zero or more copy opera-

tions can be used to move a value from rf1 to rf2 (a register file is also considered copy-

connected to itself). An architecture is copy-connected if, given any pair of operations, o1

and o2, and a specific operand of o2, operand, such that the result of o1 can be used as that

operand of o2, it is possible to find two sets of register files, RFwrite and RFread such

that:

• The output of any functional unit that can perform o1 is connected to at least one reg-
ister file in RFwrite

• Every input that can be used to read operand by any functional unit that can perform
o2 is connected to at least one register file in RFread
59

• Every register file in RFwrite is copy-connected to every register file in RFread

Figure 4-23 illustrates this constraint.

The RFwrite and RFread sets for each o1, o2, operand triplet can be precomputed using

several methods. The most flexible method is an exhaustive search of all permutations of

register files. Since these sets are used to limit valid stubs, it is desirable to find the largest

sets possible. If rf1 is copy-connected to rf2 and rf2 is also copy-connected to rf1, the two

register files can be treated as one register file for the purpose of this search. Any set that

contains rf1 also contains rf2. For many architectures, every register file is copy-con-

nected to every other register file, so the search is trivial and the RFread and RFwrite sets

always contain all register files.

Communication scheduling determines the valid stubs for a communication by using the

RFwrite set and RFread set for the communication’s write operation, read operation, read

operand triplet. The valid write stubs are the possible stubs that write to a register file in

RFwrite. The valid read stubs are the possible stubs that read from a register file in

FIGURE 4-23. Copy connected architecture constraint

functional units that can perform o1

functional units that can perform o2

register files in RFread

register files in RFwrite

(zero or more copy operations
to move value from one register file to other)
60

RFread. Since every register file in RFread is copy connected to every register file in

RFwrite, copy operations can be used to complete the route between any two valid stubs.

4.4.2 Finding a permutation of stubs
Finding a non-conflicting permutation of stubs is computationally expensive, but the

search does not need to be exhaustive. The number of permutations of stubs is exponential

with the number of communications. However, the search will complete if:

• It can find a read/write stub for all communications to/from an operation in the
absence of other communications

• It can always find a permutation of stubs for a given set of communications if it ever
finds a permutation of stubs for that set of communications (i.e. it is repeatable)

The first requirement ensures that an operation can always be scheduled, even if only by

scheduling it to issue and complete on cycles without any other scheduled operations. The

second requirement ensures that, once an operation has been scheduled it will remain pos-

sible to find a permutation of stubs for the cycles on which it issues and completes, even if

only by scheduling no additional operations on those cycles.

One search algorithm that meets these requirements orders the communications, then finds

a stub for each communication in turn. The algorithm orders the communications so that

the communications for which it is most important to complete a route come first. All

closing communications are ordered before all open or opening communications. Closing

communications are ordered by smallest copy range first, so that the communications with

the fewest cycles to schedule copy operations on have preference in choosing stubs to

form routes. Once the communications are ordered, the algorithm selects the first stub for

each communication that does not conflict with the stub found for a previous communica-

tion. If all stubs for a communication conflict with stubs found for a previous communica-

tions, the search falls backs to the first such communication and chooses a new stub. The

search terminates when a stub has been found for each communication or after an arbi-

trary, relatively large, number of partial permutations have been tried.
61

Figure 4-24 shows detailed pseudocode for a function that implements this search algo-

rithm.1 Note that this function is used both to find a permutation of read stubs in Step 2 of

the communication scheduling algorithm, and to find an opposite read stub for a closing

communication in Step 3. The corresponding function used to find a permutation of write

stubs in Step 3 and an opposite write stub for a closing communication in Step 2 mirrors

this function exactly.

Boolean FindReadStubs(Operation o, Communication cFindOpposite = NULL)
{

Integer i, j, k;

Set<Operation> O = GetOperationsIssuedOnCycle(o.issue);
Set<Communication> CTo = GetCommunicationsToOperations(O);
Set<Communication> CClosed = GetClosedCommunications(CTo);
Set<Communication> CNonClosed = GetNonClosedCommunications(CTo);

// sort non-closed communications so that all closing communications come
// first, in order of ascending copy range size
PrioritizeCommunications(CNonClosed);

// remove valid stubs that conflict with stubs of closed communications
for (i = 0; i < CNonClosed.count; i++) {

Communication c = CNonClosed[i];
for (Integer j = 0; j < CClosed.count; j++) {

RemoveConflictingStubs(c.validReadStubs, CClosed[j].readStub);
}
c.readStub = NULL;

}

// with each non-closed communication...
i = 0;
Integer permutationCount = 0;
while (i >= 0 && i < CNonClosed.count &&

permutationCount < MAX_PERMUTATIONS) {

Communication c = CNonClosed[i];
Stub firstNonConflictingStub;
Boolean conflict = TRUE;

// find the first stub that does not conflict with a previous stub
Integer prevConflictMaxIdx = -1;
for (j = GetIndexOfNextStub(c.validReadStubs, c.readStub);

j < c.validReadStubs.count && conflict; j++) {
c.readStub = c.validReadStubs[j];
conflict = FALSE;
for (k = i - 1; k >= 0 && !conflict; k--) {

if (CheckStubConflict(c.readStub, CNonClosed[k].readStub) {

1. Pseudocode assumes all object variable are reference-counted pointers
62

conflict = TRUE;
prevConflictMaxIdx = Maximum(prevConflictMaxIdx, k);

}
}

// if a stub is found and the communication is closing,
// try and find the opposite stub
// unless this function is being used to find an opposite stub,
// then try and form a route
if (!conflict && c.status == CLOSING) {

if (cFindOpposite == NULL) {
conflict = !FindWriteStubs(c.writeOp, c));

} else {
conflict = !CheckStubsFormRoute(c));

}
// note the first non-conflicting stub
if (firstNonConflictingStub == NULL) {

firstNonConflictingStub = c.readStub;
}

}
}

// if the communication is closing and a route cannot be formed
// use the first non-conflicting stub, copy operations will be added later
// unless trying to find the opposite stub for this communication
if (conflict && firstNonConflictingStub != NULL && c != cFindOpposite) {

c.readStub = firstNonConflictingStub;
conflict = FALSE;

}

// if a stub is found, advance to the next communication
// otherwise fallback to the first previous communication with a stub
// that conflicts with any stub of this communication
if (!conflict) {

i++;
} else {

while (i > prevConflictMaxIdx) {
CNonClosed[i].readStub = NULL;
i--;

}
}
permutationCount++;

}

// return true if a stub is found for all non-closed communications
return (i == CNonClosed.count);

}

FIGURE 4-24. Pseudocode for stub permutation search
63

4.4.3 Scheduling copy operations
The scheduler merges copy operations for different communications of the same result to

make more efficient use of resources. Suppose one operation computes a result that is

communicated to two other operations, and both communications require copy operations

to form routes. The scheduler schedules the copy operation for the first communication,

copy1, normally. If it schedules copy1 in the copy range of the copy operation for the sec-

ond communication, copy2, it schedules copy2 on the same cycle and functional unit as

copy1, then attempts communication scheduling. Communication scheduling treats stubs

for communications with either operation as stubs of communications with the same oper-

ation for the purpose of determining conflicts. If communication scheduling succeeds for

copy2, the scheduler merges the two copy operations into one copy operation. Otherwise,

it schedules copy2 normally.

4.5 Performance
Architectures with shared interconnect and multiple register files impose additional con-

straints on VLIW scheduling; communication scheduling contributes to good performance

on these architectures by limiting the impact of these constraints on scheduling. Commu-

nication scheduling introduces an incremental method for composing routes from shared

interconnect resources during scheduling that does not need to know which operations are

assigned to which functional units prior to scheduling. This allows the use of a single-

phase scheduling algorithm which assigns operations to functional units during schedul-

ing. Most multi-phase algorithms rely on constructing an approximate schedule before

constructing the actual schedule in order to assign parallel operations to different func-

tional units. This approximation becomes less accurate in the presence an additional

resource constraint, such as complex shared interconnect. Further, the effects of a poor

approximation are magnified when scheduling kernels with excess instruction level paral-

lelism on architectures with many functional units. When more operations can occur in

parallel than there are available functional units, the operations cannot be assigned to

functional units such that they can always be scheduled in parallel. More functional units

increases the chance that for a set of operations with an effectively random assignment to

functional units, one or more operations will be assigned to the same functional unit.
64

The effectiveness of communication scheduling depends on the topology of the shared

interconnect. It is designed for architectures with a high-degree of connectivity and mostly

equivalent interconnect resources, such as Imagine. In architectures with very limited con-

nectivity among functional units, there are few decisions for a communication scheduling

algorithm to make. On such architectures, operation placement is the determining factor in

performance. Communication scheduling as presented in this chapter assumes that most

interconnect resources are equivalent. In an architecture in which some interconnect

resources are more connected that others, a naive algorithm for choosing stubs could

wastefully assign highly-connected resources to communications that could use less-con-

nected resources. However, using an algorithm that simply weighted stubs based on con-

nectivity would largely avoid this problem. The scheduling process for a VLIW

architecture is already NP-complete and shared interconnect introduces additional, non-

orthogonal resources to the allocation problem so an exact approach is not possible.

4.6 Summary
This chapter described communication scheduling, a new component of VLIW scheduling

that allocates shared interconnect resources such as buses and register file ports by assign-

ing communications between operations to routes that define the resources used to transfer

values between functional units. It presented the communication scheduling algorithm

used to assign communications to routes, and discussed implementing key portions of the

algorithm.

Communication scheduling is a general technique that can be incorporated as part of a

variety of scheduling algorithms and applied to a large class of shared of architectures.

Communication scheduling can be added to a scheduler simply by allowing communica-

tion scheduling to accept or reject each operation placement. Communication scheduling

is not architecture specific. It can be used to explore novel register files architectures with-

out implementing a custom compiler for each architecture.
65

66

Chapter 5

KernelC Compiler

This chapter describes the Imagine KernelC compiler, which compiles KernelC for the

processing elements of the Imagine media processor. This chapter provides an overview of

the KernelC compiler as a whole and concentrates on the design choices and innovations

motivated by the new hardware concepts introduced in the Imagine processor architecture

and the characteristics of media processing kernels.

The KernelC compiler supports the Imagine media processor architecture’s multiple regis-

ter files with shared interconnect, sequential interface to the stream register file, and

addressable scratchpad memory. The KernelC compiler uses communication scheduling, a

new compiler technique described in detail in Chapter 4, to support multiple register files

with shared interconnect. This chapter describes the analysis used to construct the commu-

nication graph used for communication scheduling, and presents a scheduling algorithm

optimized for communication scheduling. The KernelC compiler introduces stream input/

output ordering, a pre-scheduling step that ensures that memory accesses can be ordered

sequentially, and modifies the dependency graph to ensure that they are ordered sequen-

tially. The KernelC compiler handles scratchpad accesses in the same manner as arith-

metic operations with additional dependencies.

The KernelC compiler is optimized for high performance media processing kernels that

usually consist of a single, computation-intensive loop. The performance critical nature

and relative simplicity of media processing kernels motivate the use of relatively expen-
67

sive scheduling heuristics. Since kernel performance is dominated by the loop, the Ker-

nelC compiler incorporates a variation of modulo software pipelining[28].

The Imagine KernelC compiler compiles kernels written in KernelC into machine code

executable on the Imagine media processor. The compilation process is separated into

three steps, each described in a section of this chapter. Pre-scheduling translates source

code into primitive operations and analyzes and modifies those operations as described in

Section 5.1. Scheduling assigns the primitive operations to functional units and schedules

them on cycles as described in Section 5.2. Post-scheduling allocates registers and gener-

ates machine code as described in Section 5.3.

5.1 Pre-scheduling
The pre-scheduling process translates a kernel written in KernelC into primitive opera-

tions augmented with all the information necessary for scheduling. The KernelC compiler

parses the source code into operations, separates the operations into basic blocks, gener-

ates a communication graph that is the basis for communication scheduling, and produces

the dependency graph used to order operations for scheduling.

5.1.1 Parsing
The KernelC compiler translates KernelC into primitive operations using a standard lexi-

cal analyzer and parser. The KernelC compiler adds operations to compute constants, and

performs any loop unrolling specified by the programmer.

Figure 5-1 shows a simple kernel in KernelC and the corresponding primitive operations.

The simple kernel performs a coordinate transformation with two explicit dimensions (x

and y) and one implicit dimension (z). This kernel will be used throughout the remainder

of this section to illustrate features of the KernelC compiler.

5.1.2 Control flow analysis
The KernelC compiler separates the operations into basic blocks and constructs a control

flow graph containing all basic blocks in the kernel with a directed edge from each basic
68

block to every basic block that could be executed immediately after it. Since the only con-

trol flow structures in KernelC are explicit loops, all basic blocks are delineated by the

start or end of a loop and the control flow analysis is trivial. Figure 5-2 shows the control

flow graph for the example.

5.1.3 Data flow analysis
The KernelC compiler constructs a data flow graph for the entire kernel containing all

operations with directed edges representing each communication between operations. This

type of graph is a standard intermediate representation, but specifics vary from description

to description. For clarity, this specific form, which is used as the basis for communication

scheduling, is called a communication graph. The communication graph contains a

kernel CoordinateTransform(
 istream<float> inXYs,
 ostream<float> outUVs)
{
 float z = 0;

 loop_stream(inXYs) {

 // load inputs
 inXYs >> x;

 inXYs >> y;

 // coordinate transform
 v = -((y + z)^2);

 u = x^2 + v;

 // store outputs
 outUVs << u << v

 // increment implicit z
 z = z + 1.0;

 }
}

1: z = 0.0

2: in0 >> x

3: in0 >> y

4: a = y + z
5: b = a * a
6: v = -b

7: c = x * x
8: u = c + v

9: out0 << u
10: out0 << v

11: z = z + 1.0

FIGURE 5-1. Example kernel in KernelC and corresponding primitive operations
69

directed edge from each operation that computes a result to each operation that uses the

result as an operand, for each such operand. A communication exists between two such

operations regardless of their relative location: communications can exist between opera-

tions in different basic blocks, or from a later operation to an earlier operation that uses its

loop carried result as an operand. Each edge is labeled with the result used and the operand

it is used as. This information is used by communication scheduling to determine which

functional unit ports to use for the communication.

The communication graph can be constructed using one of several data flow analysis

methods. The KernelC compiler uses a slot-wise approach [37], so named because it con-

siders each result separately, but this method is an arbitrary implementation choice. The

KernelC compiler iterates over each operation, o. For each result of o, r, it performs the

following analysis: starting with the operation immediately after o, it adds an edge from o

to the current operation for each use of the r as an operand, then moves to the next opera-

tion in the current basic block. If the KernelC compiler encounters the end of a basic

FIGURE 5-2. Control flow graph

BLOCK 1

2: in0 >> x
3: in0 >> y

4: a = y + z
5: b = a * a
6: v = -b

7: c = x * x
8: u = c + v

9: out0 << u
10: out0 << v

11: z = z + 1.0

BLOCK 0

1: z = 0.0

BLOCK 2
70

block, it adds all unreached basic blocks that succeed that basic block in the control flow

graph to a worklist. It then removes a basic block from the worklist, marks it as reached,

and moves to the first operation in that basic block. If it encounters an operation that com-

putes a result which is assigned to the same variable as r, it stops traversing the current

basic block and obtains a new basic block from the worklist.

Figure 5-3 shows the communication graph for the sample kernel. The first four edges,

shown in bold, are added as follows. Operation 1 (“z = 0.0”) produces one result assigned

to z. There are no more operations in block 0, so block 1 and block 2 are pushed onto the

worklist. Block 1 is popped off the work list and traversed. Operation 4 uses z as operand

two, so an edge is added from operation 1 to operation 4 and labeled “1, 2” (result 1 used

as operand 2). Operation 11 also uses z, so another edge is added. However, the result of

operation 11 is assigned to z. Traversal of block 1 stops and block 2 is popped off the

worklist. Block 2 is empty, not followed by any blocks in the control graph, and no blocks

remain on the worklist, so all edges for operation 1’s only result have been added. Opera-

tion 2 also produces one result, assigned to x. Operation 7 uses x for two operands, so two

edges are added from operation 2 to operation 7, labeled “1, 1” and “1, 2”.

5.1.4 Dependency analysis
The KernelC compiler constructs a directed acyclic graph (DAG) for each basic block

containing all operations in the basic block with an edge from each operation to every

operation that depends on it. The initial dependency graph for a basic block is derived

from the communication graph and the source code order of the operations, and contains a

subset of the edges in that graph. Each edge that connects two operations within the basic

block is considered in turn, all edges connecting operations in other basic blocks are

ignored. If the edge is from an earlier operation to a later operation, then a corresponding

edge annotated as read-after-write (RAW) is added to the dependency graph. If the edge

from a later operation to an earlier operation, then a corresponding but reversed edge

annotated as write-after-read (WAR) is added to the dependency graph. For simplicity,

redundant edges, edges of the same type between the same operations, are omitted. Later

analysis steps add edges that impose additional ordering constraints.
71

Figure 5-4 shows the dependency graph for the example kernel, along with a thumbnail of

the communication graph. Two representative edges in the dependency graph are high-

lighted. The first highlighted edge is from operation 2 to operation 7. It was added to the

dependency graph because there is an edge from operation 2 to operation 7 in the commu-

nication graph. Although there are two such edges in the communication graph, the redun-

dant edge is omitted. The second highlighted edge is from operation 4 to operation 11. It

was added to the dependency graph because there is an edge from operation 11 to opera-

tion 4 in the communication graph. Since the edge in the communication graph is from a

later operation to an earlier one, it is reversed and annotated as a WAR edge in the depen-

dency graph.

FIGURE 5-3. Communication graph

BLOCK 1

BLOCK 0
1: z = 0.0

11: z = z + 1.0

2: in0 >> x 3: in0 >> y

4: a = y + z

5: b = a * a

6: v = -b

7: c = x * x

8: u = c + v

9: out0 << u

10: out0 << v

1, 1

1, 1 1, 2
1, 1

1, 1

1, 1

1, 1 1, 2

1, 1

1, 2

1, 1

1, 2

1, 2

1, 1
72

5.1.5 Stream input/output ordering
The KernelC compiler must preserve the order of the operations used to read data from or

write data to a stream so that the records within the stream are accessed in the expected

order. To enforce this restriction, the KernelC compiler adds a dependency between each

input operation that reads data from a stream and the next input operation that reads data

from that stream in the same basic block. It similarly adds dependencies between output

operations that write data to the same stream.

No register file exists to stage the values written to a stream so the operations that compute

the values to be output, hereafter called the output computation operations, need to occur

in the same order as the output operations. In most cases, the KernelC compiler adds a

dependency from each output computation operation to the next output computation oper-

 (communication graph)

FIGURE 5-4. Dependency graph

BLOCK 1

BLOCK 0
1: z = 0.0

11: z = z + 1.0

2: in0 >> x 3: in0 >> y

4: a = y + z

5: b = a * a

6: v = -b

7: c = x * x

8: u = c + v

9: out0 << u

10: out0 << v

BLOCK 1

BLOCK 0
1: z = 0.0

11: z = z + 1.0

2: in0 >> x 3: in0 >> y

4: a = y + z

5: b = a * a

6: v = -b

7: c = x * x

8: u = c + v

9: out0 << u

10: out0 << v

1, 1

1, 1 1, 2
1, 1

1, 1

1, 1

1, 1 1, 2

1, 1

1, 2

1, 1

1, 2

1, 2

1, 1
73

ation that computes data that is written to the same stream. However, sometimes all the

output computation operations are not in the same basic block as the corresponding output

operation. Other times there are dependency relationships among the output computation

operations such that they cannot occur in the same order as the output operations. For

example, one output computation operation may compute a value that is both written to a

stream and used to compute another value that must be written to the same stream earlier.

To resolve these situations, the KernelC compiler inserts a copy operation that copies the

value to be output before some or all of the output operations. These copy operations

become the new output computation operations for those output operations, and effec-

tively stage the data through an existing register file.

Figure 5-5 shows the block 1 dependency graph before and after stream input and output

ordering. For this example, the KernelC compiler adds an edge from operation 2 to opera-

tion 3 to order the input operations, and from operation 9 to operation 10 to order the out-

put operations. It cannot add an edge from operation 8, the output computation operation

for operation 9, to operation 6, the output computation operation for operation 10 since a

contrary dependency already exists between those operations such that operation 6 must

occur before operation 8. Instead, the KernelC compiler inserts a copy operation that cop-

ies the value of v just before the output. This operation becomes the new output computa-

tion operation for operation 10, and the KernelC compiler adds an edge to it from

operation 8.

These copy operations can also be inserted using a source code transformation prior to

constructing the communication and dependency graphs, which alleviates the need to

update those graphs. Using this alternative, the KernelC compiler determines which out-

put operations to insert copy operations before by examining each output operation for a

stream in source code order. If the output computation operation for the current output

operation is not in the same basic block, or appears before the output computation opera-

tion for the previous output operation, the KernelC compiler inserts a copy operation. This

approach is overly conservative: output computation operations only need to be sup-
74

planted by copy operations if they are ordered incorrectly in the dependency graph, not

just in the source code.

5.1.6 Scratch pad access ordering
The KernelC compiler adds dependencies to order all scratch pad accesses that may read

or write the same data. The scratch pad is used to hold small arrays. To avoid false depen-

dencies between accesses to the same array, the KernelC compiler disambiguates such

accesses based on their indices. The KernelC compiler disambiguates accesses with differ-

ent constant indices, or with the same index variable and additions or subtractions of con-

stants with a non-zero sum between the two accesses.

5.2 Scheduling
The scheduling process assigns each operation to a functional unit and schedules it on a

cycle. The scheduling algorithm is optimized for use with communication scheduling and

FIGURE 5-5. Dependency graph before and after stream input/output ordering.

BLOCK 1

11: z = z + 1.0

2: in0 >> x 3: in0 >> y

4: a = y + z

5: b = a * a

6: v = -b

7: c = x * x

8: u = c + v

9: out0 << u

10: out0 << v

BLOCK 1

11: z = z + 1.0

2: in0 >> x

3: in0 >> y

4: a = y + z

5: b = a * a

6: v = -b

7: c = x * x

8: u = c + v

9: out0 << u

10: out0 << v

12: v = v
75

a large number of functional units. Those optimization considerations dictate the order in

which basic blocks are scheduled, the general structure of the scheduling algorithm, the

order in which operations are scheduled, and the functional unit each operation is assigned

to.

The examples in this subsection are taken from scheduling the coordinate transform kernel

on the architecture presented in Figure 5-6. This simple architecture captures the primary

features of a media processor like Imagine: a distributed register file architecture and

stream input and output units.

5.2.1 Basic block ordering
The KernelC compiler schedules the basic blocks that dominate execution time first so

that those blocks have the greatest freedom for communication scheduling. Communica-

tion scheduling influences operation placement based on communications between opera-

tions in different basic blocks, so basic blocks cannot be scheduled independently. The

basic blocks that are scheduled earlier do not need to close communications to operations

in basic blocks that are scheduled later, so those basic blocks have the fewest constraints

on operation placement. The KernelC compiler orders basic blocks based on deepest

nested depth then largest number of operations. Assuming each loop is executed the same

FIGURE 5-6. Example architecture

ADD0 ADD1 MULIN OUT
76

large number of times, this order reflects the influence of each basic block on execution

time.

In the example introduced in Figure 5-1, block 1 is more deeply nested than block 0, so it

is scheduled first. Block 0 has more operations that block 2, the empty block after the

loop, so it scheduled second. If block 0 was scheduled first, the placement of operation 1

(“z = 0.0”) would influence communication scheduling for operations 4 (“a = y + z”) and

11 (“z = z + 1”) in block 1, which could result in an inferior schedule for the inner loop.

5.2.2 Scheduling algorithm
The KernelC compiler uses the scheduling algorithm depicted in Figure 5-7. This algo-

rithm is similar to the algorithm described in [40]. The KernelC compiler selects an opera-

tion based on a heuristic that considers whether the operation is on the critical path (how

much slack it has) and a several other factors, and schedules it on the first possible cycle

with an available functional unit. It then assigns the operation to one of the available func-

tional units and attempts communication scheduling. If communication scheduling suc-

ceeds, the operation is scheduled. If communication scheduling fails, the KernelC

compiler assigns the operation to a different functional unit, or delays it until a later cycle,

until it succeeds.

The KernelC compiler is operation-driven rather than cycle-driven: it selects an operation

and schedules it on the earliest possible cycle, rather than scheduling as many operations

as possible on the current cycle before advancing to the next cycle. An operation-driven

scheduler is better than a cycle-driven scheduler for use with communication scheduling

because it ensures that communication between operations on the critical path are sched-

uled first. Consider a communication between two adjacent operations on the critical path,

o1 and o2. Using cycle order, the scheduler schedules o1 then as many operations as pos-

sible on the current cycle before moving on to the next cycle. Those additional operations

may occupy the interconnect resources needed to find an efficient route for the critical

communication. When attempting to schedule o2 on the next cycle, communication

scheduling may be forced to delay it to insert a copy operation. Other operations that can
77

be scheduled on that cycle may occupy all functional units that could perform the copy

operation, causing o2 to be delayed even further. Using operation order, after scheduling

o1 the scheduler can immediately schedule o2 on the next cycle since o2 does not depend

on any other operations. This order allows communication scheduling to assign the com-

munication to an efficient route.

Figure 5-8 shows how a cycle-driven scheduler schedules the operations in basic block 1.

On cycle 1, it schedules operation 2. On cycle 2, it schedules operation 3 then tries but

fails to schedule operation 7 because a copy operation is required between operation 2 and

operation 7. On cycle 3, it schedules operation 4, then operation 7 and the required copy

operation. It also tries but fails to schedule operation 11 since both shared buses are occu-

pied. On cycle 4, it attempts to schedule the critical-path operation 5, but fails because

FIGURE 5-7. Scheduling algorithm flowchart

Tentatively schedule operation
on first possible cycle

Tentatively assign operation to
that functional unit

Attempt communication
scheduling

Is there an untried available
functional unit that can perform

the operation?

Did communication scheduling
succeed?

Yes

Yes No

No

Are there any unscheduled
operations?

Yes No

Operation is scheduled!

Tentatively schedule operation
on next cycle

Select an operation
78

every possible write stub for operation 7 occupies the only bus that can write into the mul-

tiplier’s register file as shown by Figure 5-9. Delaying the critical path operation 5 results

in an inferior schedule. This problem is exasperated if, after failing to schedule operation

11 on cycle 3, it schedules operation 11 on cycle 4 on adder 1, the only unit that can per-

form the copy operation for the communication from operation 4 to operation 5, making

the schedule even worse.

In contrast, Figure 5-10 shows how the first several operations in basic block 1 are sched-

uled by an operation-driven scheduler. It schedules operation 2 on cycle 1, operation 3 on

cycle 2, operation 4 on cycle 3, then operation 5 on cycle 4. Thus, it can close the commu-

nications from operation 4 to operation 5 as shown by Figure 5-11.

FIGURE 5-8. Cycle-driven schedule

FIGURE 5-9. Operation 5 can’t be scheduled due to communication conflict

5: b = a * a

IN ADD0 ADD1 MUL OUT
2: in0 >> x1

13: x = x3: in0 >> y2
7: c = x * x4: a = y + z3

4

3

IN ADD0 ADD1 MUL OUT

4

4: a =
 y + z

7: c =
 x * x

5: b =
 a * a
79

The KernelC compiler uses a single phase that assigns each operation to a functional unit

at the time it is scheduled on a cycle. Most VLIW schedulers use two phases that assign all

operations to functional units, then schedule them on cycles. However, a two-phase sched-

uler delays an operation until a later cycle if the functional unit it is assigned to is already

occupied or bus or register filer port conflicts prevent the use of that functional unit, even

if another functional unit could perform the operation on that cycle. Shared bus and regis-

ter file ports make effectively assigning operations to functional units ahead of time diffi-

cult. The single-phase KernelC compiler assigns each operation to an available functional

unit on the earliest possible cycle. Further, with shared buses and register file ports, the

functional unit an operation is assigned to influences communication scheduling for other

operations. The KernelC compiler assigns each operation to a functional unit that allows

for good communication scheduling (see the discussion of communication cost in Section

5.2) based on the actual schedule to date.

FIGURE 5-10. Operation-driven schedule

FIGURE 5-11. Operation 5 can be scheduled without conflict

IN ADD0 ADD1 MUL OUT
2: in0 >> x1
3: in0 >> y2

4: a = y + z3
5: b = a * a4

4: a =
 y + z

a a

5: b =
 a * a

3

IN ADD0 ADD1 MUL OUT

4

80

The optimal schedule for the example kernel is shown in Figure 5-12. Using a two-phase

scheduler, operation 12 could reasonably be pre-assigned to the multiplier (since no other

multiply operation could possibly conflict with it), but doing so would result in a commu-

nication conflict on cycle 5 as shown in Figure 5-13. This communication conflict results

from operation 6 and operation 7 occurring on the same cycle. This conflict is almost

impossible to predict statically given the complexity of scheduling operation 7 as

described above. Using a single-phase scheduler, operation 12 is assigned to a functional

unit at the time it is scheduled, after operations 6 and 7 have already been scheduled.

5.2.3 Operation prioritization
The KernelC compiler uses a heuristic to determine the order in which operations are

scheduled. This order is doubly important on an architecture with shared interconnect

because operations compete not only for issue slots on particular functional units, but also

for shared buses and register file ports. The earlier an operation is scheduled, the more

interconnect resources are available to it. The KernelC compiler prioritizes operations

based on a heuristic that considers a weighted combination of slack, latency, average

usage of the functional units that can perform the operation, and distance from the edge of

the dependency graph.

The KernelC compiler prioritizes operations with low slack above operations with high

slack to keep the critical path as short as possible. Slack is the number of cycles between

FIGURE 5-12. Optimal schedule

IN ADD0 ADD1 MUL OUT
2: in0 >> x1

13: x = x3: in0 >> y2
4: a = y + z11: z = z + 13

5: b = a * a4
7: c = x * x6: v = -b5

8: u = c + v6
9: out0<<u12: v = v7
10: out0<<v8
81

the earliest possible cycle and the latest possible cycle an operation could be scheduled on

in a minimum length schedule given infinite resources. The lower the slack, the greater the

chance that delaying an operation will increase the schedule length. The scheduler recom-

putes the slack of unscheduled operations after each operation is scheduled to reflect the

actual cycle on which that operation is issued.

The KernelC compiler prioritizes operations with high latency above operations with low

latency so that the low latency operations can fill in the gaps between the high latency

operations. A good analogy for this concept is that it is easier to pour sand into a bucket

full of rocks than to pour rocks into a bucket full of sand.

The KernelC compiler schedules operations that can only be performed on busy functional

units before operations that can be performed on relatively unused functional units. This

FIGURE 5-13. Possible communication conflict with a two-phase scheduler

6: v =
 -b

7: c =
x * x

8: u =
 c + v

12: v = v

5

IN ADD0 ADD1 MUL OUT

7

6

82

policy prevents issue slots on those busy functional units from being occupied by opera-

tions that could be performed by many kinds of functional units (such as copy operations),

or lost due to bus and register file port conflicts with operations that could be scheduled

differently. Before scheduling each basic block, the KernelC compiler first computes a

measure of how busy each functional unit is for that basic block, called functional unit

usage. The “raw” functional unit usage for a unit is the expected number of operations that

would be assigned to the unit if each operation were randomly assigned to a unit that sup-

ports that operation. Raw functional unit usage is computed using Equation 1:

O(u), the set of operations in the block that are supported by the functional unit u

U(o), the set of functional units that support operation o

(1)

The raw functional unit usage values are then normalized relative to the highest raw func-

tional unit usage. For the example, functional unit usage is calculated as shown in Figure

5-14.

IN ADD0 ADD1 MUL OUT

2: in0 >> x 1.00

3: in0 >> y 1.00

4: a = y + z 0.50 0.50

5: b = a * a 1.00

6: v = -b 0.33 0.33 0.33

7: c = x * x 1.00

8: u = c + v 0.50 0.50

9: out0 << u 1.00

10: out0 << v 1.00

11: z = z + 1.0 0.50 0.50

rawFunctionalUnitUsage u() 1
U o()

o O u()∈
∑=
83

The KernelC compiler then prioritizes operations that can only occur on units with high

functional unit usages. More specifically, it computes the average functional unit usage for

all units that support each operation using Equation 2:

(2)

It then prioritizes operations that are supported by functional units with high average func-

tional unit usage. For instance, in the example multiply operations are prioritized because

the average functional unit usage for the functional unit(s) that support those operations,

the multiplier, is 1.0.

Lastly, the KernelC compiler prioritizes operations that are close to the bottom edge of the

dependency graph over those that are close to the top. This component of the heuristic

counters the fact that slack considers the number of cycles an operation could be sched-

uled on, but ignores resource conflicts on those cycles. As high priority (low slack) opera-

tions are scheduled they occupy resources which could have been used by low priority

(high slack) operations. If all high priority operations are scheduled first without regard

for distance from the edge of the dependency graph, a long chain of low priority opera-

tions left until the end may be unable to fit into the body of the basic block due to resource

conflicts, resulting in a “tail” of operations that significantly increases schedule length.

The kernel scheduler combines these four factors (slack, latency, average functional unit

usage, and distance from the edge of the dependency graph) into a single weight using

Equation 3, with high priority operations having the lowest weight.1

12: v = v 0.33 0.33 0.33

raw functional unit
usage(u)

2.00 2.17 2.17 2.67 2.00

functional unit usage(u) 0.75 0.81 0.81 1.00 0.75

FIGURE 5-14. Functional unit usage calculation

averageFunctionalUnitUsage o()

f
u U∈ o()
∑ unctionalUnitUsage u()

U o()
--=
84

 (3)

The KernelC compiler not only considers the intrinsic priority of an operation, it also con-

siders the priority of the operations that the operation must be scheduled before. If an

operation with high priority must be scheduled before an operation with a low priority, the

low priority operation should be scheduled so that the high priority operation can be

scheduled. Thus, the KernelC compiler gives each operation a final weight equal to the

geometric mean of its own intrinsic weight and that of the lowest weight operation that it

depends on (in the case of top-down scheduling) or that depends on it (in the case of bot-

tom-up scheduling). For simplicity, weights are not updated transitively.

5.2.4 Functional unit assignment
The KernelC compiler determines which available functional unit to schedule an opera-

tion on using an heuristic that considers communication cost, functional unit usage, and

least recent use. Functional unit selection is also more important in an architecture with

multiple register files or shared interconnect because it determines how communications

between that operation and other operations can be scheduled.

The KernelC compiler tries to assign the operation to a functional unit with low communi-

cation cost. Communication cost reflects the likelihood that assigning an operation to a

functional unit will require copy operations to complete open communications, and the

likelihood that those copy operations will increase schedule length. Assigning an opera-

tion to a particular functional unit can require copy operations to complete communica-

tions to or from that operation, to operations issued on the same cycle, or from operations

that complete on the same cycle. This set of communications is the union of the sets Cto

1. The weight of each individual factor was determined experimentally.

weight 1 slack+()

1 0.8 m× in latency
10

------------------- 1,
 –

1 0.8 averageFunctionalUnitUsage×–()×

1 0.2 d× istFromEdge+()×

×

=

85

and Cfrom introduced in Section 4.3. As shown in Equation 4, communication cost is cal-

culated by taking the sum over this set of the minimum number of copy operations

required to complete a route for each communication divided by the estimated size of the

copy range for that communication, the cycles on which those copies could be scheduled.

(4)

The KernelC compiler uses communication scheduling to estimate the number of required

copy operations by finding permutations of stubs for the open and closing communica-

tions in Cto and Cfrom (see Section 4.3) as though the operation were assigned to the

functional unit in question, then counting the number of stubs that cannot form a route

without a copy operation regardless of which functional units the unscheduled operations

are assigned to. The copy range for each open communication is estimated by assuming

that all unscheduled operations are scheduled on the latest possible cycle without increas-

ing schedule length.

In the example, communication cost is critical when assigning operation 4 to an adder.

Since no other operations are scheduled on cycle 3 when operation 4 is being scheduled,

Cto and Cfrom only contain the communications to and from operation 4, shown in Figure

5-14. Operation 4 can be scheduled on either adder. However, only adder 1 is connected to

the second shared bus. All communications to operation 4 are from operations that con-

nect to the first shared bus, so none require a copy operation regardless of which adder

operation 4 is scheduled on. However, both communications from operation 4 (shown in

bold) are to operation 5, a multiply, and the multiplier is only connected to the second bus.

Both communications require a copy operation if operation 4 is scheduled on adder 0.

Since operation 5 is on the critical path immediately after operation 4, the copy range is

estimated as 0 cycles. The communication cost for adder 0 is 2 * (1 / (1 + 0)) = 2. For

adder 1, no communications require a copy operation so the communication cost is 0.

communication cost requiredCopies
1 copyRange+

communications in Cto and Cfrom
∑=
86

The KernelC compiler also tries to assign the operation to a functional unit with low func-

tional unit usage, as defined in Equation 1 in the previous section. This factor is crucial

when assigning an operation that can be performed by many kinds of functional units to a

functional unit, such as a copy operation. If a basic block contains a large number of oper-

ations that only one type of functional unit can perform, it is important that other opera-

tions be scheduled on other types of functional units whenever possible.

Returning to the example, operation 6, a negation operation, can be performed by either an

adder (as “0 - v”) or a multiplier (as “-1 * v”). Since an adder has lower functional unit

usage than a multiplier, it is scheduled on adder 1. This heuristic helps produce the optimal

schedule, since a multiply scheduled later must occur on the same cycle.

Lastly, the KernelC compiler tries to assign the operation to a less recently used functional

unit. This factor is weighted so as to be insignificant given a difference in communication

cost or functional unit usage, but serves to distribute operations in the absence of such dif-

ferences.

FIGURE 5-15. Communications to and from operation 4

1: z = 0.0

11: z = z + 1.0

3: in0 >> y

4: a = y + z

5: b = a * a

1, 1 1, 2
1, 2

1, 2

1, 1
87

The KernelC compiler combines these three factors, communication cost, functional unit

usage, and least recent use into a single weight, with the best functional unit having the

lowest weight:1

(5)

5.2.5 Randomization
By introducing a random component to the heuristics, the KernelC compiler uses multiple

iterations of the scheduling process to explore the solution space for the best schedule. The

KernelC compiler first schedules the kernel without any randomization, then schedules it

again with the final weight of each heuristic multiplied by a random value between 0.5 and

1.5. The best schedule, selected by summing the schedule length of the most deeply nested

basic blocks, is chosen as the final schedule. This simple technique is impractical for a

standard compiler. It reduces the schedule length by at most one or two cycles, but that

difference can be important for small, performance critical media processing kernels.

5.3 Post-scheduling
The post-scheduling process translates scheduled operations into machine code executable

on the Imagine processing elements. The KernelC compiler allocates registers then gener-

ates the machine code.

5.3.1 Register allocation
The KernelC compiler allocates registers for each register file separately using conven-

tional techniques [37]. It constructs webs, collections of uses of a variable that can be

assigned to the same register, directly from the communication graph, then uses graph col-

oring to assign webs to registers.

1. Again, the weight of each individual factor was determined experimentally.

weight 1 10 communicationCost×+()
1 2 functionalUnitUsage×+()
1 0.01 leastRecentUseRank×+()×

×
=

88

To construct the webs for a register file, the KernelC compiler only considers communica-

tions assigned to routes through that register file. It iterates through all such communica-

tions. If it encounters a communication that has not been assigned to a web, it initializes a

new web and an empty worklist. It then pushes the communication onto the worklist. As

long as the worklist is not empty, it pops a communication, c, off the top of the worklist. If

c has not been added to a web then the KernelC compiler adds c to the web. It also pushes

every communication that is either of the same result from the same operation as c, or of

the same operand to the same operation as c, that has not been added to a web onto the

worklist. When the worklist is empty, the web is complete.

Returning to the example, consider constructing the web for the left register file of adder

0. The KernelC compiler only considers the communications shown in Figure 5-16, since

those are the only communications assigned to routes through that register file as shown in

Figure 5-17. First, it selects the communication, c1, from operation 1 to operation 11, ini-

tializes a web and worklist, and adds c1 to the worklist. Next, it pops c1 off the worklist

and adds it to the web. It then pushes the communication from operation 11 to itself, c2,

onto the worklist. It then pops c2 and adds it the web.

Once the KernelC compiler has constructed the webs for a given register file, it assigns

webs to registers using a standard interference graph and graph coloring.

Since the KernelC compiler does not consider registers during the scheduling process it is

possible for more registers to be required than are available in a register file. Register pres-

FIGURE 5-16. Communications with routes through left register file of adder 0

1: z = 0.0

11: z = z + 1.0

1, 1
(c1)1, 1

(c2)
89

sure is not as important for a media processor because the working set of most media pro-

cessing kernels is relatively small and a distributed register file architecture supports a

large number of registers. As implemented, the KernelC compiler does not incorporate a

spilling mechanism. However, more complicated kernels (e.g. graphics kernels) and opti-

mizations that increase the size of the working set such as software pipelining make con-

sideration of register pressure during the scheduling process and/or spilling desirable.

FIGURE 5-17. Routes through left register file of adder 0

1

IN ADD0 ADD1 MUL OUT

1: z = 0

11: z =
 z + 1

4: a =
 y + z

3

90

5.3.2 Machine code generation
The KernelC compiler generates an instruction word encoding which operation to perform

on each functional unit, which register to read or write through each register file port, and

which driver drives each shared interconnect resource (bus or register file write port). This

last component of the instruction word is unique to shared interconnect architectures. The

instruction word can encode which driver drives each shared interconnect resource

(resource encoding), or which resource is driven by each driver (driver encoding). The

choice of encoding method is driven in part by instruction word size and in part by hard-

ware implementation of the switches used to connect multiple drivers to each shared

resource.

The example architecture contains four shared interconnect resources: the two shared

buses and the shared register file port of each of two register files connected to adder1.

Each shared bus can be driven by one of several functional unit outputs, and each shared

register pile port can be driven by either bus. Consider cycle 3 of the example, shown in

Figure 5-18. Adder0 drives the top shared bus (denoted bus0), adder1 drivers the bottom

shared bus (denoted bus1), and bus0 drives the right register file of adder1 (denoted

add1.rf1). The shared interconnect component of the instruction word can be encoded

using driver encoding as shown in Figure 5-19 or using resource encoding shown in Fig-

ure 5-20.

FIGURE 5-18. Cycle 3 of final schedule

11: z =
 z + 1

4: a =
 y + z

3

IN ADD0 ADD1 MUL OUT
91

5.4 Summary
This chapter described the KernelC compiler, a VLIW scheduler for the processing ele-

ments of the Imagine media processor. The KernelC compiler incorporates communica-

tion scheduling to allocate Imagine’s shared interconnect, and stream input/output

ordering to handle the sequential access requirement of a Imagine’s stream register file. It

uses heuristics optimized for scheduling small, performance critical media processing ker-

nels to a target architecture with many functional units and shared interconnect to priori-

tize operations and assign each operation to a functional unit.

In comparison to general-purpose applications, media processing kernels motivate sub-

stantially different compiler design tradeoffs. Most media processing kernels center

around a single computation intensive loop. Performance of that loop is critical, leading

some programmers to resort to hand-placed operations. However, by focusing on opera-

tion placement and incorporating techniques such as randomization, the KernelC compiler

yields results comparable to hand placement. The KernelC compiler allows programmers

to concentrate on exploring algorithmic optimizations, and makes it easy to retarget high-

performance code to new architectures.

FIGURE 5-19. Driver encoding FIGURE 5-20. Resource encoding

IN
ADD0
ADD1
MUL
BUS0
BUS1

B
U

S0
B

U
S1

A
D

D
1.

R
F0

A
D

D
1.

R
F1

x
x

xD
riv

er
Shared

Interconnect
Resource

-

-
1
0

1
-

0 1 0 1 IN
ADD0
ADD1
MUL
BUS0
BUS1

B
U

S0
B

U
S1

A
D

D
1.

R
F0

A
D

D
1.

R
F1

x
x

x

D
riv

er

Shared
Interconnect

Resource

01 0 - 0

00

1
10/0
01

0
1

92

Chapter 6

Stream Scheduling

This chapter presents stream scheduling, a compiler extension that efficiently manages the

Stream Register File, an on-chip memory used by a stream processor like Imagine instead

of a cache. Stream processors are optimized for media processing applications written

using the steam programming model presented in Chapter 3. Stream programs consist of a

series of operations on streams, sequences of records. Stream programs typically operate

on large numbers of records with little data reuse, but access memory in a very predictable

fashion. These characteristics make a hardware-managed cache unsuitable for a stream

processor. Instead, a stream processor uses a large software-managed memory called a

Stream Register File (SRF).

Stream scheduling buffers streams in the SRF based on a profile of the stream program in

order to maximize performance by reducing the impact of memory access time. The pro-

file captures the size and access pattern of each stream access and the data flow between

stream operations. Stream scheduling assigns each stream access in the profile to a buffer

in the SRF. Ideally, the results of one operation are buffered until used by another opera-

tion, eliminating memory accesses. Stream scheduling also arranges buffers to allow

memory accesses to occur in parallel with execution. If the streams required for a single

operation will not fit in the SRF, stream scheduling resorts to double-buffering to cycle the

streams from memory through the SRF.
93

This chapter is divided into four sections. Section 6.1 presents the motivation for stream

scheduling. Section 6.2 presents an overview of the stream scheduling algorithm. Section

6.3 describes the stream scheduling algorithm in detail. Section 6.4 discusses several

important special cases for the stream scheduling algorithm.

6.1 Motivation
Efficient management of the SRF is essential for good performance because stream pro-

grams often demand more data bandwidth than the available memory bandwidth. Figure

6-1 shows a simplified diagram of Imagine annotated with available bandwidth. Imagine’s

eight processing elements can each read data from or write data to the SRF through special

hardware buffers at an effective rate of 2 words/cycle. However, Imagine’s two memory

controllers can only transfer data between memory and the SRF at a rate of approximately

1 word/cycle each. Though most practical stream programs use less data bandwidth than

the processing elements’ maximum aggregate bandwidth of 16 words/cycle, most demand

more than the memory system’s aggregate bandwidth of 2 words/cycle. Thus, the SRF

needs to satisfy a significant portion of most stream programs’ data accesses in order to

avoid performance degradation.

FIGURE 6-1. Available bandwidth in Imagine

off-chip
memory

memory
controller

memory
controller

stream
register file

1w/c

1w/c

2w/c
each processing

elements

approx.
 2 words/cycle 16 words/cycle

Imagine
94

Figure 6-2 shows a stream program that will be used to motivate the need for stream

scheduling to efficiently manage the SRF.1 The program consists of six kernels, labeled

Kernel1 through Kernel6. The kernels read and write streams of integers, each of which is

labeled with either a single letter or a letter and a “subscript.” Each stream labeled with a

single letter is a basic stream. Each stream labeled with a letter and a subscript (e.g. a0) is

a derived stream that refers to some or all of the records in the basic stream labeled with

that letter. The program contains several important cases. Kernel2 and Kernel3 both write

to derived streams that refer to half of the basic streams d and e. Kernel4 then reads all of

d and e. Kernel5 writes to the derived stream fx, a portion of f that is accessed using a

stride of 2. Kernel6 writes to the large stream g, which is bigger than the SRF.

Consider managing the SRF at run-time, using a policy called stream caching that treats

the SRF like a cache that holds streams instead of cache lines. When a stream operation is

issued, stream caching allocates spaces for its input and output streams, in their order as

arguments. If there is not enough space for a stream, stream caching ejects the least-

recently-used stream from the SRF until there is enough space. More complex run-time

strategies are possible, but would be difficult to implement given the relatively short exe-

cution time of most kernels on a high-performance processor like Imagine.

Stream caching suffers from four main inefficiencies. First, all output data must be stored

back to memory because it might be ejected from the SRF and later reused. Second, data

that is reused but has been accessed less recently is often ejected in favor of data that is

never reused but has been accessed more recently. Third, because buffers are allocated at

the first available space in the SRF, buffers can be arranged very inefficiently. For exam-

ple, a small, recently used buffer in the middle of the SRF divides the SRF until it and all

less-recently-used streams are ejected. Fourth, derived streams that compose a basic

stream for later use can be assigned to buffers that are not adjacent in the SRF forcing the

whole stream to be reloaded in order to be used.

1. For illustrative purposes, this example uses a 9 kiloword SRF. Imagine has a 16 kiloword SRF.
95

Stream caching allocates the SRF for the example program as shown by the SRF alloca-

tion graph in Figure 6-3. Each horizontal bar indicates a kernel. The large vertical bar rep-

resents the SRF. The intersection of a kernel bar and the SRF bar contains the state of the

SRF for that kernel. Shaded rectangles inside such an intersection indicate a stream access

to that portion of the SRF by that kernel. Light shading indicates a read and dark shading

indicates a write. Unshaded areas indicate streams that are preserved in the SRF between

accesses. Diagonal cross-hatching indicates memory accesses. For example, the stream a

is loaded from memory and read by Kernel1 but ejected to make room for the output of

Kernel2.

// This example assumes a 9 kiloword SRF (actual SRF is 16 kilowords)

Const int N = 2048;

// declare stream variables (indented variables are derived streams)
stream<int> a(N);
stream<int> b(N*2);
stream<int> b0(b, 0, N);
stream<int> b1(b, 1, N);
stream<int> c(N);
stream<int> d(N);
stream<int> d0(d, 0, N/2);
stream<int> d1(d, N/2, N);
stream<int> e(N);
stream<int> e0 = e(0, N/2);
stream<int> e1 = e(N/2, N);
stream<int> f(N);
stream<int> fx(f, 0, N, FIXED, STRIDE, 2);
stream<int> g(N*10);

// call kernels
// INPUTS OUTPUTS
Kernel1(a, b0, b1, c);

Kernel2(b0, d0, e0);

Kernel3(b1, d1, e1);

Kernel4(c, d, e, f,);

Kernel5(c, fx);

Kernel6(a, f, g);

FIGURE 6-2. Example stream program
96

This example demonstrates all four of the main inefficiencies of stream caching. First,

stream caching stores all three outputs of Kernel1 back to memory because they might be

reused later. However, b0 and b1 are never reused. Second, when allocating space for the

outputs of Kernel3, stream caching ejects c instead of b0 to make room for e1 because c

was accessed less recently b0, despite the fact that c is reused and b0 is not. Third, the

small stream e1 is allocated in the middle of the SRF. If Kernel4 needed a large buffer, e1

would make it impossible to allocate one without ejecting e1 and all streams accessed less

recently than e1. Fourth, because stream caching allocates the derived streams that com-

pose d and e when issuing separate kernels, the derived streams are not adjacent in the

SRF so both d and e are reloaded for Kernel 4.

Stream caching also inefficiently sizes buffers for streams that are double-buffered

because they are too large for the SRF. Double-buffering, described in more detail in the

next section, cycles portions of a stream through two alternating halves of a buffer. The

larger the buffer, the fewer times double-buffering needs to swap half-buffers, reducing

overhead. However, that overhead is usually less costly than reloading an ejected stream.

Using stream caching, either the double-buffered stream is buffered in the first available

space, often resulting in a very small buffer, or older streams that might be reused are

FIGURE 6-3. SRF allocation graph for stream caching

Legend

K1

K2

K3

K4

K5

K6

d

b1

b0

c

a

a

b0

b1

b0 b1 c

d0e0

d1 e1

c df

cfx

fg

e

SRF

e0

e1

e1e

cfx

d0tim
e

address space

s

s

s

s

s

stream in SRF

read

write

load or store
double-
buffered
97

ejected to make room for a larger buffer. In the example, stream caching uses the first pol-

icy and allocates g to an unnecessarily small buffer.

Stream scheduling is a compiler extension that manages the SRF better than a run-time

technique such as stream caching because it allocates buffers ahead of time based on a

profile of the program that enables it to consider all stream accesses, not just past accesses.

Stream scheduling eliminates all of the inefficiencies of stream caching described above.

Only output data that is ejected from the SRF and reused later needs to be stored to mem-

ory. Stream scheduling determines which streams to buffer in the SRF based on all uses,

not just past uses. It arranges streams to make efficient use of the SRF and tries to assign

derived stream accesses to adjacent buffers.

Stream scheduling allocates the SRF as shown in Figure 6-4, eliminating all unnecessary

memory accesses. Only necessary memory accesses remain. The initial input a is loaded,

and the final output g is stored. The streams f and fx are stored in order to combine data

written with different access modes, then f is reloaded. Lastly, the stream a is stored and

reloaded because it cannot fit in the SRF at the same time as the inputs and outputs of

Kernel4. Stream scheduling requires a total of 18.5 kilowords of memory accesses. Stream

caching requires a total of 34.5 kilowords of memory accesses. Further, because stream

scheduling allocates a larger buffer for g than stream caching, g needs 5 double buffer

swaps instead of 18. Using stream scheduling to produce the allocation shown in Figure 6-

4 provides examples throughout the rest of this chapter.

6.2 Overview
To allocate the SRF for a program, stream scheduling assigns each stream access in a pro-

file of the program to a buffer in the SRF as depicted in Figure 6-5. The profile lists the

series of operations that compose the program, such as kernels, copies, and transfers to

and from the host and network. For each operation, the profile records all stream accesses,

reads from or writes to a stream, made by that operation. For each stream access, the pro-

file records the start address, end address, and access pattern of the stream. The profile

also notes which stream accesses are to streams that are variable length (access a data-
98

dependent number of records), or variable bounds (have a data-dependent start and end

addresses).

Figure 6-6 graphically depicts the profile of all the stream accesses in the example pro-

gram. Each horizontal bar in Figure 6-6 represents a kernel. Each vertical bar represents a

basic stream. Shaded rectangles where a kernel bar intersects a data bar represent a stream

access to that data by that kernel. Light shading indicates a stream read, dark shading indi-

cates a stream write. Vertical cross-hatching indicates stream access with a strided access

FIGURE 6-4. SRF allocation graph for stream scheduling

FIGURE 6-5. Stream scheduling assigns each stream access to a buffer in SRF

K1

K2

K3

K4

K5

K6

b1

c

a

a

b0

b1

b0b1c

d0

d1

c df

c fx

g

e0

e1

e

f

SRF

c

d0 e0

stream
accessoperation

stream
data

buffer

SRF

profile
99

pattern. Figure 6-7 shows the SRF buffer each stream access in the example program is

assigned to. The first stream access to the stream a is highlighted in Figure 6-6, and the

buffer it is assigned to is highlighted in Figure 6-7.

FIGURE 6-6. Profile of all stream accesses for the example program

FIGURE 6-7. Buffers for each stream access in the example program

a

b0

b1

b0 b1

d0 e0

d1 e1

d e f

fx

f g

a b d e f g

K1

K2

K3

K4

K5

K6

c

c

c

c

a

K1

K2

K3

K4

K5

K6 a

b0

b1

b0b1c

d0

d1

c df

c fx

g

e0

e1

e

f

SRF

a

100

To avoid resource conflicts, stream scheduling assigns all stream accesses for a given

stream operation to disjoint buffers (except accesses to the same stream). Stream schedul-

ing attempts to assign each stream access to a buffer with a size equal to the size of the

stream. If all of the streams accessed by a given stream operation cannot fit in the SRF,

stream scheduling assigns one or more large streams to smaller buffers. At run time, dou-

ble-buffering is used to cycle those streams through their buffers.

Double-buffering cycles portions of a large stream through two halves of a smaller buffer.

Figure 6-8 shows the double buffering cycle used to read a stream. Initially, the first por-

tion of the stream is loaded into half buffer 1. Then, the processing elements read the con-

tents of half buffer 1 while a new portion of the stream is loaded into half buffer 2. When

the processing elements are done with the portion of the stream in half buffer 1, the half-

buffers swap roles. A new portion of the stream is loaded into half buffer 1, while the pro-

cessing elements read the contents of half buffer 2. The half-buffers repeatedly swap roles

until the entire stream has been read. Figure 6-9 shows the converse double buffering

cycle used to write a stream.

FIGURE 6-8. Double-buffered stream
read

FIGURE 6-9. Double buffered stream
write

1 2

load initial half-buffer

2

load half-buffer 2

1

read
half-buffer 1

1

load half-
buffer 1

2

read half-
buffer 2

1

read final half-
buffer

2

stream data in
memory SRF buffer PEs

1

2

store
final
half-

buffer

2

store half-buffer 1

1

write half-
buffer 2

1

store half-buffer 2

2

write half-
buffer 1

1

write initial
half-buffer
2

stream data in
memory SRF buffer PEs
101

Stream scheduling tries to assign stream accesses to the same data made by different oper-

ations to the same buffer and preserve that buffer between stream accesses in order to

reduce memory accesses. The simplest, but worst method for performing two stream oper-

ations is to load all inputs from memory, perform the first operation, store all outputs back

to memory, then do the same for the second operation as shown in Figure 6-10. If the two

operations access the same data, assigning both stream accesses to the same buffer and

ensuring that no intervening access is assigned to an overlapping buffer reduces needed

memory accesses. In the best case, one stream operation writes data to a buffer in the SRF,

and a later operation reads that data from the same buffer as shown in Figure 6-11. Even if

one stream operation reads data that is loaded from memory, later operations can still read

that data from the same buffer, eliminating the need for further loads.

FIGURE 6-10. Stream operations with
accesses assigned to different buffers

FIGURE 6-11. Stream operations with
accesses assigned to the same buffer

t

t

s

load input

memory SRF PEs

t t

store output

s s

s

write output

s t

read input

s

t

load input

u u

store output

s t

t

write output

s u

read input

ts

s

load initial input

memory SRF PEs

u t

store final output

s s

s

write output

s t

read input

s

s
write

output

s t

read input

u

u

102

If a stream access requires a memory access, stream scheduling tries to assign it and the

stream accesses for an adjacent operation to disjoint buffers to allow the memory accesses

to occur in parallel with execution as shown by Figure 6-12. If a stream read for one oper-

ation requires a load, stream scheduling tries to assign it to a buffer that does not overlap

with a buffer assigned to an access made by the previous operation as with the load of u in

Figure 6-12. Similarly, if a stream write for one operation requires a store, stream schedul-

ing tries to assign it to a buffer that does not overlap with an access made by the next oper-

ation, as with the store of t in Figure 6-12.

In order to reduce memory accesses and allow required memory accesses to occur in par-

allel with execution, stream scheduling allocates buffers in two dimensions: space and

time. Each word in the SRF defines a unit of space. Each stream operation defines a unit

of time. A stream access has a fixed height and width and a fixed location in time, but can

be assigned to any location in space. Stream scheduling allocates a buffer as a rectangle in

this two dimensional space that encloses the stream accesses assigned to it. By allocating a

buffer shared by multiple accesses over time as well as space, stream-scheduling ensures

that intervening stream accesses do not overwrite data contained in the buffer. Stream

FIGURE 6-12. Buffers arranged to allow parallel execution and memory accesses

m

m

m

s

load initial input

n m

store final
output

s n

s
write

output

s

read input

s

n

write output

s m

read input

t

t

m

m

load input

t

store output

t

t

memory SRF PEs
103

scheduling extends the buffer in time slightly before the first access if it requires a load,

and slightly after the last access if it requires a store. These extensions, called load shad-

ows and store shadows, prevent overlapping buffers from being allocated for adjacent

operations allowing the memory accesses to occur in parallel with execution.

Figure 6-13 shows the buffers for the example program in two dimensions. Two buffers

are highlighted. The leftmost highlighted buffer shows how all stream accesses to c are

assigned to the same buffer and no intervening stream access is assigned to an overlapping

buffer, eliminating memory accesses. The rightmost highlighted buffer shows how the

load shadow for the required load of the stream a prevents an overlapping buffer from

being assigned to a stream access for the previous operation, allowing the load to occur in

parallel with execution of Kernel5.

FIGURE 6-13. Buffers in two-dimensions for the example program

a

a

b0

b1

b0b1

d0 e0

d1 e1

d ef

f

K1

K2

K3

K4

K5

K6

c

c

c

g

fx

SRF

space

tim
e

104

6.3 Algorithm
In essence, stream scheduling initially assigns each group of compatible stream accesses

to a buffer, then repeatedly divides or shrinks buffers until all buffers fit in the SRF. More

precisely, stream scheduling performs the following steps, each of which is described in

detail later in this section:

1. Determine which stream accesses are double-buffered
2. Assign each group of compatible accesses to the same buffer
3. Mark stream accesses that require memory accesses
4. Repeatedly divide each buffer in time and space if it is possible to do so without

requiring additional memory accesses
5. Extend buffers with load or store shadows
6. Position buffers in the SRF
7. If the buffers do not fit in the SRF, reduce a buffer and repeat steps 3-7

Step 1. Determine which stream accesses are double-buffered

First, stream scheduling determines which stream accesses for each operation need to be

double-buffered in order to ensure that all streams accessed by that operation can fit in the

SRF simultaneously. It initializes the double-buffer size for each stream access to the size

of the accessed stream, indicating that the stream access does not need to be double-buff-

ered. If the total double-buffer size of the stream accesses for an operation exceeds the size

of the SRF then stream scheduling reduces the double-buffer size of the stream access to

the largest stream, forcing it to be double-buffered at run time. It sets the double-buffer

size for that stream access equal to the size of the SRF minus the total of all other double-

buffer sizes or a minimum double-buffer size, which ever is greater. If the total double-

buffer size still exceeds the size of the SRF, it repeats the process with the stream access to

the second largest stream, then with the stream access to the third largest stream, and so on

until the total double-buffer size does not exceed the size of the SRF.

This policy is dictated by the fact that the cost of double-buffering one stream in a smaller

buffer and reloading it later is usually less than the cost of double buffering two streams in

larger buffers and reloading both streams later. The minimum double-buffer size is the
105

double-buffer size for which these costs are equal under reasonable assumptions. The

overhead of double-buffering a stream is proportional to the number of half-buffer swaps,

equal to the size of the stream divided by the size of a half-buffer. The cost of reloading a

stream is equal to the size of the stream divided by the memory system bandwidth. A sim-

ple mathematical analysis shows that the minimum double-buffer size is equal to twice the

overhead of a half-buffer swap divided by the memory system bandwidth, assuming two

streams with sizes equal to the SRF size. For Imagine, the overhead of a half-buffer swap

is approximately 300 cycles and memory system bandwidth is approximately 1 cycle per

word so the absolute minimum buffer size is roughly 600 words.

Figure 6-14 shows the stream accesses in the example program with double cross-hatch-

ing used to indicate double-buffering. In the example, Kernel6 reads two 2 kiloword input

streams, a and f, and writes a 10 kiloword output stream, g. Initially, the total double-

buffer size for these stream accesses is 14 kilowords which is greater than the size of the 9

kiloword SRF. Stream scheduling reduces the double-buffer size of the stream access to

the largest stream, g, highlighted below, to the total SRF size minus the double-buffer size

of the other two stream accesses, or 9 - (2 + 2) = 5 kilowords.

FIGURE 6-14. Example program with double-buffering

a

b0

b1

b0 b1

d0 e0

d1 e1

d e f

fx

f

a b d e f g

K1

K2

K3

K4

K5

K6

c

c

c

c

a

g

106

Step 2. Assign accesses to buffers

Stream scheduling initially tries to assign as many compatible stream accesses to each

buffer as possible. Two stream accesses are compatible if they access subsequences of a

common supersequence of records. For example, a stream access to the first ten records in

a basic stream is compatible with a stream access to the last ten records, but not with a

stream access to all the odd records. A double-buffered stream access is inherently incom-

patible with all other stream accesses because it cycles data through a buffer, overwriting

the contents.

SRF design limitations also restrict which stream accesses are compatible. If the SRF

requires that all stream accesses start at an SRF addresses divisible by a fixed factor, then

compatible streams must be portions of the same sequence of records that are offset by an

amount divisible by that factor. For Imagine, the SRF requires that all accesses start with

an SRF address divisible by 32. Assuming records are one word in size, an access to

records 0 to 31 is compatible with an access to records 64 to 95, but not with an access to

records 65 to 96.

Stream scheduling sets the initial size and time span of each buffer based on the stream

accesses it encloses. The width of the buffer is equal to the size of the smallest common

supersequence of records for all stream accesses assigned to the buffer, or the minimum

double-buffer size of the double-buffered stream access assigned to the buffer. For exam-

ple, a buffer that includes a stream access to records 30 to 39 and a stream access to

records 50 to 59 has an initial width of 30 since the smallest common supersequence is

records 30 to 59. Stream accesses are offset into the buffer by an amount equal to their off-

set into this smallest common supersequence. In the previous example, the access to

records 50 to 59 is offset into the buffer by the size of 20 records. The initial time span of

a buffer is from the operation that makes the first stream access assigned to it to the opera-

tion that makes the last stream access assigned to it.

Figure 6-15 shows the initial buffers for the example program. Two buffers are high-

lighted. The leftmost highlighted buffer contains three compatible stream accesses: to the
107

first half, second half, and all records of d. The buffer is sized to enclose all the accesses.

The access to d1, the second half of d, is offset into the buffer by half the size of d. The

rightmost highlighted buffer contains an access to fx which is not compatible with the

stream accesses to f because it uses a different stride.

Step 3. Mark stream accesses that require memory accesses

Stream scheduling marks all stream accesses that require memory accesses to synchronize

data between buffers. Stream accesses assigned to different buffers can access the same

data. If a stream write modifies data used by a stream read assigned to a different buffer

then the stream write needs to store to memory and the stream read needs to load from

memory to propagate the changes between buffers. If a stream write modifies data used by

a stream read assigned to the same buffer that requires a load from memory then that

stream write also needs to store to memory to incorporate the changes into the loaded data.

Stream scheduling first determines which stream writes reach which stream reads using

data flow analysis. A stream write reaches a stream read if any of the records that it modi-

fies could be used by that stream read. To make this determination, stream scheduling

traces all paths of execution backward from each stream read, noting stream writes it

encounters that could modify the records used by the stream read. It also accumulates a set

of intervening accesses: all stream writes encountered and all stream reads encountered

FIGURE 6-15. Example program with initial buffers

a

a

b0

b1

b0 b1

d0 e0

d1 e1

d e f

f

K1

K2

K3

K4

K5

K6

c

c

c fx

g

108

that require loads to the same buffer as the current stream read. It terminates the current

path when the set of intervening accesses covers the stream read. A set of stream accesses

covers a specific stream access if the union of all records accessed by the set of stream

accesses is a superset of all records accessed by the specific stream access. For instance, a

set of two stream accesses, one to records 0 to 9 and one to records 10 to 19, covers a

stream access to records 0 to 14, but not a stream access to records 0 to 29. To make sure

the analysis terminates, stream scheduling records the set of intervening accesses when it

enters a basic block and terminates a path when attempting to enter a basic block if it has

already entered that basic block with the same set or a smaller subset of intervening

accesses.

When it has determined which stream writes reach which stream reads, stream scheduling

marks stream reads and then streams writes that require memory accesses. A stream read

requires a memory access if it is reached by a stream write in a different buffer. A stream

write requires a memory access if it reaches a stream read in a different buffer or a stream

read which requires a memory load. Figure 6-16 shows a case in which a stream write in

one buffer does not reach a stream read in another buffer, because intervening accesses

cover the stream read. Figure 6-17 shows a case in which a stream write in one buffer

reaches a stream read in another buffer, so both require memory accesses.

FIGURE 6-16. Write to sx does not
reach read of s

FIGURE 6-17. Write to sx reaches read
of s

covers
s

sx

s0

s1

s

modifies
s

sx

s0

s1

s

modifies
s

109

In the example program, the stream accesses to f and fx involve the same data but are

assigned to different buffers as shown in Figure 6-18. Stream scheduling analyzes the

stream read of f as described above and finds that the stream writes to f and fx reach the

stream read. Since the stream write to fx reaches the stream read and is assigned to a dif-

ferent buffer, the stream read requires a load. Both stream writes also require stores since

they reach a stream read that requires a load.

Step 4. Repeatedly divide each buffer in space and time

Stream scheduling repeatedly divides each buffer in space or in time if it is possible to do

so without inducing additional memory accesses. It is possible to divide a buffer in space

if the stream accesses assigned to the buffer can be divided into two groups that access dis-

joint ranges of records. Stream scheduling divides the buffer at the separation between

ranges as shown in Figure 6-19. It is possible to divide a buffer in time if the stream

accesses assigned to the buffer can be divided into two groups such that no stream write in

one group reaches a stream read in the other group that does not require a load and the

span from the earliest access to the last access in each group is disjoint in time. Stream

scheduling divides the two buffers as shown in Figure 6-20.

The example program contains two buffers that can be divided, highlighted in Figure 6-21.

The buffer that contains accesses to b0 and b1, the first and second halves of b, can be

FIGURE 6-18. Example program with required memory loads

a

a

b0

b1

b0 b1

d0 e0

d1 e1

d e f

f

K1

K2

K3

K4

K5

K6

c

c

c fx

g

110

divided in space into one buffer for each half. The buffer that contains accesses to f can be

divided in time because the stream write to f only reaches a stream read that requires a

load. Figure 6-22 shows the divided buffers.

Step 5. Extend buffers with load and store shadows

Stream scheduling extends buffers in time to allow memory accesses to occur in parallel

with execution. By extending a buffer into an adjacent stream operation’s unit of time,

stream scheduling prevents buffers containing the adjacent operation’s stream accesses

from being allocated the same space in the SRF as the extended buffer. Thus, the memory

FIGURE 6-19. Buffer divided in space FIGURE 6-20. Buffer divided in time

FIGURE 6-21. Buffers that can be divided in the example program

s1

s0

s1

s0 s0

s

s0

s1

a

a

b0

b1

b0 b1

d0 e0

d1 e1

d e f

f

K1

K2

K3

K4

K5

K6

c

c

c fx

g

111

system can load or store the contents of the extended buffer in parallel with execution of

the adjacent operation. However, if the adjacent operation writes the data that is loaded or

reads the data that is stored, there is no point in extending the buffer because there is no

possibility of parallelism.

Stream scheduling extends buffers based on the earliest and latest stream access assigned

to each buffer. If the earliest stream access assigned to a buffer is a stream read, stream

scheduling extends the buffer into the previous operation with a load shadow unless the

previous operation writes the data that is being loaded. Similarly, if the latest stream

access assigned to a buffer is a stream write, stream scheduling extends the buffer into the

next operation with a store shadow unless the next operation reads the data that is being

stored.

The example program contains three buffers that are extended with load and store shad-

ows, highlighted in Figure 6-23. The buffer for the stream write to fx is extended with a

store shadow because the next operation, Kernel6, does not read the data that is stored.

Conversely, the buffer for the stream read to f is not extended with a load shadow because

the previous operation, Kernel5, writes the data that is being loaded

Step 6. Position buffers in the SRF

FIGURE 6-22. Example program with divided buffers

a

a

b0

b1

b0 b1

d0 e0

d1 e1

d e f

f

K1

K2

K3

K4

K5

K6

c

c

c fx

g

112

Once stream scheduling has constructed the buffers, it attempts to position them in the

SRF. Positioning the buffers in the SRF requires packing the rectangular buffers into a

two-dimensional space with a fixed width equal to the size of the SRF. Each buffer has a

fixed vertical position, but can have any horizontal position inside this space. This packing

problem is the NP-hard “dynamic storage allocation” problem examined in [13][16]. Visu-

alizing the buffers as rectangular wooden blocks on a rectangular grid, if there is an

arrangement of buffers such that all of the buffers fit on the grid, it is possible to remove

the buffers one at a time by sliding the rightmost buffer off to the right. Therefore, it is

possible to position all of the buffers in the space by sliding each buffer as far left as possi-

ble in the reverse order of removal.

Stream scheduling selects buffers one at a time using a heuristic and positions each buffer

at the leftmost possible position. The heuristic is based on the intuitive notion of trying to

form long vertical strips of densely packed buffers. It tries to complete the current strip

before starting another, and positions the largest buffers first so that smaller buffers can fill

in the cracks. Stream scheduling selects a buffer based on three comparisons of succes-

sively less importance. It selects the buffer that can be positioned at the leftmost possible

position among all buffers. If there is more than one such buffer, it selects the largest

FIGURE 6-23. Example program with load and store shadows

a

a

b0

b1

b0 b1

d0 e0

d1 e1

d e f

f

K1

K2

K3

K4

K5

K6

c

c

c fx

g

113

buffer, based on its area. If there is more than one such buffer, it selects the buffer that con-

tains the earliest stream access among those buffers.

Though stream scheduling nominally treats each buffer as a rectangle, buffers can be

packed more densely by treating each buffer as a convex shell that “shrink-wraps” the

stream accesses assigned to it. For this purpose, load and store shadows are treated as

extending the earliest and latest accesses assigned to the buffer, respectively.

The buffers in the example program are positioned in the SRF in the order shown in Fig-

ure 6-24 to produce the arrangement shown in Figure 6-25. The first three buffers to be

positioned are numbered. Initially, all buffers can be positioned at the leftmost margin so

stream scheduling selects the largest buffer, buffer 1. All remaining buffers can be posi-

tioned at the right edge of buffer 1, so stream scheduling selects the largest remaining

buffer, buffer 2. Next, only buffer 3 or the buffer containing the stream read of f by

Kernel6 can still be positioned at the right side of buffer 1. Stream scheduling selects the

largest of the two buffers, buffer 3. Unfortunately, this arrangement of buffers does not fit

in the SRF (for this set of buffers there is no valid arrangement).

FIGURE 6-24. Order of positioning for buffers in the example program

K1

K2

K3

K4

K5

K6 a

a

b0

b1

b0b1

d0 e0

d1 e1

d ef

f

c

c

c fx

g

Order of positioning
1

2

3

114

Step 7. If the buffers do not fit, reduce a buffer and repeat Steps 3-7

If the arrangement of buffers produced in Step 6 does not fit in the SRF then stream sched-

uling reduces a buffer. Reducing a buffer involves one of two courses of action: shrinking

a buffer that contains a double-buffered access or dividing a buffer in time.

To decide which buffer to reduce, stream scheduling first decides on which time step to

reduce a buffer. If the total size of all the buffers on any time step is greater than the size of

the SRF then there is no possible arrangement of buffers that will fit in the SRF. If such a

time step exists, stream scheduling selects that time step. If no such time step exists,

stream scheduling selects the time step with the buffer containing the stream access with

the rightmost edge. If multiple time steps meet one of these criteria, stream scheduling

selects the first such time step.

Next, stream scheduling decides which buffer on the chosen time step to reduce. As dis-

cussed in the description of Step 1, double-buffering overhead is less costly than reloading

a stream, so stream scheduling shrinks a buffer that contains a double-buffered access

whenever possible. If the chosen time step contains a double-buffered access that is larger

FIGURE 6-25. First arrangement of buffers for the example program

K1

K2

K3

K4

K5

K6 a

a

b0

b1

b0b1

d0 e0

d1 e1

d ef

f

c

c

c fx

g

SRF1

2

3

115

than the minimum double buffer size, stream scheduling shrinks that buffer. The logic of

Step 1 ensures that there is at most one such buffer. If there is no such buffer, stream

scheduling divides the buffer that makes the worst use of SRF space. In principle, the

buffer with the most time between accesses makes the worst use of SRF space. However,

dividing a large buffer that makes poor use of SRF space rather than a small buffer that

makes good use of SRF space is bad trade-off if only a small amount of additional SRF

space is needed. Hence, stream scheduling reduces the buffer with the greatest weight cal-

culated by Equation 6.

(6)

The time between accesses is the number of time steps between the latest access before the

chosen time step and the earliest access after the chosen time step. Buffers with an access

on the chosen time step have a time between accesses of 0. Buffers with load or store

shadows on the chosen time step are treated as having a time between accesses of 2. The

needed size is estimated by subtracting the size of the SRF from the total size of all buffers

on the time step if the time step was chosen using the first criteria, or from the position of

the edge of the rightmost buffer on that time step if the time step was chosen using the sec-

ond criteria.

Stream scheduling then reduces the chosen buffer and tries to fit the buffers in the SRF

again. It shrinks a buffer containing a double-buffered access by an amount equal to the

needed size up to the minimum double-buffer size. It divides a buffer in time at the chosen

time step. If only the load shadow or store shadow of the buffer crosses the chosen time

step, it eliminates that shadow. After reducing the buffer, stream scheduling repeats Steps

3 through 7.

For the example program, stream scheduling chooses the time step on which Kernel4

occurs because the total size of the buffers on that time step exceeds the size of the SRF.

weight time between accesses

max buffer size
needed size
--------------------------- 1.0,()

--=
116

There are no double-buffered stream accesses on that time step, so it divides the buffer

that makes the worst use of SRF space. Stream scheduling divides the buffer containing

both reads from a as shown in Figure 6-26 because it has four time steps between accesses

and a size equal to the needed space.

Stream scheduling then repeats Steps 3-7. Step 6 positions the buffers in the order shown

in Figure 6-27 to produce the final arrangement of buffers shown in Figure 6-28.

6.3.1 Completion
Stream scheduling completes once all buffers fit in the SRF. Stream scheduling always

completes. In the worst case, each buffer is repeatedly reduced until it contains only a sin-

gle access and all load and store shadows are eliminated. Since Step 1 ensures that all

accesses for each operation fit it the SRF, these single-access, shadowless buffers will

always fit.

6.4 Special Cases
This section details several special cases that deviate from the general stream scheduling

algorithm presented in the previous section. It describes the special handling and restric-

FIGURE 6-26. Example program showing the buffer that is divided in time

a

a

b0

b1

b0 b1

d0 e0

d1 e1

d e f

f

K1

K2

K3

K4

K5

K6

c

c

c fx

g

117

tions for streams with variable lengths or bounds, streams with indexed access patterns,

and stream operations other than kernels.

FIGURE 6-27. Revised order of positioning for buffers in the example program

FIGURE 6-28. Final arrangement of buffers for the example program

a

a

b0

b1

b0b1

d0 e0

d1 e1

d ef

f

K1

K2

K3

K4

K5

K6

c

c

c fx

g

Order of positioning

a

a

b0

b1

b0b1

d0 e0

d1 e1

d ef

f

K1

K2

K3

K4

K5

K6

c

c

c fx

g

SRF
118

6.4.1 Variable length and variable bounds streams
Stream scheduling handles the unpredictability of variable length and variable bounds

stream accesses by assuming the worst case. A variable length stream contains a number

of records determined at run time. Stream scheduling assumes that a variable length

stream access has maximum length when determining which streams it reaches or is

reached by during data-flow analysis in Step 3, as shown in Figure 6-29. However, stream

scheduling assumes that it has length zero when determining which stream accesses it

covers, except for accesses to the same variable length stream, as shown in Figure 6-30.

Variable bounds streams have start and end addresses that are determined at run time. An

access to a variable bounds stream is not compatible with an access to any other stream

since the two accesses could violate hardware restrictions regarding their start addresses.

Since a variable bounds stream could access all or none of the records in the basic stream

it is derived from it is treated like a variable length stream in Step 3.

6.4.2 Indexed Streams
Stream scheduling treats any operation that uses a stream with an indexed access pattern

as having the index stream as an additional input. The index stream contains the indexes of

the records in the indexed stream within the basic stream that it is derived from. The index

stream is only needed to load or store the indexed stream. Stream scheduling conserva-

tively assumes that all uses of an indexed stream require the index stream, because divi-

sion of buffers could force any stream access to load or store the stream. A more complex

FIGURE 6-29. write to sv reaches read
of s1

FIGURE 6-30. sv doesn’t cover s1 so
write to s also reaches read of s1

s

sv

s1

assumed to
be maximum

length

s

sv

s1

assumed to
be zero
length
119

approach would be to add and remove index stream accesses in Step 3 based on which

indexed stream accesses require memory accesses. Since an indexed stream accesses an

unpredictable set of records, an indexed stream access is handled like a variable length

stream in the data-flow analysis of Step 3.

6.4.3 Other Stream Operations
Stream operations can be grouped into kernels, transfer operations, and copy operations. A

kernel reads some input streams from the SRF and writes some output streams to the SRF.

A transfer operation transfers a stream between the SRF and an explicit unit such as the

host processor, network, or microcode store. A transfer operation is treated as a kernel that

only reads one input stream or writes one output stream.

A copy operation requires special handling because it is performed by the implicit mem-

ory system. A copy operation makes two stream accesses: a stream read to the source

stream and a stream write to the destination stream. However, it does not need to have a

buffer in the SRF for both streams. If the source stream is written closer to the copy than

the destination stream is read, the copy saves the source stream as the destination stream

as shown in Figure 6-31. Otherwise, it loads the source stream as the destination stream as

shown in Figure 6-32. In either case, the stream in the SRF is called the primary stream

and the stream in memory is called the secondary stream. To handle a copy operation dur-

ing SRF allocation, stream scheduling assigns the secondary stream access to a special

buffer in Step 2. This buffer in never positioned in the SRF. Stream scheduling handles the

primary stream access normally. Since the secondary stream access is the only stream

access assigned to the special buffer, it always requires a memory access. In a postpass,

stream scheduling maps the secondary steam access to the same location in the SRF as the

primary stream access.

6.5 Summary
This chapter presented stream scheduling, a compiler extension for allocating the stream

register file that replaces the cache in a stream processor. Stream scheduling allocates the

SRF more efficiently than a run-time approach like stream caching because it uses a pro-
120

file of the program that enables it to consider all stream accesses, not just past ones.

Stream scheduling allocates the SRF in two-dimensions: space and in time. Essentially, it

assigns all stream accesses in the profile to two-dimensional buffers, then tries to position

all of the buffers in the SRF over time. If the buffers do not fit in the SRF, stream schedul-

ing shrinks a buffer in space or divides a buffer in time and then tries again until it suc-

ceeds.

Stream scheduling uses the structure of a stream program to combine the performance

advantages of programmer controlled memory access and the implementation efficiency

of implicit memory access. Programmer controlled memory access usually yields better

performance for media processing applications. However, hand-coding memory accesses

is time consuming and architecture specific. Stream scheduling maps a stream program to

any stream processor without programmer involvement.

FIGURE 6-31. if s is produced closer,
streamCopy(s, t) saves s as t

FIGURE 6-32. if t is used closer,
streamCopy(s, t) loads s as t

t

copy

memory SRF PEs

s s

copy

memory SRF PEs

t

121

122

Chapter 7

StreamC Compiler and Dispatcher

This chapter presents the StreamC compiler and run-time dispatcher used to compile

stream programs and execute them on the Imagine media processor system, respectively,

as shown in Figure 7-1. A stream program consists of a conventional program that con-

tains kernel calls and stream copies and transfers as described in Chapter 3, hereafter col-

lectively called stream operations. The StreamC compiler converts each stream operation

in a stream program into a series of primitive operations executable by the Imagine pro-

cessor, hereafter called Imagine operations. When the host processor is executing the

stream program and encounters a stream operation, it invokes the run-time dispatcher, a

software component that handles interaction with Imagine. The run-time dispatcher sends

the corresponding Imagine operations produced by the StreamC compiler to the Imagine

processor’s issue buffer, a small on-chip buffer from which the Imagine processor issues

operations. For example, the StreamC compiler might convert a kernel call into a series of

four Imagine operations: writing two control registers, loading a stream, and executing the

kernel. At run time, when the host processor reaches the kernel call, it invokes the run-

time dispatcher which sends the four imagine operations to the issue buffer on Imagine.

This chapter describes how the StreamC compiler converts stream operations into Imagine

operations using profile compilation. Profile compilation exploits the limited amount of

data-dependent processing in a stream program by generating one or more near-static pro-

files of the program and compiling each profile. This technique makes the stream opera-

tions in the program more predictable, enabling the StreamC compiler to be more
123

efficient. To compile a profile, the StreamC compiler converts each stream operation into

one or more Imagine operations. First, the StreamC compiler allocates resources such as

the stream register file. Next, it generates the Imagine operations. Lastly, it assigns each

Imagine operation to an issue slot in the Imagine processor’s issue buffer, and encodes

dependencies on other Imagine operations that could be in the issue buffer.

The run-time dispatcher coordinates all communications between the host processor and

the Imagine processor needed to execute a primitive operation. The primary role of the

run-time dispatcher is to dispatch Imagine operations to the Imagine processor. It updates

each Imagine operation to reflect any data-dependent streams, waits for the issue slot

assigned to the Imagine operation to become empty, and places the Imagine operation in

the issue slot. The run-time dispatcher also manages data transfers between the host pro-

cessor and the Imagine processor and coordinates double-buffered stream accesses.

FIGURE 7-1. Roles of the StreamC compiler and run-time dispatcher

...
stream op
...
stream op
...

...
Imagine op
Imagine op
...
Imagine op
Imagine op
...

Host Processor Imagine Processor

Imagine op

Issue
buffer

Run-time
dispatcher

...
Imagine op
Imagine op
...
Imagine op
Imagine op
...

Stream
compiler

Stream
program
124

This chapter consists of three sections. Section 7.1 describes the StreamC compiler. Sec-

tion 7.2 describes the run-time dispatcher. Section 7.3 discusses stream program optimiza-

tions that can be used to improve performance.

7.1 StreamC Compiler
This section presents the StreamC compiler. It discusses how the StreamC compiler uses

profile compilation. It describes the three steps the StreamC compiler uses to convert each

stream operation into Imagine operations: allocating resources, generating a sequence of

Imagine operations, and assigning each Imagine operation to an issue slot and encoding its

dependencies on other Imagine operations in the issue buffer.

7.1.1 Profile compilation
The StreamC compiler is optimized for stream programs, media processing applications

written using the stream programming model that involve a predictable sequence of

stream operations under a specific set of parameters. Media processing applications are

characterized by a consistent transformation from an input data structure to an output data

structure. The sequence of stream operations used to perform this transformation is dic-

tated almost entirely by a small set of parameters, such as image size. For a fixed set of

parameters, there are few data-dependent variations in the control flow between stream

operations or the stream accesses made by those stream operations. Most data-dependent

variations that do occur are simple iterative or conditional control-flow, or stream accesses

with data-dependent length or bounds. StreamC requires the programmer to annotate these

data-dependent variations as described in Chapter 3.

Figure 7-2 shows a stream program called EyeMatch that illustrates these properties. Eye-

Match is the core of a simple optical identification system. It tries to find a match for a ref-

erence image of an eye in a live image using five steps, numbered 1-5 in Figure 7-2. First,

it transfers the live image and the reference image into streams. Second, it computes a

color histogram of the eye using a kernel called GenHist. Third, it compares the histogram

of the eye to a histogram of each eye-size block of the image, recording the results as pos-

sible matches. Fourth, it sorts the possible matches and eliminates all possible matches
125

that do not meet a specific threshold. Lastly, it tests each remaining possible match using

two comparison methods until a good match is found. For specific image sizes, there are

few data-dependent variations in EyeMatch. Only the length of the stream of sorted possi-

ble matches, the position of each possible match tested, and the number of possible

matches that are tested before a match is found are data-dependent. These variations are

annotated as described in Section in Figure 7-2.

The StreamC compiler exploits the relative lack of data dependent variations by generat-

ing a profile of the stream program for a fixed set of parameters and compiling the profile.

A profile is the actual sequence of stream operations used to execute a program. If the

stream program contains any data-dependent control-flow, the program is divided into

basic blocks based on the data-dependent control flow constructs. The sequence of stream

operations used to execute each basic block is recorded only the first time the basic block

is executed. For each stream operation, the profile contains the stream accesses that opera-

tion makes. For each stream access, the profile contains a unique identifier for the under-

lying basic stream, and the start address, end address, data dependence parameter, and

access pattern (if applicable).

A profile can be generated dynamically based on actual execution, or statically using com-

piler analysis. Dynamic profile generation involves compiling the stream program using

naive resource allocation, executing it, and recording the actual sequence of stream opera-

tions. Dynamic profile generation requires a test program that executes all stream opera-

tions in the stream program at least once to ensure a complete profile. However, it is

simple to implement and provides typical length information for variable length streams.

Static profile generation requires inlining all functions, unrolling all loops that are not

data-dependent, applying very strong constant propagation, and extracting the stream

operations. It is more robust than dynamic profile generation but more complex to imple-

ment and provides no information on variable length streams.
126

// tries to find a match for a reference image of an eye in another image
// returns true if successful
bool EyeMatch(int* imgPtr, int imgW, int imgH, // live image to search
 int* eyePtr, int eyeW, int eyeH) // reference image of eye
{
 stream<byte4> image(imgW * imgH);
 stream<byte4> eye(eyeW * eyeH);
 stream<byte4> eyeHist(256);
 int numBlocks = ((imgW / eyeW) * (imgH / eyeH));
 // struct PossibleMatch { int x; int y; float quality; };
 stream<PossibleMatch> possibleMatches(numBlocks);
 stream<PossibleMatch> sortedMatches(numBlocks, VARIABLE_LENGTH);
 PossibleMatch* possibleMatchesPtr = new PossibleMatch[numBlocks];

 // 1. load image and eye into streams
 StreamLoadBin(image, imgPtr, imgW * imgH);
 StreamLoadBin(eye, eyePtr, eyeW * eyeH);

 // 2. compute color histogram for the eye
 GenHist(eye, eyeHist);

 // 3. with each block of the image, compute color histogram,
 // compare to eye histogram, and add entry to possible matches
 int i = 0;
 for (int x = 0; x < imgW; x += eyeW) {
 for (int y = 0; y < imgH; y += eyeH, i++) {
 stream<byte4> block(image, y*imgW + x, (y+eyeH-1)*imgW + x + eyeW,
 FIXED, STRIDE, imgW, eyeW);
 stream<byte4> blockHist(256);
 GenHist(block, blockHist);
 CompHist(blockHist, eyeHist, possibleMatches(i, i + 1), x, y);
 }
 }

 // 4. sort the possible matches
 SortMatches(possibleMatches, sortedMatches);
 // save sorted matches from stream
 int numPossibleMatches = possibleMatches.readLength();
 StreamSaveBin(sortedMatches, possibleMatchesPtr);

 // 5. test possible matches until a match is found
 bool match = false;
 for_VARIABLE (int i = 0; i < numPossibleMatches && !match; i++) {
 int x = possibleMatchesPtr[i].x;
 int y = possibleMatchesPtr[i].y;
 stream<byte4> block(image, y*imgW + x, (y+eyeH-1)*imgW+ x + eyeW,
 VARIABLE_BOUNDS, STRIDE, imgW, eyeW);
 uc<int> matchUC1, matchUC2;
 CompImageA(block, eye, matchUC1);
 CompImageB(block, eye, matchUC2);
 match = matchUC1.readUC() || matchUC2.readUC();
 }

 delete possibleMatches;
 return(match);
}

FIGURE 7-2. Stream program EyeMatch
127

Figure 7-3 shows the profile of EyeMatch for a 200x200 live image and a 100x100 refer-

ence image. The profile lists each stream operation and all stream accesses made by each

stream operation in EyeMatch.

// BASIC BLOCK 0
StreamLoad
 write image[0, 40000]

StreamLoad
 write eye[0, 10000]

GenHist
 read eye[0, 10000]
 write eyeHist[0, 256]

GenHist
 read image[0, 19900, FIXED, STRIDE, 200, 50]
 write blockHist0[0, 256]

CompHist
 read blockHist00[0, 256]
 read eyeHist[0, 256]
 write possibleMatches[0, 1]

...

GenHist
 read image[20100, 40000, FIXED, STRIDE, 200, 50]
 write blockHist3[0, 256]

CompHist
 read blockHist3[0, 256]
 read eyeHist[0, 256]
 write possibleMatches[3, 4, VARIABLE_LENGTH]

SortMatches
 read possibleMatches[0, 4]
 write sortedPossibleMatches[0, 4, VARIABLE_LENGTH]

StreamSave WAIT
 read sortedPossibleMatches[0, 4, VARIABLE_LENGTH]

// BASIC BLOCK 1
for_VARIABLE_start

CompImageA
 read image[0, 19900, VARIABLE_BOUNDS, STRIDE, 200, 50]
 read eye[0, 10000]

CompImageB
 read image[0, 19900, VARIABLE_BOUNDS, STRIDE, 200, 50]
 read eye[0, 10000]

for_VARIABLE_end

FIGURE 7-3. Profile of EyeMatch(--, 200, 200, --, 100, 100)
128

Profile compilation allows the StreamC compiler to manage critical resources such as the

stream register file much more efficiently, resulting in better performance. Without profile

compilation, the StreamC compiler has to deal with more complex control flow and can-

not determine the position and length of most streams. Consider allocating the stream reg-

ister file under these conditions. The obvious policy involves a fixed number of buffers of

constant size. This policy wastes SRF space by assigning small streams to buffers that are

too large, and forces large streams to be double-buffered unnecessarily. Further, more

complex control flow and inability to predict which stream accesses will be compatible

would require frequent memory accesses to synchronize the contents of the SRF with

memory. The SRF could be managed at run-time when more information about the current

stream accesses is available, but inability to predict future stream accesses leads to signif-

icant inefficiencies as described in Section 6.1. Further, making the run-time dispatcher

too complex can negatively impact performance if it takes more time to determine how to

perform an operation than to perform the operation.

7.1.2 Resource allocation
The StreamC compiler allocates four types of resources for each stream operation in the

profile: space in the stream register file (SRF), space in off-chip memory, space in the

microcode store, and control registers. These resources are all explained in more detail in

Section 2.3. The SRF is an on-chip memory that holds the working set of streams. The off-

chip memory holds streams that cannot fit in the SRF. The microcode store is an on-chip

memory used to store the compiled microcode for kernels that are executed by the pro-

cessing elements. The control registers consist of stream descriptor registers (SDRs) that

hold the position and length of a stream in the SRF and memory address registers (MARs)

that hold the start address and access pattern of a stream in memory. Imagine operations

do not specify this information, just refer to appropriate control registers.

The StreamC compiler allocates resources to each stream operation based on the type of

operation and the stream accesses it makes. Later, it translates each stream operation into

multiple Imagine operations that use those resources. The most important resource allo-

cated by the StreamC compiler is the SRF, which is allocated using stream scheduling as
129

presented in Chapter 6. The StreamC compiler also uses variations on the stream schedul-

ing algorithm to allocate the other resources. Stream scheduling is used to allocate a dif-

ferent kind of memory like the microcode store or the off-chip memory by redefining

reads, writes, loads, and stores appropriately, removing any references to double-buffer-

ing, and making other minor changes specific to the resource. Stream scheduling is also

used for ad hoc register allocation by treating each variable as a unit length “stream.” This

use of stream scheduling is primarily an implementation convenience. Conventional regis-

ter allocation could also be used.

The StreamC compiler allocates the resources in a specific order because allocation of

some resources influences allocation of other resources. It allocates the microcode store

before the SRF because kernels that need to be loaded into the microcode store must pass

through the SRF. It allocates the SRF before memory because streams that are spilled need

be allocated space in memory. It allocates control registers last because they are used to

refer to space in the SRF and memory.

First, the StreamC compiler allocates the microcode store. It uses a version of stream

scheduling that only considers kernel calls. Each kernel call reads the microcode for that

kernel. If a microcode read requires a load, that load indicates that the microcode needs to

be loaded from memory into the SRF then read from the SRF into the microcode store. To

handle these loads, the StreamC compiler inserts a special stream operation called a Ker-

nelLoad before each such kernel call after the microcode store has been allocated.

Figure 7-4 shows the microcode store allocation for EyeMatch, using the conventions

introduced in Chapter 6. Only kernels are considered, and each kernel makes a single

microcode read. Cross-hatched accesses indicate kernel calls that require loading the ker-

nel from memory. The ellipsis indicates omitted kernel calls. The kernel GenHist, high-

lighted in Figure 7-4, is representative. It is loaded at the start of the allocation and

remains in the microcode store until the last call to the kernel.
130

Second, the StreamC compiler allocates the SRF using the stream scheduling algorithm as

presented in Chapter 6. Stream scheduling assigns each stream access to a location in the

SRF, and determines which accesses require memory loads and/or stores. Stream schedul-

ing also determines which stream accesses are double-buffered.

Figure 7-5 shows the SRF allocation for EyeMatch. This application contains a relatively

high amount of memory traffic. However, all memory traffic shown is required for this

application given the size of the SRF, not induced by poor SRF allocation.

Third, the StreamC compiler allocates off-chip memory. Again, it uses a variation of the

stream scheduling algorithm. It considers only stream reads that require loads and stream

writes that require stores. Since memory does not have many of limitations of the SRF, it

FIGURE 7-4. Microcode store allocation for EyeMatch

GenHist

GenHist

CompHist

SortMatches

CompImageA

CompImageB

GenHist

CompHist

GenHist

GenHist

GenHist

CompHist

CompHist

SortMatches

CompImageA

CompImageB

Microcode Store
131

simply assigns all stream accesses to the same underlying basic stream to a buffer and

packs those buffers into the SRF. If it fails, it terminates with an out of memory error.

Figure 7-6 shows the memory allocation for EyeMatch. Only stream accesses that require

memory accesses are considered in memory allocation. Visually, only accesses that are

cross-hatched in Figure 7-5 appear in Figure 7-6. The memory allocation for the basic

stream image is highlighted in Figure 7-6. The stream program starts with a StreamLoad-

Bin that stores the entire basic stream. Next, the loop that computes a histogram for each

FIGURE 7-5. SRF allocation for EyeMatch

GenHist

GenHist

GenHist

CompHist

SortMatches

CompImageA

CompImageB

GenHist

CompHist

StreamLoad

StreamLoad

StreamSave

KernelLoad

KernelLoad

KernelLoad

KernelLoad

KernelLoad

Image

Eye

CompHist

SortMatches

CompImageA

CompImageB

Eye

Image0

Image3

Eye

Eye ImageX

ImageX

EyeHist

BlockHist0

PossibleMatches

SortedMatches

BlockHist3

SRF
132

block in the image loads a series of derived streams that each refer parts of the basic

stream image. Lastly, the final loop that evaluates possible matches loads one or more

derived streams that refer to a data-dependent parts of the basic stream Image, indicated

with dotted rectangles.

Fourth, the StreamC compiler allocates control registers for each stream access. The

StreamC compiler allocates control registers for each stream access a stream operation

makes. The StreamC compiler allocates one SDR for each stream access to describe the

location in the SRF that is accessed (or two SDRs if the stream access is double-buffered,

FIGURE 7-6. Memory allocation for EyeMatch

GenHist

GenHist

CompHist

SortMatches

CompImageA

CompImageB

GenHist

CompHist

StreamLoad

StreamLoad

StreamSave

KernelLoad

KernelLoad

KernelLoad

KernelLoad

KernelLoad

Image

Eye

Image0

Eye

ImageX

ImageX

Memory

Image3
133

one to describe each half-buffer in the SRF). If the stream access requires a memory

access, it allocates one MAR to describe the location in memory that is accessed.

Control register allocation is motivated by the unique way in which control registers are

used. All control register values are either fixed or computed at run-time for a data-depen-

dent stream. Imagine operations only read control registers. (There is one exception. If a

kernel writes to a variable length stream it updates the SDR that contains the length of that

stream, but the new value is always read by the host.) Hence, control register allocation

consists of assigning each read to a register and deciding when the host needs to write

those registers. Additional writes by the host may be needed to reinitialize registers if

more registers are needed than are available. The StreamC compiler allocates control reg-

isters using another variation of the stream scheduling algorithm which treats register val-

ues as unit length streams. Control register reads to fixed values are compatible if they are

equal regardless of what the register is used for. Control register reads to values that are

determined at run time for a data dependent stream are only compatible with other reads to

the same value for that stream. Control register reads that are marked as “requiring loads”

need writes by the host.

Figure 7-7 shows the SDR and MAR allocation for EyeMatch. Cross-hatching indicates

control register uses that require register writes by the host. Dotted-fill is for clarity only.

The abbreviation DB indicates control registers for a double-buffered access. Visually,

each SDR read corresponds to a stream access in Figure 7-5, and each MAR read corre-

sponds to a memory access in Figure 7-6. The highlighted SDR value is representative. It

describes the space in the SRF used to hold each block of the live image for the loop that

computes the histogram of each block. The SDR value is written by the host when it is

first read for a stream access. Since the value is fixed, it is reused for later stream accesses

even though those accesses are to different streams.

Once the StreamC compiler completes resource allocation, it has assigned each kernel to a

location in the microcode store, each stream access to a location in the SRF, each memory

access to a location in memory, and each control register read to a register. It has also
134

determined which kernels require kernel loads, which stream accesses require memory

accesses, and which control register reads require writes by the host.

7.1.3 Operation translation
The StreamC compiler translates each stream operation into one or more Imagine opera-

tions. In general, an Imagine operation writes or (rarely) reads a control register, transfers

a stream between the SRF and another destination, or starts or restarts a kernel. Figure 7-8

lists the Imagine operations by purpose.

FIGURE 7-7. Control register allocation for EyeMatch

GenHist

GenHist

CompHist

SortMatches

CompImageA

CompImageB

GenHist

CompHist

StreamLoad

StreamLoad

StreamSave

KernelLoad

KernelLoad

KernelLoad

KernelLoad

KernelLoad

EyeHist

BlockHist0-BlockHist3

SortedMatches

Eye

Eye

Image (DB)

CompHist

GenHist

PossibleMatches0

PossibleMatches

Image0-Image3

PossibleMatches3

SortMatches

ImageX (DB)

ImageX (DB)

CompImageB

SDRs

CompImageA

Eye

Image (DB)

GenHist

Image0

Image3

SortMatches

ImageX (DB)

CompImageB

CompImageA

Eye

ImageX (DB)

MARs
135

Essentially, the StreamC compiler translates a stream operation into a sequence of Imagine

operations that write control registers as needed, load input streams from memory as

needed, perform one or more core operations specific to the type of stream operation, and

store output streams to memory as needed. More specifically, it translates each stream

operation into the following sequence of Imagine operations, with stream operation spe-

cific portions given by Figure 7-9:

Imagine operation Description

General purpose

SDR Write writes a stream descriptor register

MAR Write writes a memory access register

Memory Load loads a stream from memory to the SRF

Memory Store stores a stream from the SRF to memory

Kernels

UCR Write writes a microcontroller register, used to pass initial
microcontroller variable values

UCR Read reads a microcontroller register, used to return final
microcontroller variable values

SDR Length Read reads the final length of a variable length stream output

Microcode Load loads kernel microcode from the SRF into the microcode
store

Kernel Start starts a kernel

Kernel Restart continues a kernel with a new stream replacing an
exhausted stream

Host transfers

Host Send sends a stream from the SRF to the host

Host Receive receives a stream from the host to the SRF

FIGURE 7-8. Imagine operations by purpose
136

1. SDR Write(s) for each stream access
2. Other register writes (see Figure 7-9)
3. MAR Write for each stream access that requires a memory access
4. Memory Load for each stream read that requires a memory access
5. Core operations (see Figure 7-9)
6. Memory Store for each stream write that requires a memory access
7. Register reads (see Figure 7-9)

The StreamC compiler translates the first stream operation in EyeMatch, the StreamLoad-

Bin of image, into five Imagine operations as shown in Figure 7-10. The StreamLoadBin

makes a single stream access, a stream write to image. That stream access reads two SDRs

since it is double-buffered and one MAR since it requires a memory write. All three of

these reads require writes by the host, as shown in Figure 7-7. The core operation of a

StreamLoadBin is a Host Receive. Lastly, the stream write requires a Memory Store as

shown in Figure 7-6. The MAR Write, Host Receive, and Memory Store are used for dou-

ble-buffering, indicated in Figure 7-8 with the abbreviation DB.

Figure 7-10 also shows how the StreamC compiler translates the second through fourth

stream operation in EyeMatch. The second stream operation is another StreamLoadBin,

which is translated much like the first StreamLoadBin except that is not double-buffered

Stream operation Other register
writes

Core operation(s) Register reads

<Kernel Name> UCR Write for each
UC argument

Kernel Start

Kernel Restart for
each double-buff-
ered stream access

UCR Read for each
UC argument

SDR Length Read
for each variable
length stream write

KernelLoad - Microcode Load -

StreamLoadBin - Host Receive -

StreamSaveBin - Host Send -

StreamCopy - - -

FIGURE 7-9. Stream operation specific Imagine operations
137

so it only requires one SDR Write. The third operation is a Kernel Load which makes a

single stream read that requires a memory load. It is translated into an SDR Write, an

MAR Write, a Memory Load, and a Microcode Load (the core operation of a Kernel-

Load). The fourth operation is a kernel call. It reads one stream and writes another, but

only requires an SDR Write for the later since the SDR value used for the stream read was

already written by the second StreamLoadBin. The only other Imagine operation it

requires is a Kernel Start, the core operation of a kernel call.

7.1.4 Issue slot assignment and dependency analysis
The StreamC compiler assigns each Imagine operation to an issue slot in the Imagine pro-

cessor’s issue buffer at compile time. When the run-time dispatcher tries to send an opera-

tion to Imagine, it waits until the issue slot assigned to the operation becomes available.

The StreamC compiler tries to assign operations that could occur near one another to dif-

ferent issue slots. The StreamC compiler assigns issues slots to Imagine operations in the

order they appear in the stream program, using a modified round robin policy. Essentially,

it assigns the first operation to issue slot 0, then assigns the next operation to issue slot 1,

Stream operation Imagine operations

StreamLoadBin
 write image[0, 40000]

SDR Write (SDR 0, pos 10256, len 3064)
SDR Write (SDR 1, pos 13320, len 3064)
MAR Write (MAR 0, pos 0) DB
Host Receive (SDR0) DB
Memory Save (SDR0, MAR0) DB

StreamLoadBin
 write eye[0, 10000]

SDR Write (SDR 2, pos 256, len 10000)
MAR Write (MAR 1, pos 0)
Host Receive (SDR 2)
Memory Save (SDR 2, MAR 1)

KernelLoad
 read GenHist[0, 3500]

SDR Write (SDR 1, pos 10256, len 3500)
MAR Write (MAR 0, pos 1045076)
Memory Load (SDR 1, MAR 0)
Microcode Load (SDR 1, instr 0)

GenHist
 read eye[0, 10000]
 write eyeHist[0, 256]

SDR Write (SDR 0, pos 0, len 256)
Kernel Start (instr 0, SDR 2, SDR 0)

FIGURE 7-10. Imagine operations for first four stream operations in EyeMatch
138

and so on until it reaches the last issue slot. Then it starts over and assigns the next opera-

tion to issue slot 0.

The StreamC compiler deviates from this simple progression slightly to ensure that Imag-

ine operations that could occur close to one another depending on control flow are not

assigned the same issue slot. Using the simple progression, it could assign the Imagine

operation before the body of an if statement to issue slot 3, assign the Imagine operations

in the body to other issue slots, then, having come full-circle, also assign the operation

after the body to issue slot 3. If the if-statement is not taken, the run-time dispatcher would

have to wait before it could send the second Imagine operation assigned to issue slot 3. To

avoid this problem, it skips occasional issue slots in basic blocks that contain more than

half as many Imagine operations as there are issue slots. It skips a number of issue slots so

that the last Imagine operation in the basic block is assigned to the same issue slot as the

Imagine operation immediately before the basic block. Returning to the example involv-

ing overuse of issue slot 3, skipping one slot inside the basic block would result in the

operation immediately afterward being assigned to issue slot 4.

The StreamC compiler implements this policy by skipping a number of issue slots after the

Imagine operations that compose each stream operation as given by the following equa-

tion:

(7)

The first basic block in EyeMatch consists of 16 stream operations that translate into 48

Imagine operations. The issue slot increment assuming 32 issue slots is thus (48 MOD 32)

/ 16 = 1.0. Thus, the five Imagine operations that compose the first stream operation are

assigned to issue slots 0 through 4, one issue slot is skipped, and the four Imagine opera-

tions that compose the second stream operation are assigned to issues slots 6 through 9,

and so on. These skipped issue slots ensure that the last operation in the basic block is

assigned to slot 31, the same as the operation before the basic block (if there was one).

 issue slot increment Imagine ops in block MOD number of issue slots
stream operations in block

--=
139

The StreamC compiler then analyzes the dependencies of each Imagine operation upon

other operations that could be in the issue buffer when it dispatched. The current Imagine

operation is dependent on a previous Imagine operation if both operations access the same

SRF, memory, or microcode store space or use the same control register and either or both

Imagine operations modify the contents. The dependency is classified as read-after-write

(RAW) if only the previous Imagine operation modifies the contents, write-after-read

(WAR) if only the current Imagine operation modifies the contents, or write-after-write

(WAW) if both Imagine operations modify the contents. A kernel restart operation is also

considered WAR dependent upon the kernel operations it restarts.

For each Imagine operation, the StreamC compiler determines if it is dependent on any

operation that could be in the issue buffer when it is dispatched. The StreamC compiler

considers the latest previous Imagine operation in the current basic block that is assigned

to each issue slot. If no previous Imagine operation in the current basic block is assigned

to a particular issue slot then the StreamC compiler also considers the latest Imagine oper-

ation assigned to that issue slot in each basic block that could immediately precede the

current basic block, and so on.

The StreamC compiler encodes the dependencies of each Imagine operation in three bit-

masks called the dependency masks. Each dependency mask contains a bit corresponding

to each issue slot in the issue buffer. If the current operation is dependent on any operation

that could be in an issue slot as determined above, then the bit corresponding to that issue

slot is set in the appropriate mask(s). Two of these dependency masks, the RAW mask and

the WAR mask, are used by the Imagine processor to determine when to issue the opera-

tion. The RAW mask encodes all RAW and WAW dependencies. The WAR mask encodes

all WAR dependencies. The other dependency mask, the DifferentDB mask, is used by the

run-time dispatcher for determining when the Imagine operation can be dispatched. The

DifferentDB mask encodes all dependencies upon Imagine operations that are repeatedly

dispatched for the purpose of double-buffering a different stream access.
140

The StreamC compiler also constructs two special dependency masks for any Imagine

operation that is repeatedly dispatched for a double-buffered access. These masks, called

the RAW DB mask and the WAR DB mask, are constructed like the normal RAW and

WAR masks except that the StreamC compiler considers only operations used for the same

stream access, but considers all such operations both before and after the current opera-

tion.

Figure 7-11 shows the RAW masks for the first fifteen Imagine operations in EyeMatch.

Each row contains an Imagine operation, the issue slot it is assigned to, and the part of its

dependency mask corresponding to the issue slots shown. The last Imagine operation is a

the kernel GenHist, shown in bold in Figure 7-11. It is RAW dependent on three SDR

Write operations in issue slots 0, 6, and 16 that write SDRs it uses, the Host Receive in

issue slot 8 that writes a stream that it reads, and the Microcode Load in issue slot 14 that

writes the GenHist microcode. The RAW dependency mask for the GenHist kernel has the

bits corresponding to issue slots of these operations set: 0, 6, 8, 14, and 16.

7.2 Run-time Dispatcher
This section presents the run-time dispatcher. It describes how the run-time dispatcher

sends Imagine operations to the issue buffer. It also discusses how the run-time dispatcher

coordinates data transfers between the host and Imagine and manages double-buffering.

7.2.1 Imagine operation dispatching
The primary role of the run-time dispatcher is to dispatch Imagine operations from the

host processor to the Imagine processor’s issue buffer. When the host processor encoun-

ters a stream operation, it calls a method of the run-time dispatcher to send the correspond-

ing Imagine operations to the Imagine processor. The run time dispatcher updates the

Imagine operation as required, waits until the Imagine operation can be dispatched, and

sends it to the issue buffer.

First, the run-time dispatcher updates the Imagine operation to reflect any data-dependent

streams that affect it. A data-dependent stream has a variable length or bounds. These val-
141

ues are reflected in the location of the stream in the SRF and in memory, which are

encoded in the SDR and MAR used to access the stream. The run time dispatcher modifies

the SDR Write(s) and MAR Write for stream accesses to data-dependent streams to reflect

the actual length, start, and end of the streams.

For example, the final loop of EyeMatch evaluates a data-dependent series of blocks of the

live image looking for a match. The current block of the live image is accessed by the

derived stream block, which has variable bounds since it could refer to any part of image.

Before dispatching the MAR Write for a stream access to block, the dispatcher updates it

to reflect the actual start and end of the stream. For instance, if the image is located at

Imagine operation Slot RAW dependency mask...

0 1 2 3 4 5 6 7 8 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

SDRWrite (SDR 0, pos 10256, len 3064) 0

SDRWrite (SDR 1, pos 13320, len 3064) 1

MARWrite (MAR 0, pos 0) DB 2

HostReceive (SDR0/SDR1) DB 3 1 1

MemoryStore (SDR0/SDR1, MAR0) DB 4 1 1 1 1

(skipped by issue slot assignment) 5

SDRWrite (SDR 2, pos 256, len 10000) 6

MARWrite (MAR 1, pos 0) 7

HostReceive (SDR 2) 8 1

MemoryStore (SDR 2, MAR 1) 9 1 1 1

(skipped by issue slot assignment) 10

SDRWrite (SDR 1, pos 10256, len 3500) 11 1

MARWrite (MAR 0, pos 1045076) 12 1

MemoryLoad (SDR 1, MAR 0) 13 1 1 1 1

MicrocodeLoad (SDR 1, start 0) 14 1 1 1

(skipped by issue slot assignment) 15

SDRWrite (SDR 0, pos 0, len 256) 16 1

GenHist (SDR 2, SDR 0) 17 1 1 1 1 1

FIGURE 7-11. RAW masks for first fifteen Imagine operations in EyeMatch
142

memory address 0, the second 50x50 block of the image starts at memory address 50. If

the final loop were to try and match the second block, the dispatcher would modify the

MAR Write for the operation write a start address of 50.

Second, the run-time dispatcher waits until the Imagine operation can be dispatched. The

run-time dispatcher determines if an Imagine operation can be dispatched based on two

criteria. The first criteria is that the issue slot assigned to the Imagine operation must be

empty. Before sending any Imagine operations, the run-time dispatcher queries the Imag-

ine processor to determine which slots are empty. It sends as many Imagine operations as

it can before it encounters an Imagine operation that is assigned to an occupied issue slot.

The run-time dispatcher then queries the Imagine processor again to determine which

issue slots have become empty since it last checked. When an issue slot becomes empty,

the run-time dispatcher also knows that whatever operation it last sent to that slot has com-

pleted.

The second criteria is that, if the Imagine operation depends on any other Imagine opera-

tion that is repeatedly dispatched as part of a different double-buffered access, that other

Imagine operation must be dispatched for the last time. The run-time dispatcher uses a bit-

mask called the CurrentDB mask to track the status of double-buffering operations so that

it can enforce this requirement. The CurrentDB mask contains a bit corresponding to each

issue slot. When a double-buffering operation is dispatched for the first time, the bit corre-

sponding to the issue slot that operation is assigned to is set. When the repeated operation

is dispatched for the last time, that bit cleared. In order to dispatch an operation, the Cur-

rentDB mask ANDed with the DifferentDB mask of that operation must be empty.

For example, the first StreamLoad in EyeMatch requires a double-buffered stream write to

store the live image to memory. The StreamC compiler translates the StreamLoad into sev-

eral Imagine operations as shown in Figure 7-10, one of which is a MAR Write that the

run-time dispatcher repeatedly dispatches for the double-buffered stream write. The first

time it dispatches that operation, it sets a bit in the CurrentDB mask. The run-time dis-

patcher waits to dispatch any Imagine operation that depends on that MAR Write but is for
143

a different stream access until after the last time it dispatches the MAR Write. To make

this determination, it ANDs the Imagine operation’s DifferentDB mask with the Cur-

rentDB mask and only sends it if the result is empty.

Finally, the run-time dispatcher sends the operation to the Imagine processor along with

the RAW and WAR masks for that Imagine operation. The Imagine processor then issues

the operations in the issue buffer out of order, using the dependency masks to preserve

consistency.

7.2.2 Host/Imagine data transfers
The run-time dispatcher coordinates two kinds of data transfers between the Imagine pro-

cessor and the host: registers reads and stream transfers. There are two kinds of register

reads. SDR Read Length reads the length component of an SDR and updates the length of

a variable length stream. UCR Read reads a UCR and updates a microcontroller variable.

There are also two kinds of stream transfers. Host Receive sends a stream from the host to

Imagine and Host Send sends a stream from Imagine to the host.

The run-time dispatcher handles all register reads without stopping execution of the

stream program on the host, unless the variable that is updated by the register read is

needed. The run-time dispatcher sends the register read operation to Imagine like any

other Imagine operation. When the Imagine processor completes the register read, it

places the value that was read in a special register corresponding to the issue slot assigned

to the register read operation. When the run-time dispatcher checks the status of the avail-

able issue slots and finds a completed read, it retrieves the value from that special register

and updates the appropriate variable. If the stream program attempts to read that variable

before a pending register read completes, it invokes the run-time dispatcher to continually

poll the status of the available issue slots until the variable is updated.

In the final loop of EyeMatch, two kernel calls are used to determine if a possible match

between a block of the live image and the reference image is actually a match. Each kernel

call writes its result to a microcontroller variable argument. Since both kernels are called
144

before either microcontroller variable is read in the stream program, the run-time dis-

patcher dispatches the Imagine operations for both kernel calls, including register reads to

update the microcontroller variables with the result of each kernel. When the stream pro-

gram tries to read one of the microcontroller variables, it invokes the run-time dispatcher

to wait for the corresponding register read to complete.

The dispatcher handles host transfers by stopping the execution of the stream program on

the host until the transfer completes. It sends all of the Imagine operations for the stream

operation that includes the transfer, waits for the transfer to begin, transfers the data

between the host processor and Imagine, then continues with the stream program.

For example, the first stream operation in EyeMatch contains a StreamLoadBin used to

send the live image to the Imagine processor. It translates into five Imagine operations as

shown in Figure 7-10. The run-time dispatcher sends these operations to the host, waits for

the Host Receive to begin, transfers the data, then continues with the stream program.

7.2.3 Double-buffering
A double-buffered stream access involves cycling portions of a large stream through two

halves of a smaller buffer in the SRF. One cycle of a double-buffered stream read consists

of three Imagine operations: a Write MAR to increment the address of the current portion

of the stream, a Memory Load to load that portion into a half-buffer, and a core operation

to read the contents of that half-buffer. One cycle of double-buffered stream write consists

of a similar sequence of three operations: a Write MAR to increment the address of the

current portion of the stream, a core operation to write that portion into a half-buffer, and a

Memory Store to store the contents of that half-buffer. To implement double-buffering, the

run-time dispatcher repeatedly dispatches the three double-buffering operations that com-

pose a cycle, in order. A complete double-buffered access involves a number of cycles

equal to the length of the stream divided by the size of a half-buffer, rounded up.

Each time the run-time dispatcher redispatches an operation in the cycle, it updates it to

reflect the current portion of the stream and/or half-buffer. The run-time dispatcher
145

replaces the operation’s RAW and WAR masks with the operation’s RAW DB and WAR

DB masks. The run-time dispatcher increments the memory address of the MAR Write. It

toggles between the two SDRs that describe the two half-buffers in the case of the Mem-

ory Load, Memory Store, or core operation. Since the length of a stream is not always

divisible by the size of a half-buffer, the run-time dispatcher performs a special SDR Write

before dispatching the MAR write for the last time to update one of the SDRs to reflect the

length of the remainder of the stream.

The first StreamLoad in EyeMatch requires a double-buffered stream write to store the

40000-word live image to memory through two 3064-word half buffers. The StreamC

compiler translates that StreamLoad into the Imagine operations shown in Figure 7-10.

The run-time dispatcher repeatedly dispatches the operations marked with DB in Figure 7-

10, resulting in the actual sequence of Imagine operations shown in Figure 7-12.

// init
SDR Write (SDR 0, pos 10256, len 3064)
SDR Write (SDR 1, pos 13320, len 3064)
// cycle 1
MAR Write (MAR 0, pos 0)
Host Receive (SDR0)
Memory Save (SDR0, MAR0)
// cycle 2
MAR Write (MAR 0, pos 3064)
Host Receive (SDR1)
Memory Save (SDR1, MAR0)
...
// cycle 13
MAR Write (MAR 0, pos 36768)
Host Receive (SDR0)
Memory Save (SDR0, MAR0)
// cycle 14
SDR Write (SDR 1, pos 13320, len 168)
MAR Write (MAR 0, pos 39832)
Host Receive (SDR1)
Memory Save (SDR1, MAR0)

FIGURE 7-12. Imagine operations for double-buffered stream write to image
146

7.3 Optimizations
This section presents two optimizations used to improve the performance of stream pro-

grams. Strip-mining involves processing a large input stream in small batches so that

intermediate streams will fit in the SRF. Software-pipelining divides a loop into stages and

overlaps the stages to increase parallelism. The StreamC compiler performs both of these

optimizations in a semi-automated manner: it suggests the strip-mining batch size and pro-

cesses a specially tagged source file to produce a source file containing a software pipe-

lined loop.

7.3.1 Strip-mining
Strip-mining [49] involves processing a large input stream in smaller batches so that the

intermediate streams produced while processing a batch will all fit in the SRF. Since most

stream programs operate on inputs that are larger than the SRF by themselves, this optimi-

zation is essential for good performance. A typical stream program consists of a series of

stream operations that process an initial input to produce a final output. Each stream oper-

ation in the series writes one or more outputs that are read as inputs by the next stream

operation. If the output of a stream operation is larger than the SRF, that stream operation

writes it to memory using double-buffering, and the next stream operation reads it from

memory using double-buffering. This sequential double-buffering limits the throughput of

those operations to the available memory bandwidth. To eliminate this bottleneck, strip-

mining applies the series of stream operations to a small portion of the initial input to pro-

duce a small portion of the final output, such that the output of every stream operation fits

in the SRF. It then applies the series to another small portion of the initial input to produce

another small portion of the final output, and so on until all of the initial input has been

processed. The size of the largest portion of initial input such that the output of every

stream operation fits in the SRF is termed the strip size. Figure 7-13 illustrates basic and

strip-mined dataflow for a simple stream program containing three kernels.
147

The StreamC compiler estimates a strip size when it compiles a program and writes that

result to a log file, but leaves the actual strip-mining of the stream program to the pro-

grammer. Most stream programs do not fit the ideal strip-mining model. Often, there are

application-specific constraints on how the initial input or final output can be divided.

Sometimes, kernels must be changed depending on the amount of data being processed.

These constraints make automatic strip-mining difficult to implement in a general manner.

Therefore, the StreamC compiler provides a mechanism for determining the approximate

size of a portion of the initial input such that the output of every operation in the series will

fit in the SRF. The mechanism assumes that the length of all streams is proportionate to

FIGURE 7-13. Basic and strip-mined data flow

b

c

Basic Strip-mined

a0

d0

b

c

a1

d1

b

c

a2

d2

a (initial input)

b

c

d (final output)

a1 a2

d0 d1

Kernel1

Kernel2

Kernel3

Kernel1

Kernel2

Kernel3

Kernel1

Kernel2

Kernel3

Kernel1

Kernel2

Kernel3
148

the strip size. It allocates the SRF as though it were infinite size to determine the amount

of space needed to process the entire input. It then multiplies the length of the initial input

stream by the actual size of the SRF divided by the size needed to process the entire input.

For example, suppose the loop in EyeMatch that computes the histogram for each block in

the live image also applied a preprocessing kernel to each block. The input and output of

this preprocessing kernel would be too large to fit in the SRF. The preprocessing kernel

and histogram generation kernel could be strip-mined as shown in Figure 7-14. Rather

than preprocess and compute a histogram for the entire block, a strip-mined loop pro-

cesses a small number of rows each time. This change requires replacing the GenHist ker-

nel with an AddHist kernel which takes the old histogram as an additional input and adds

the new rows to produce a new histogram

7.3.2 Software-pipelining
Software-pipelining involves dividing a loop into stages and overlapping execution of one

stage of one iteration with execution of another stage of another iteration. Software-pipe-

lining can be used to hide the memory access time of a sequential memory access, a mem-

ory access that must occur between a pair of sequential kernels. A sequential memory

access occurs when the result of one kernel is stored to memory and then reloaded using a

different access pattern as an input to the next kernel, or when the result of a kernel is used

 // 3. with each block of the image, compute color histogram,
 // compare to eye histogram, and add entry to possible matches if similar
 for (int x = 0; x < imgW; x += eyeW) {
 for (int y = 0; y < imgH; y += eyeH) {
 stream<byte4> block(image, y*imgW + x, (y+eyeH-1)*imgW + x + eyeW,
 FIXED, STRIDE, imgW, eyeW);
 stream<byte4> blockHist(256);
 // add small number of rows of block to histogram each iteration
 for (int i = 0; i < eyeH; i += stripRows) {
 stream<byte4> blockRows = block(i * stripRows, (i + 1) * stripRows);
 Preprocess(blockRows, preProcBlockRows);
 Addhist(preProcBlockRows, blockHist, blockHist)
 }
 CompHist(blockHist, eyeHist, possibleMatches(i, i + 1), x, y);
 }
 }

FIGURE 7-14. Strip-mined loop
149

as an index stream for an indexed stream loaded as an input to the next kernel. In either of

these cases, the second kernel cannot start immediately after the first kernel, it must wait

for the intervening memory load to complete as shown in Figure 7-15. Software pipelining

can hide the latency for this memory access by overlapping execution of a kernel from

another stage with the sequential memory access as shown in Figure 7-16.

The StreamC compiler implements a software-pipelining algorithm that is designed to

handle the varying latencies of kernels and memory accesses. It tries dividing the loop into

two stages after each stream operation in the loop. For each pair of possible stages, it splits

each stage into a series of alternating groups of kernels and sequential memory accesses. It

splits each stage into the same number of groups, some of which may be empty, such that

each memory access group in one stage has a corresponding kernel group in the other

stage as shown in Figure 7-17. Initially, kernels and memory accesses are assigned to the

first possible group, preserving ordering and dependencies between operations in different

stages.

The StreamC compiler then repeatedly moves operations between groups. It can move the

first or last operation in a particular group to the previous or next group of similar opera-

tions, respectively, as shown in Figure 7-18, provided that it preserves ordering and does

not violate dependencies between operations in different stages. It moves an operation if

FIGURE 7-15. Loop with sequential
memory access

FIGURE 7-16. Software-pipelined loop

Tim
e

kernel1

memory
access

kernel2

kernel3

Tim
e

iteration i,
stage 1

iteration i-1,
stage 2

kernel3

kernel1

memory
access

kernel2
150

doing so reduces estimated run time. It also moves an operation if doing so does not

increase estimated run time and reduces the highest ratio between the total memory access

time of one group and the total kernel execution time in the corresponding group. This

second criteria avoids covering one memory access with a minimum number of kernels

while covering another with an excessive number of kernels. For these purposes, the

StreamC compiler estimates memory access time and kernel execution time based on data

gathered during the profiling run. The total run time is calculated by summing the higher

of the total memory access time or the total kernel execution time for all pairs of corre-

sponding groups. The StreamC compiler also moves operations counter to these criteria

with a diminishing random chance to avoid becoming stuck in a local minima, similar to

simulated annealing [26].

Once the StreamC compiler has divided the operations into groups for each possible pair

of stages, it selects the pair of stages with the minimum run time or, given equal run times,

the minimum highest ratio of memory access time to kernel execution time. It then orders

the operations starting with the first group of memory accesses followed by the corre-

sponding group of kernels, then the next group of memory accesses followed by the corre-

sponding group of kernels, and so on. Based on this ordering, it transforms a source file

FIGURE 7-17. Software-pipelining
groups

FIGURE 7-18. Moving an operation
between groups to reduce run time

kernels
m

em
ory

m
em

ory
kernels

m
em

ory

kernels

kernel2

kernel1

memory
access

kernel3

kernels
m

em
ory

m
em

ory
kernels

m
em

ory

kernels

kernel2

kernel3

kernel1

memory
access

kernel3
151

that contains a loop with specially tagged pieces of code as shown in Figure 7-191 and

produces a source file with a software-pipelined loop as shown in Figure 7-20.

7.4 Summary
This chapter presented the StreamC compiler and the run-time dispatcher, the two compo-

nents required to compile and execute a stream program on the Imagine media processor.

First, it described how the StreamC compiler efficiently translates stream operations into

Imagine operations. Second, it covered how the run-time dispatcher dispatches these

Imagine operations to the issue buffer of the Imagine processor. Lastly, it discussed two

optimizations used to improve performance of stream programs.

The StreamC compiler presented in this chapter is not integrated with the normal C++

compiler used to compile the rest of the stream program; integration of the two would

allow additional optimizations. For example, an integrated compiler with access to all data

flow information could reorder StreamC operations to improve performance.

1. To make parsing the source file easier, the actual implementation requires “tagging” the code
containing each kernel or other stream operation. These tags are omitted for simplicity.

while(...) {
 kernel1(...);
 kernel2(...);
 kernel3(...);
}

// stage 1 prologue
kernel1(...);

while (...) {
 // stage 2
 kernel2(...);
 // stage 1
 kernel1(...);
 // stage 2
 kernel3(...);
}

// stage 2 epilogue
kernel2(...);
kernel3(c, d);

FIGURE 7-19. Input to StreamC com-
piler software-pipelining

FIGURE 7-20. Output from StreamC
compiler software-pipelining
152

Chapter 8

Evaluation

This chapter presents a quantitative evaluation of the KernelC compiler and the StreamC

compiler. For each compiler, it describes an evaluation methodology and a set of bench-

marks, then presents and analyzes the results of applying the methodology to the bench-

marks. The evaluation methodology used for both compilers compares the compiler to an

alternative that is very expensive in terms of hardware cost and/or programmer effort, but

delivers very good performance. In both cases, the compilers are shown to deliver equiva-

lent or superior performance with significantly less hardware and/or programmer effort.

This chapter consists of two sections. Section 8.1 evaluates the KernelC compiler, with

emphasis on communication scheduling. Section 8.2 evaluates the StreamC compiler, with

emphasis on stream scheduling.

8.1 KernelC Compiler

8.1.1 Evaluation Architectures
The KernelC compiler was evaluated by compiling a set of benchmark kernels for two

variations of the Imagine stream processor: one with a single register file and one with dis-

tributed register files (DRF). The single register file architecture provides a performance

baseline. The distributed register file architecture tests the effectiveness of communication

scheduling on an architecture that makes extensive use of shared interconnect and multi-

ple register files.
153

In the single register file architecture shown in Figure 8-1, each functional unit input or

output is connected to the same register file by dedicated interconnect. In the DRF archi-

tecture shown in Figure 8-2, each functional unit input is connected to a small two-ported

register file. Each functional output can drive any one of ten global buses connected to all

register files, though each register file can only be written by one of those buses on a

cycle. This architecture is nearly identical to the architecture used to implement Imagine,

though it has fewer buses in order to be a better test of communication scheduling. Figure

8-1 through Figure 8-2 also show the area, power consumption, and register file access

delay estimated for each architecture using the methods in [44], normalized relative to

estimates for the single register file architecture.

Both architectures include the same mix of eight functional units: three adders, two multi-

pliers, a divider, a permutation unit (pu), and a scratchpad (sp). The permutation unit per-

mutes values between Imagine’s eight SIMD processing elements. The scratchpad is a

small word-addressable memory used for local arrays. All functional units except the

FIGURE 8-1. Single register file architecture

FIGURE 8-2. Distributed register file architecture

/* pu sp+ + + *
SRF

0 0.25 0.5 0.75 1

Delay

Power

Area

+ + + * / pu sp*
SRF

0 0.25 0.5 0.75 1

Delay

Power

Area
154

scratchpad unit implement the copy operation. The functional units have identical laten-

cies in both architectures, with representative latencies shown in Figure 8-3.

8.1.2 Evaluation Benchmarks
Figure 8-4 shows the benchmarks used to evaluate the KernelC compiler. These bench-

marks include all of the kernels in the StreamC compiler benchmarks (except for program-

mable polygon rendering, since the kernels are similar to span-based polygon rendering),

and several other image-processing, signal-processing, and sorting benchmarks. In gen-

eral, each benchmark kernel consists of single loop that iterates over the records of an

input stream, along with a short prologue and epilogue. Most of these loops are software

pipelined using modulo software pipelining [28]. The loops dominate kernel execution

time, so the performance of a given kernel is inversely proportional to the schedule length

of the loop. Figure 8-4 also show the number of operations in the inner loop of each

benchmark.

8.1.3 Results
This section presents the schedule length, operation count, and register demand results for

the DRF architecture relative to the single RF architecture. Each is presented as a distribu-

Operation Lat. Operation Lat.

Adder Divider

 Logical operation 1 Integer divide 22

 Integer add/subtract 2 Floating-point divide 16

 Floating-point add/subtract 4 Permutation Unit

Multiplier Permute 1

 Integer multiply 4 Scratch Pad

 Floating-point multiply 4 Scratch pad read/write 1

All

 Copy 1

FIGURE 8-3. Representative latencies
155

Kernel Description Ops

Blockwarp

blockwarp blockwarp for image-based renderer 105

Depth Extraction

blockfill fills a stream with a constant value 11

blocksad sum of absolute difference over a sliding window 109

byte2word unpacks 8-bit pixels into 16-bit pixels 12

convfx3x3 convolves a row with a 3x3 filter 56

convfx7x7 convolves a row with a 7x7 filter 174

exdepth extracts depth from SAD values 16

extemp3 handles final rows for 3x3 convolution 11

extemp7 handles final rows for 7x7 convolution 23

FFT

fft1024 1024-point fast fourier transform 340

MPEG2 Encoding

blocksearch searches reference image to determine motion vector 409

corr correlates current macroblock with reference macroblock 262

dct discrete cosine transform 207

diff computes the difference between two macroblocks 208

icolor color space conversion from RGB to YCrCb 70

idct inverse discrete cosine transform 249

idxgen generate addresses to access a macroblock 87

mv2idx converts a motion vector into addresses 151

pcolor color space conversion from RGB to YCrCb 705

rle run-length encodes a macroblock 25

Span-based Polygon Rendering

compact_recycle compacts conflicting fragments 46

glshader computes shading and lighting values 295

hash hashes conflicting fragments 107
156

tion for the set of benchmark kernels. Specific results for each benchmark kernel can be

found in Appendix A.

Figure 8-5 through Figure 8-7 present the performance results for the benchmarks. Figure

8-5 and Figure 8-6 show the distribution of the relative and actual differences between the

schedule length for the DRF architecture and that for the single register file architecture.

mergefrag merges two streams of sorted fragments 148

project perspective projection 164

sort32frag sorts groups of 32 fragments 826

spanrast converts a span into fragments 154

spansgen converts a triangle into spans 355

spansprep prepares a triangle for span generation 540

xform transforms a triangle from object space to screen space 50

zcompare compares z values of two streams of fragments 22

Q-R Matrix Decomposition

backsub1 performs forward elimination before back substitution 16

backsub2 performs first part of back substitution 20

backsub3 performs second part of back substitution 34

house2 Householder transformation 159

sumsqr computes the sum of squares 73

update1 computes matrix transformation for row update 101

update2 applies matrix transformation for row update 104

Sorting

bisort bitonic sorts a stream of integers 74

merge merges two streams of sorted integers 68

sort32 sorts groups of 32 integers 231

FIGURE 8-4. KernelC benchmarks
157

Figure 8-7 shows the distribution of the relative differences between the DRF schedule

length and a computable lower bound (CLB) on schedule length. The CLB is equal to the

maximum of two component bounds, one dictated by dependencies between operations

and the other by available resources. For a non-software pipelined loop, the first such

bound is the critical path. The critical path is the maximum sum of operation latencies

along a path from an operation at the top of the dependency graph to an operation at the

bottom of the dependency graph. For a software-pipelined loop the first bound is the reoc-

currence minimum iteration interval (RMII). The RMII is the maximum sum of operation

latencies along a path between any two operations with a write-after-read dependency

(such operations can be at most one iteration interval, the length of an iteration of the soft-

ware-pipelined loop, apart). The second bound is the resource limit, equal to the maximum

number of operations that can only be scheduled on one kind of functional unit divided by

the total number of such functional units available. Figure 8-7 also shows which of these

limits dictates the bound for each kernel.

FIGURE 8-5. Relative increase in schedule length for DRF over single RF

Relative increase in schedule length for DRF over single RF

0

5

10

15

20

25

30

-10% -8% -6% -4% -2% 0% 2% 4% 6% 8% 10%

Increase in schedule length

K
er

ne
ls

Average: +1%
158

FIGURE 8-6. Increase in schedule length for DRF over single RF in cycles

FIGURE 8-7. Relative difference between DRF schedule length and CLB

Absolute increase in schedule length for DRF over single RF

0

5

10

15

20

25

30

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Increase in schedule length (cycles)

K
er

ne
ls

Average: +0.5

Relative difference between DRF schedule length and CLB

0

5

10

15

20

25

30

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Relative difference

K
er

ne
ls

Critical Path/Reoccurance Min. II Limited Resource Limited

Average: +12%
159

Figure 8-8 shows the distribution of the increase in the number of operations in the sched-

ules for the DRF architecture over those for the SRF architecture due to the addition of

copy operations to move data between register files.

Figure 8-9 through Figure 8-11 show the increase in register demand for the DRF architec-

ture over the SRF architecture. Figure 8-9 shows the distribution of the increase in register

demand due to duplication among multiple registers files, calculated by comparing the

total number of registers used in all register files. Figure 8-10 shows the increase in regis-

ter demand due to load imbalance among register files. It is calculated by comparing the

maximum number of registers used in any one register file multiplied by the number of

register files and divided by the total number of registers used. Lastly, Figure 8-11 shows

the increase in register demand, the product of these two factors.

FIGURE 8-8. Relative increase in operation count for DRF over single RF due to
copies

Relative increase in operation count for DRF over single RF
due to copies

0

2

4

6

8

10

12

14

0% 2% 4% 6% 8% 10% 12% 14% 16%

Increase in operation count

K
er

ne
ls

Average: +5%
160

FIGURE 8-9. Relative increase in register demand due to duplication

FIGURE 8-10. Relative increase in register demand due to load imbalance

Relative increase in register demand due to duplication

0

1

2

3

4

5

6

7

8

9

10

0% 25
%

50
%

75
%

10
0%

12
5%

15
0%

17
5%

20
0%

22
5%

25
0%

27
5%

30
0%

32
5%

35
0%

Increase in register demand

K
er

ne
ls

Average: +140%

Relative increase in register demand due to load imbalance

0

2

4

6

8

10

12

14

0% 25
%

50
%

75
%

10
0%

12
5%

15
0%

17
5%

20
0%

22
5%

25
0%

27
5%

30
0%

32
5%

Increase in register demand

K
er

ne
ls

Average: +88%
161

8.1.4 General analysis
These results demonstrate that the KernelC compiler, using communication scheduling

with supporting optimizations, effectively schedules media processing kernels for an

architecture with shared interconnect and multiple register files. The schedule lengths for

the DRF architecture are on average within 1% of those for the single register file archi-

tecture, and within 12% of a computable lower bound on schedule length. The increase in

operation count due to copy operations is low, averaging only 5%. The KernelC compiler

does not consider register pressure during scheduling, and duplication and load imbalance

among multiple register files result in average increase in register demand of 348%. Since

the size of a register in the evaluation DRF architecture is less than 2.5% that of a register

in the single RF architecture [44], even the increase in register pressure without any

attempt at minimization is more than countered by the lower hardware cost of registers.

The KernelC compiler’s ability to manage shared interconnect and multiple register files

is validated primarily by comparing the schedule lengths for the DRF architecture to those

FIGURE 8-11. Relative increase in register demand

Relative increase in register demand

0

2

4

6

8

10

12

0% 50
%

10
0%

15
0%

20
0%

25
0%

30
0%

35
0%

40
0%

45
0%

50
0%

55
0%

60
0%

65
0%

Increase in register demand

K
er

ne
ls

Average: +328%
162

for the single register file architecture, which are approximate lower bounds under the

assumptions of this evaluation. This evaluation assumes that both architectures have the

same number of functional units and the same operation latencies. In reality, a DRF archi-

tecture could support many more functional units with the same total area and power. Fur-

ther, due to lower register file access time, a DRF architecture would offer lower operation

latencies than a single register file architecture. The results given in this section ignore

these advantages. With the same number of functional units and the same operation laten-

cies, the length of the optimal schedule for any architecture with shared interconnect and

multiple register files is strictly equal to or worse than that for a single register file archi-

tecture, since copy operations may be required and operations may be delayed due to

interconnect resource conflicts.

The average increase in schedule length for the DRF architecture over the single RF archi-

tecture, as shown in Figure 8-5, is less than 1%. This result shows that communication

scheduling with supporting optimizations avoids almost all performance degradation due

to shared interconnect and multiple register files, even when ignoring their advantages. In

general, the differences between schedule lengths for the two architectures fall within the

random variation of the heuristic VLIW scheduling algorithm, about plus or minus one

cycle (due to these random variations, a small number of DRF schedules are slightly

shorter than the corresponding single register file schedule). Only one kernel, spansprep,

has a schedule length increase of more than 5%. It is discussed in more detail below.

The performance of the KernelC compiler is further validated by comparing the schedule

lengths to a computable lower bound (CLB), as shown in Figure 8-7. Most schedule

lengths for both architectures approach the CLB. The CLB is the same for both architec-

tures since it only considers functional units as resources. The average difference between

schedule lengths and the corresponding CLB for the DRF architecture is 12%. The CLB is

a strict lower bound, but it is often not achievable because resource constraints are more

complex than reflected by the resource limit. For instance, the pcolor kernel contains a

large number of one- and two-cycle latency operations that are scheduled on the adders.

Since operations with different latencies cannot be perfectly pipelined, this significantly
163

increases schedule length resulting in a very dense schedule that is still 40% higher than

the CLB. As shown in Figure 8-7, the majority of kernels with schedule lengths greater

than the CLB have a CLB equal to the resource limit, indicating at least one type of

heavily utilized functional unit.

Beyond schedule length, a scheduler for multiple register file architectures has two impor-

tant performance objectives: minimizing copy operations and minimizing register

demand. Copy operations used to move values between register files occupy hardware

resources and increase power consumption. Increased register demand either requires

larger register files or more spilling.

The Kernel scheduler reduces the number and performance impact of copy operations by

using communication scheduling to manage data movement and the communication cost

heuristic to efficiently assign operations to functional units. The schedule length results

discussed previously support the effectiveness of these techniques in reducing the perfor-

mance impact of copy operations. The results presented in Figure 8-8 further show that the

total number of copy operations is also relatively low. On average, the additional copy

operations in the schedules produced for the DRF architecture increase the total number of

operations by only 5% over the schedules for the single register file architecture.

In general, architectures with multiple register files require more total registers for two

reasons [44]. First, the same value may need to be duplicated in multiple register files.

Second, since the registers are statically divided between register files, registers need to be

over provisioned to meet the varying load distribution among register files. These

demands can be measured for a specific kernel by determining the total number of regis-

ters used in all register files to measure increased demand due to replication, and by multi-

plying the highest number of registers used in any one register file by the number of

register files and dividing by the total number of registers used to measure increased

demand due to load imbalance among register files.
164

The KernelC compiler, which is optimized for maximum performance, does not consider

register demands during scheduling. Often, maximizing performance and minimizing reg-

ister usage dictate contrary choices during scheduling. For instance, from a performance

point of view it is often desirable to store a value in multiple register files to allow opera-

tions that use that value to occur on multiple functional units, but doing so increases regis-

ter usage. As shown by the results in Figure 8-11, the kernel scheduler produces schedules

for a DRF architecture that demand on average of 348% more registers. However, the size

of a register in the DRF architecture is approximately 2.5% of that required for a register

in the single RF architecture. The DRF architecture has an estimated area that is only 13%

of that of the single RF architecture, including this increase in registers. Even with the

KernelC compiler’s emphasis on performance, the increase in register demand is more

than balanced by the decreased hardware cost of registers in a DRF architecture. Reducing

register demand in architectures with multiple register files is outside of the scope of this

thesis, but is an important area of future work.

8.1.5 Benchmark analysis
This section analyzes two interesting kernels to provide specific examples of the effects

described in the previous section: convfx7x7, which convolves an image with a 7x7 filter,

and spansprep, which prepares a span, or line of pixels, for rasterization.

Convfx7x7

Convfx7x7 demonstrates the ability of communication scheduling to handle shared inter-

connect allocation for a dense schedule resulting from a software pipelined kernel with

excess instruction level parallelism. Denser schedules have more competition for

resources, and are more rigorous tests for communication scheduling. Convfx7x7 uses a

software-pipelined loop that contains a large number of multiplications, additions, and

operations to pack and unpack data values. Figure 8-12 shows the 29-cycle schedule pro-

duced for a single register file architecture. It displays the functional units on the horizon-

tal axis and the cycles on the vertical access. Operations are shown as rectangles with

height indicating latency. Copy operations are shown with a chevron, and look like enve-
165

lopes. A small number of copy operations appear in single register file schedules to propa-

gate replicated state between software-pipeline stages.

Figure 8-13 shows the 30-cycle schedule produced for a DRF architecture, which is virtu-

ally identical. For this particular kernel, the DRF schedule is one cycle longer than the sin-

gle register file schedule, but this variation is within the random variation of the heuristic

VLIW scheduling algorithm. Overlaid on the schedule for the DRF architecture are the

communications between operations, shown as lines connecting the communicating oper-

ations. This figure illustrates the general density of communication in this application.

Communication scheduling manages the shared interconnect for these communications

without significant performance degradation.

Spansprep

Spansprep is a near worst-case kernel for a DRF architecture because it contains opera-

tions that almost fully occupy all functional units, leaving very little room for copy opera-

tions. However, even for this kernel, the KernelC compiler produces a schedule for the

DRF architecture that is only 9% longer that for the single RF architecture. In the single

register file schedule for spansprep depicted in Figure 8-14, all seven functional units

capable of performing copy operations (adders, multipliers, divider, permutation unit) are

almost fully occupied. The DRF schedule shown in Figure 8-15 contains an additional 43

copy operations which result in a schedule length increase of 6 cycles.

The KernelC compiler adds copy operations to the schedule for the DRF architecture pri-

marily to deal with competition for the single write port of each register file. In theory,

competition for register file write ports should never be an issue for the DRF architecture

because all register files can only be read by one functional unit input. Hence, at most one

word can be read per cycle, which can be supplied by a single write port. In reality, opera-

tions that need to write to a particular register file are not evenly distributed. When two

operations need to write to the same register file on a single cycle, the output of one oper-

ation is written to a different register file then later copied to the destination register file.

Very high levels of instruction level parallelism make this occurrence more likely, and also
166

FIGURE 8-12. Single register file schedule for convfx7x7 (29 cycles)

FIGURE 8-13. Distributed register file schedule for convfx7x7 (30 cycles)

ADD0 ADD1 ADD2 MUL0 MUL1 DIV0 INO0 INO1 INO4 INO5 SP_0 SP_0 PRM0

(B0)

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

(B2)

IMULRND16 IMULRND16 SELECTSHUFFLE SHIFTA16

IMULRND16 IMULRND16IADDS16 SHUFFLE IADDS16

IMULRND16 IMULRND16IADDS16 IADDS16 IADDS16 SELECT

IMULRND16 IMULRND16IADDS16IADDS16 IADDS16

IMULRND16 IMULRND16IADDS16IADDS16IADDS16

IMULRND16 IMULRND16IADDS16

IMULRND16 IMULRND16SHUFFLESHUFFLE IADDS16

IMULRND16 IMULRND16IADDS16IADDS16SHUFFLE

IMULRND16 IMULRND16IADDS16IADDS16 IADDS16

IMULRND16 IMULRND16IADDS16 IADDS16IADDS16

IMULRND16 IMULRND16IADDS16IADDS16 PERMUCPERM

IMULRND16 IMULRND16IADDS16 IADDS16SHUFFLE PERMUCPERM

SHUFFLEIADDS16 PERMUCPERMNSELECT

IADDS16 IADDS16 SHUFFLE NSELECTIMULRND16 IMULRND16 NSELECT

IADDS16 IADDS16IADDS16 IMULRND16 IMULRND16 PERMUCPERM

IADDS16 IADDS16 IADDS16 IMULRND16 IMULRND16 NSELECT

IADDS16IADDS16 IADDS16 IMULRND16 IMULRND16

IADDS16IADDS16IADDS16 IMULRND16 IMULRND16

IMULRND16 IMULRND16

SHUFFLE SHUFFLESHUFFLE IMULRND16 IMULRND16 COND_IN_D

IADDS16IADDS16 SHUFFLE IMULRND16 IMULRND16

IADDS16 IADDS16SHUFFLE DATA_INIMULRND16 IMULRND16

SELECTSHUFFLE IADDS16IADDS16 DATA_INIMULRND16 IMULRND16 SPCREAD_WT SPCWRITE

IADDS16 SELECTIADDS16IADDS16 SELECT DATA_INIMULRND16 IMULRND16 DATA_OUT

IADDS16 IADDS16IADDS16 SELECT DATA_INIMULRND16 IMULRND16 PERMUCDATADATA_OUT

IADDS16 SELECT DATA_INIMULRND16 IMULRND16IADDS16 IADDS16 NSELECTDATA_OUT

IADDS16 SELECTNSELECT DATA_INIMULRND16 IMULRND16IADDS16IADDS16 DATA_OUT

IADDS16 IADDS16 IMULRND16 IMULRND16IADDS16 NSELECT DATA_OUT

IMULRND16 IMULRND16IADDS16 SELECT COPYDATA_OUT DATA_OUT

ADD0 ADD1 ADD2 MUL0 MUL1 DIV0 INO0 INO1 INO4 INO5 SP_0 SP_0 PRM0

(B0)

32

33

34

35

36

37

38

39

40

41

42

43

44

45
46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

(B2)

IMULRND16 IMULRND16 COPYSELECTSHIFTA16

IMULRND16 IMULRND16IADDS16IADDS16 COPY COPYCOPY

IMULRND16 IMULRND16 COPYNSELECTIADDS16IADDS16

IMULRND16 IMULRND16IADDS16 IADDS16SHUFFLE COPYCOPY

IMULRND16 IMULRND16IADDS16IADDS16 COPY

IMULRND16 IMULRND16IADDS16 SHUFFLEIADDS16

IMULRND16 IMULRND16SHUFFLE COPYIADDS16IADDS16

IMULRND16 IMULRND16SHUFFLEIADDS16IADDS16 COPY

IMULRND16 IMULRND16IADDS16IADDS16 IADDS16

IMULRND16 IMULRND16IADDS16 IADDS16IADDS16 COPY

IMULRND16 IMULRND16IADDS16IADDS16IADDS16 COPY PERMUCPERM

IMULRND16 IMULRND16IADDS16IADDS16 IADDS16 PERMUCPERMNSELECT

IMULRND16 IMULRND16IADDS16 IADDS16 COPY

SHUFFLE COPYIADDS16 IADDS16 DATA_INSELECT

IADDS16IADDS16 IADDS16 DATA_INCOPY PERMUCPERM

IADDS16IADDS16 IADDS16 PERMXUCPERMSELECTIMULRND16 IMULRND16 COND_IN_D

IADDS16 IADDS16 IADDS16 DATA_IN COPYNSELECTIMULRND16 IMULRND16

IADDS16 COPYIADDS16 COPYIMULRND16 IMULRND16

IADDS16IADDS16 SHUFFLE IMULRND16 IMULRND16 SPCREAD_WT SPCWRITE

SHUFFLE IMULRND16 IMULRND16 COPY

SHUFFLE SHUFFLESHUFFLE COPYIMULRND16 IMULRND16 PERMXUCDATA

IADDS16IADDS16SHUFFLE COPYDATA_INIMULRND16 IMULRND16 COPY

IADDS16SHUFFLE IADDS16 COPYIMULRND16 IMULRND16 COPY

NSELECTIADDS16 IADDS16SHUFFLE IMULRND16 IMULRND16

IADDS16 NSELECTSHUFFLE IADDS16 NSELECTIMULRND16 IMULRND16 DATA_OUT

IADDS16 IADDS16 NSELECTIADDS16 IMULRND16 IMULRND16 DATA_OUT

IADDS16 SELECT DATA_INIMULRND16 IMULRND16 SELECTDATA_OUT

IADDS16 NSELECT SELECTDATA_INIMULRND16 IMULRND16IADDS16IADDS16 DATA_OUT

IADDS16 IADDS16 IMULRND16 IMULRND16 SELECT COPYDATA_OUT

IMULRND16 IMULRND16IADDS16IADDS16 COPYSELECT DATA_OUT DATA_OUT
167

make it more difficult to schedule the resulting copy operation without increasing sched-

ule length.

Figure 8-15 highlights one example of this effect. Two operations, an addition and a

select, need to write to multiplier 0’s left register file on cycle 12. One operation, the addi-

tion, writes directly to that register file. The other operation, the select, instead writes to

one of the permutation unit’s register files. A copy on cycle 14 moves the value from that

register file to the multiplier’s register file.

8.2 StreamC Compiler

8.2.1 Methodology
The StreamC compiler was evaluated by executing a set of benchmarks on a cycle accu-

rate simulator of the Imagine stream processor, using three different SRF allocation meth-

ods: stream scheduling, stream caching, and by hand. All runs used identical kernels.

Runtime was measured from an initial state with all kernels and the input in off-chip mem-

ory to a final state with the output in off-chip memory.

All of the StreamC compiler benchmarks except Q-R decomposition and programmable

rendering were implemented in two different languages: StreamC, and macrocode. Macro-

code, which is essentially an assembly language consisting of Imagine operations,

requires the programmer to allocate the SRF and specify all loading and storing of streams

by hand. Figure 8-16 shows a StreamC kernel call and the equivalent macrocode (with

minor syntax simplifications). Compared to StreamC, macrocode has the same disadvan-

tages as any assembly language compared to a high-level language. It has a steeper learn-

ing curve and requires low-level understanding of the hardware. It is more time

consuming to write, debug, and optimize and is not portable. However, properly optimized

macrocode delivers very high performance. The macrocode versions of the benchmarks

were extensively optimized by programmers who were very familiar with the Imagine
168

FIGURE 8-14. Single register file schedule for spansprep (64 cycles)

ADD0 ADD1 ADD2 MUL0 MUL1 DIV0 INO0 INO1 SP_0 SP_0 PRM0

(B0)
6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

(B2)

FMUL FMULFSUB FSUB NSELECTNSELECT

FMULFMUL NSELECT

FDIVFMUL FMULFSUBFSUB

FADD FMUL FMUL SELECTFSUB SELECT COPY

FADD FMUL FMULFSUB NSELECTINEQ32 COPY

FADDFSUB NSELECTSELECT COPY

FADDFSUB FMULFMUL COPY

FMULFADD FMULFSUB SELECT COPY

FMULFADD PERMUCDATAFMULFSUB NSELECT

FMULFSUB SPCREAD_WT PERMXUCDATSPCWRITENSELECTFMULFSUB SELECT

FMUL SPCREAD_WT SPCWRITE PERMUCDATAFMULFSUB FSUB COPYAND COND_OUT_R

PERMXUCDATFMUL SPCREAD_WT SPCWRITEFMULFSUB FSUB NSELECT COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMULFMULFSUBFSUB SELECT COND_OUT_R

SPCREAD_WT SPCWRITE PERMUCDATAFMULFSUB FMULFSUB NSELECTITOF COND_OUT_R

SPCREAD_WT SPCWRITE PERMUCDATAFMUL FMULFSUB COPYSELECT COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMULFMULFADD FSUB SELECT COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMULFADD FMUL SELECT COND_OUT_R

SPCREAD_WT SPCWRITE PERMUCDATAFMUL FDIVFADDFSUB COND_OUT_R

SPCREAD_WT SPCWRITE PERMUCDATAFMULFADDFSUBCOPY COND_OUT_R

SPCREAD_WT SPCWRITE PERMUCDATAFMULFADD FSUB SELECTFMUL COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMULFADD NSELECTFSUB FMUL COND_OUT_R

SPCREAD_WT PERMXUCDATSPCWRITEFMULFSUB NSELECTFMULFSUBCOPY COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMUL NSELECTFMULFSUB FSUB COND_OUT_R

SPCREAD_WT SPCWRITE PERMUCDATAFMULFSUB FMULFSUB NSELECTSELECT COND_OUT_R

SPCREAD_WT PERMXUCDATSPCWRITEFMULFMUL NSELECTFSUBFSUB FTOI COND_OUT_R

SPCREAD_WT PERMXUCDATSPCWRITEFMULFSUB FMULFSUB FSUB COPY COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMULFMULFSUB SELECTFSUB DATA_IN COND_OUT_R

SPCREAD_WT PERMXUCDATSPCWRITEFMULFMULFSUB FSUB INEQ32 SELECT DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERMUCDATAFMULFMULFSUB SELECT DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMUL FDIVFSUB FMULNSELECT FSUB DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMUL FMULFADD NSELECTFSUBIADD32 DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFSUBFADD FMULFMULIADD32 SELECT DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFADDFSUB SELECTFMUL FMUL DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMUL FMULFADD FSUB DATA_IN COND_OUT_R

SPCREAD_WT PERMXUCDATSPCWRITEFMUL NSELECTFMULFADDFSUBCOPY DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITEFMUL PERMUCDATAFSUB NSELECTFMULFADD DATA_IN COND_OUT_R

SPCREAD_WTFMULFSUB SPCWRITE PERMXUCDATFMULFSUB COPY DATA_IN COND_OUT_D

SPCREAD_WTFMUL SPCWRITE PERMUCDATAFMULFSUBFSUB COPYCOPY DATA_IN COND_OUT_R

SPCREAD_WT PERMUCDATAFMUL SPCWRITEFSUB FMUL NSELECTFSUB DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMUL FMULFSUBFSUB DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERMUCDATAFMUL FMULFSUB DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMUL NSELECTFMULFSUBCOPY DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMULFMUL NSELECTFADDFLE FLE COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMULFADD FMULFADD FADD COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMULFADD COPY COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMULFADDXOR COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMULFADD FLE COND_OUT_R

SPCREAD_WT SPCWRITE PERMUCDATAFMULFADD FLTCOPY COND_OUT_R

SPCREAD_WT SPCWRITEFMUL PERMXUCDATFSUB FTOI COND_OUT_R

SPCREAD_WT SPCWRITE PERMUCDATAFMULFSUB NSELECTFTOIXOR COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMULFSUBFSUB COPY COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMULFSUB COPYOR SELECT COND_OUT_R

SPCREAD_WT SPCWRITE PERMUCDATAFMULFSUB COPYCOPYNSELECT COND_OUT_R

SPCREAD_WT SPCWRITE PERMUCDATAFMULFSUBIADD32 SELECTCOPYCOPY COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMUL FDIVSELECTCOPY DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITEFMUL PERMXUCDATITOF NSELECTNSELECTSELECT DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMUL NSELECTSELECTSELECTNSELECT DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFMUL SELECTSELECT SELECT SELECT DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATSELECTSELECTNSELECTNSELECTIADD32 DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFSUB FSUB SELECTSELECTNSELECT COND_OUT_R

SPCREAD_WT SPCWRITE PERMXUCDATFSUBFSUB SELECTNSELECT NSELECT COND_OUT_R

SPCREAD_WT SPCWRITE PERMUCDATAFSUB FSUB SELECTSELECTSELECTNSELECT COND_OUT_R

SPCREAD_WT SPCWRITEFSUB NSELECTFSUB FSUB SELECT NSELECT COND_OUT_R

FMULFMULFSUBFSUB NSELECTSELECT COND_OUT_D
169

FIGURE 8-15. DRF schedule for spansprep (70 cycles)

ADD0 ADD1 ADD2 MUL0 MUL1 DIV0 INO0 INO1 SP_0 SP_0 PRM0

(B0)
6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

(B2)

FSUB FSUB SELECTSELECT SELECTCOPY COPY

NSELECTSELECTNSELECT SELECTSELECTAND COPY

FSUB FSUB SELECTSELECTNSELECT SELECT COPY

FSUB FSUB NSELECTNSELECTSELECT SELECT COPY

FSUB FM ULFM ULFSUBFSUB SELECT COPY

FSUB FSUB NSELECTSELECT NSELECT COPY

FM ULFM ULFSUBFSUB NSELECT COPY

FM UL FM UL SELECTFSUB COPY

FDIVFADD FM UL FM ULFSUB FSUB COPY

FM UL FM UL NSELECTNSELECT COPY

FADD FM UL FM ULFSUB SELECT COPY

FADDFSUB SELECT COPY

FADD FSUB FM ULFM ULIADD32 COPY

FM ULFADDFSUB FM UL COPY COPY

FM ULFADD PERM XUCDATASELECTFM ULFSUB

FM ULFSUB SPCREAD_WT SPCWRITEFM UL PERM UCDATAFSUB NSELECTNSELECT

FM ULFSUB SPCREAD_WT SPCWRITEFM ULFSUB PERM UCDATACOPY COND_OUT_R

PERM UCDATAFM UL SPCREAD_WT SPCWRITEFM UL COPYFSUBFSUBITOF COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFM ULFSUB FM ULFSUB COPY COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM ULFSUB FM ULFSUB SELECTCOPY COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFM UL FM ULFADD FSUB SELECT COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFM UL FM UL SELECTCOPY COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFM ULFM ULFADD COPYIADD32 COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM UL FDIVFADD FSUB COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM ULFADD FSUB NSELECT COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM ULFADD FSUB COPYCOPY COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM ULFADDFSUB NSELECTCOPY COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFM ULFSUB FM UL NSELECTFSUB COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFM ULFM UL COPYCOPYFSUB FSUB COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM ULFSUB NSELECTFM ULFSUB COND_OUT_R

SPCREAD_WT PERM XUCDATASPCWRITEFM ULFSUB FM ULFSUB SELECTFTOI COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFM ULFSUB FM ULFSUBFSUB SELECT COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM UL FM UL SELECTFSUB FSUB COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM UL FM ULFSUB SELECTFSUBNSELECT COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM UL FM ULFSUB COPY COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFM UL FDIVFM ULFSUB FADDFSUB COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM UL SELECTFM ULCOPY COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFADD FM ULFM UL NSELECTFSUBNSELECT COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFSUB NSELECTFADDIADD32 FM ULFM UL DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFADD FM ULFM ULFSUB INEQ32 DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFM ULFM ULFADDFSUB COPY DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITEFM UL PERM XUCDATANSELECTFM ULFADDFSUBXOR DATA_IN COND_OUT_R

SPCREAD_WTFM ULFSUB SPCWRITEFSUB PERM XUCDATAFM UL COPY DATA_IN COND_OUT_D

SPCREAD_WTFM UL PERM XUCDATASPCWRITEFM ULFSUBFSUB COPY DATA_IN COND_OUT_R

SPCREAD_WT PERM XUCDATAFM UL SPCWRITEFSUB FM ULFSUB NSELECT DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFM UL NSELECTFM ULFSUBFSUB DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM ULFM ULFSUB COPYFSUB DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM UL FM UL SELECTFADD FSUB FSUB DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITEFM UL PERM UCDATAFM UL NSELECTSELECT DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFM UL FM ULFADD SELECT DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM ULFADD FM UL SELECT DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM ULFADD FM UL DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFM ULFADDCOPY DATA_INCOPY COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM ULFADDCOPY DATA_INCOPY COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFSUB FM UL COPYCOPYFLE COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFM ULFSUB FADD FADD COPY COPY COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFM ULFSUB COPYCOPY COPY COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM ULFSUB COPY COPY COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFM ULFSUB COPY COPY COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATAFM ULFSUB FLT COPYCOPY COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM UL COPYCOPY DATA_INFLE COPY COND_OUT_R

SPCREAD_WT SPCWRITEFM UL PERM XUCDATANSELECTCOPY FTOI DATA_IN COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFM ULFSUB COPYCOPY DATA_INOR COND_OUT_R

SPCREAD_WT SPCWRITEFM UL PERM XUCDATACOPYCOPY COPY DATA_INFLE COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAIADD32FTOI COPY COPY DATA_INCOPY COND_OUT_R

SPCREAD_WT SPCWRITE PERM UCDATASELECTCOPYXOR COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATAFDIVITOF NSELECTNSELECT SELECT COND_OUT_R

SPCREAD_WT SPCWRITE PERM XUCDATASELECTNSELECT SELECTINEQ32 NSELECTCOPY COND_OUT_R

SPCREAD_WT SPCWRITESELECTSELECT SELECT COPYNSELECT COPYNSELECT COND_OUT_R

NSELECTNSELECT NSELECTNSELECT NSELECT COPYCOND_OUT_D
170

architecture. The StreamC versions were optimized using the StreamC compiler as

described in Section 7.3.

The StreamC version of each benchmark was executed twice: once with the SRF allocated

at compile time using stream scheduling, and once with the SRF allocated at run time

using stream caching. Stream caching is a simpler alternative to stream scheduling that

manages the SRF as a “cache of streams” using a least-recent-use replacement policy. It is

described in more detail in Section 6.1.

8.2.2 Benchmarks
The StreamC compiler was evaluated using five benchmarks: depth extraction, MPEG2

encoding, span-based polygon rendering, Q-R decomposition, and programmable polygon

rendering. Each benchmark is described1 in detail below:

StreamC Macrocode

foo (a, b, c); // write MARs (memory address,
// access mode, stride)
a_MAR.write(0x100100,
 mode_stride, 1);
b_MAR.write(0x100200,
 mode_stride, 1);
c_MAR.write(0x100300,
 mode_stride, 1);

// write SDRs (SRF address,
// length, record size)
a_SDR.write(0x100, 256, 1);
b_SDR.write(0x200, 256, 1);
c_SDR.write(0x300, 256, 1);

// load inputs
memory_load(a_MAR, a_SDR);
memory_load(b_MAR, b_SDR);

// call kernel
kernel_start(foo, 2, 1,
 a_SDR, b_SDR, c_SDR);

// store output
memory_store(c_MAR, c_SDR);

FIGURE 8-16. Equivalent StreamC and Macrocode
171

Depth extraction

The depth extraction benchmark computes depth information from two 320x240 8-bit

grayscale stereo images. It is based on Kanade’s algorithm [22], though two images are

used instead of the multiple cameras used in the video-rate stereo machine.

The depth extraction process is separated into two main steps: filtering the two images and

extracting the depth information from the filtered images. Each input image is filtered by

processing each row of the image using three kernels: one kernel unpacks the input row

from 8-bits per pixel to 16-bits per pixel, and two kernels that convolve the unpacked row

with a 7x7 filter followed by a 3x3 filter. Streams of partial sums are kept between rows to

support the 2D convolution in the 1D streaming model. Next, the depth information is

extracted using a kernel that computes a sliding window sum of absolute differences

between two rows of the two filtered images. The kernel is applied repeatedly with vary-

ing disparities, and the disparity at which the sum of absolute differences about a point is

smallest determines the depth of that point.

MPEG2 encoding

The MPEG2 encoding benchmark encodes three frames of a 320x288 24-bit color image.

The frames are encoded as an I-Frame followed by two P-Frames. The encoding is com-

plete except for the final Huffman bit-coding, which is inherently serial and thus better left

to a scalar processor.

The MPEG encoding process for a P-Frame consists of a series of eight kernels that oper-

ate on 16x16 macroblocks. The first kernel converts macroblocks from RGB space into

luminance-chrominance space. The second and third kernels determine motion vectors to

a macroblock in the reference image that is similar to each macroblock and convert the

motion vectors into indices required to load that block, respectively. The fourth, fifth, and

sixth kernels compute the differences between each macroblock and its reference macrob-

lock, take the discrete cosine transform (DCT) of the differences, and run length encode

1. Some portions of the following benchmark descriptions were adapted from [46] and unpub-
lished work by John Owens.
172

the results. The last two kernels take the inverse DCT of the results, and correlate them

with the previous reference image for use as part of the next reference image. The MPEG

encoding process for an I-frame is similar, except that it does not involve a reference

image and so lacks the second, third, and fourth kernels.

Span-based polygon rendering

The Span-Based Polygon Rendering benchmark renders a 512x512 24-bit color image of

a sphere using a conventional graphics pipeline. The sphere is finely subdivided into

81,920 unmeshed triangles and generates 361,816 fragments. Backface culling is disabled

so each drawn pixel has depth-complexity of 2. The sphere is Gouraud shaded and lit by

three positional lights with diffuse and specular lighting components.

The span-based rendering pipeline has three conceptual stages: geometry, rasterization,

and compositing, each of which is implemented as a series of kernels. The geometry stage

transforms object space triangles into screen space triangles. It uses three kernels that

transform the coordinates of the triangles from object space to screen space, perspective

project the triangles, and apply shading and lighting to the triangles. The rasterization

stage converts screen space triangles into fragments. It also uses three kernels: one that

prepares the triangles, one that converts each triangle into spans, and one that rasterizes

each span into fragments. The compositing stage composes the final image from the frag-

ments. First, it uses a kernel to hash the fragments based on their coordinates in order to

identify conflicting fragments. Second, it uses two kernels to merge-sort the conflicting

fragments. Lastly it iteratively applies two kernels to compact conflicting fragments and

composite fragments into the final image based on their z-values relative to previously

rendered fragments.

Q-R decomposition

The Q-R Decomposition benchmark decomposes an 192x96 matrix of floating-point num-

bers into an orthogonal Q matrix and an upper triangular R matrix such that their product
173

is equal to the input matrix using the compact Y-W representation [47] of the blocked-

Householder transform.

The Q-R decomposition process first computes the matrix R and then computes the matrix

Q using back substitution. To compute the matrix R, it divides the matrix into 8x8 blocks

of elements. It successively transforms each block along the diagonal to upper triangular

form and updates all blocks directly to the right of that block using the householder kernel.

After transforming each block, all blocks directly below the block are conceptually (not

physically) zeroed. All blocks below the current block and on or to the right of the diago-

nal are updated by successively applying the update1 and update2 kernels. Once the

matrix R has been computed, the matrix Q is computed using forward elimination by the

backsub1 kernel, and backward substitution by successive application of the backsub2 and

backsub3 kernels.

Programmable polygon rendering

The Programmable Polygon Rendering benchmarks are variations on a flexible polygon

rendering pipeline. The benchmarks use different shading kernels to render six different

scenes:

• Sphere: the same sphere rendered by the span-based rendering benchmark, with back-
face culling enabled.

• ADVS: the first frame of the SPECviewperf 6.1.1 Advanced Visualizer benchmark
with lighting and blending disabled and all textures point-sampled from a 512x512
texture map.

• Earth: a globe with protruding elevations rendered by perturbing the positions and
normals of each vertex of a tessellated sphere using a single combined per-vertex dis-
placement/bump map texture lookup. The scene is lit with a single positional light.

• Verona: a globe with protruding elevations reflecting the Cafe Verona. Verona begins
with the same per-vertex position displacement as Earth, and adds an additional “envi-
ronment-mapped-bump-map” calculation that involves a dependent texture read.

• Pin: a realistic bowling pin shaded with 5 successive textures as well as a procedurally
specified light with diffuse and specular components.

• Marble: a marble bowling pin shaded using procedural turbulence involving 4 noise
calculations per fragment and requiring no texture maps.
174

Like the span-based rendering pipeline, the programmable rendering pipeline has three

stages: geometry, rasterization, and compositing. The compositing stage is identical to that

of the span-based rendering pipeline, but the geometry and rasterization stages differ. The

geometry stage takes a “mesh” of connected vertices as input and produces a stream of tri-

angles as output. It consists of a series of kernels which compute and/or lookup texture

information for each vertex, assemble vertices into triangles, divide any triangles which

cross a viewport edge, and cull triangles which face away from the viewport or are outside

of the viewport. The rasterization stage consists of a series of kernels that prepare each tri-

angle for rasterization, rasterize each triangle directly into fragments, propagate texture

information from the triangles to the fragments, and compute and/or lookup the final tex-

ture information for each fragment. Thought this conceptual order of kernels is the same

for all scenes, the scenes use different shaders that have widely varying computation and

memory access requirements and, consequently, varied software pipelining.

8.2.3 Results
Figure 8-17 through Figure 8-20 summarize the results for the benchmarks. All results are

normalized to those for the stream scheduler. The results for programmable polygon ren-

dering are the average of the six scenes. The raw results for each benchmark kernel can be

found in Appendix A. Figure 8-17 presents the performance results for the benchmarks

using each of the three stream register file allocation methods. All run times are measured

in cycles from a state with all inputs stored in memory to a state with all outputs stored in

memory. Figure 8-18 through Figure 8-20 show the strip size, memory traffic, and pro-

cessing element occupancy for each of the benchmarks. Strip size is measured as the size

of the input data processed by each iteration of the strip-mined loop. Memory traffic is

measured as total number of words loaded and stored. Occupancy is measured by dividing

the total time spent executing kernels by the total run time.
175

8.2.4 General analysis
These results demonstrate that StreamC compiled using stream scheduling achieves per-

formance that is comparable to, and sometime better than, hand-optimized macrocode.

Stream caching significantly increases memory traffic, resulting in inferior performance.

This section analyzes the underlying factors that dictate performance on Imagine and how

these results derive from those factors.

Imagine application performance (assuming identical kernels) is dictated by three factors:

strip size, memory traffic, and execution/memory parallelism. The strip size is the amount

of data processed by each iteration of the strip-mined loop as described in Section 7.3. The

larger the strip size, the fewer iterations of the strip-mined loop are required to process the

input. Since each iteration adds overhead to start and stop each kernel (e.g. priming and

draining a software pipelined loop), increasing the strip size reduces the total execution

time of the kernels. The total memory traffic is the total number of words loaded and

stored by the application. All applications require some memory traffic to load initial

FIGURE 8-17. StreamC benchmark run times

Run time vs. SRF allocation method

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

Dep
th

MPEG2

Spa
n-b

as
ed

 re
nd

er

Q-R
 de

co
mpo

sit
ion

Prog
ram

mab
le

ren
de

r

P.R
. -

Sph
ere

P.R
. -

ADVS-1

P.R
. -

Eart
h

P.R
. -

Vero
na

P.R
. -

Pin

P.R
. -

Marb
le

Ave
rag

e,
1-3

Ave
rag

e,
all

 5

Kernel

R
un

 ti
m

e
(n

or
m

al
iz

ed
 to

 S
. S

ch
ed

)

S. Sched. S. Cache. Macrocode
176

FIGURE 8-18. Strip size

FIGURE 8-19. Memory traffic

Strip size vs. SRF allocation method

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Dep
th

MPEG2

Spa
n-b

as
ed

 re
nd

er

Q-R
 de

co
mpo

sit
ion

Prog
ram

mab
le

ren
de

r

P.R
. -

Sph
ere

P.R
. -

ADVS-1

P.R
. -

Eart
h

P.R
. -

Vero
na

P.R
. -

Pin

P.R
. -

Marb
le

Ave
rag

e,
1-3

Ave
rag

e,
all

 5

Kernel

St
rip

 s
iz

e
(n

or
m

al
iz

ed
 to

 S
. S

ch
ed

)

S. Sched. S. Cache. Macrocode

Memory traffic vs. SRF allocation method

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00

Dep
th

MPEG2

Spa
n-b

as
ed

 re
nd

er

Q-R
 de

co
mpo

sit
ion

Prog
ram

mab
le

ren
de

r

P.R
. -

Sph
ere

P.R
. -

ADVS-1

P.R
. -

Eart
h

P.R
. -

Vero
na

P.R
. -

Pin

P.R
. -

Marb
le

Ave
rag

e,
1-3

Ave
rag

e,
all

 5

Kernel

M
em

or
y

tr
af

fic
(n

or
m

al
iz

ed
 to

 S
. S

ch
ed

)

S. Sched. S. Cache. Macrocode
177

inputs and store final outputs. Additional memory traffic is generated when intermediate

data is spilled from the SRF to memory, possibly increasing run time. The occupancy

defines the fraction of run time spent doing useful work executing kernels. Occupancy

reflects the amount of memory access and execution parallelism achieved in the applica-

tion. Memory traffic that occurs in parallel with the execution of kernels does not increase

run time, and therefore does not decrease occupancy. Some execution and memory traffic

is inherently serial within the context of nearby kernels, for instance when a kernel pro-

duces a stream of addresses used as an index stream to load the input to the next kernel.

However, this memory traffic can still be hidden by executing kernels from other parts of

the program using a technique such as software pipelining. In practice, most non-parallel

memory traffic is due to either to poor resource allocation (for instance, when a kernel

waits to be executed because it needs to write to a location in the SRF occupied by a

stream that is being stored) or to excessive memory traffic.

FIGURE 8-20. Occupancy

Occupancy vs. SRF allocation method

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Dep
th

MPEG2

Spa
n-b

as
ed

 re
nd

er

Q-R
 D

ec
om

po
sit

ion

Prog
ram

mab
le

ren
de

r

P.R
. -

Sph
ere

P.R
. -

ADVS-1

P.R
. -

Eart
h

P.R
. -

Vero
na

P.R
. -

Pin

P.R
. -

Marb
le

Ave
rag

e,
1-3

Ave
rag

e,
all

 5

Kernel

O
cc

up
an

cy
 (n

or
m

al
iz

ed
 to

 S
. S

ch
ed

) S. Sched. S. Cache. Macrocode
178

These three factors are often inversely related, and maximum performance involves find-

ing the best combination of factors rather than maximizing any one factor. Increasing strip

size can force some intermediate data to be spilled out of the SRF, or prevent some kernels

from occurring in parallel with memory traffic because there is not enough space in the

SRF for the data involved in both operations. Memory traffic can be decreased by keeping

data that is reused between iterations in the SRF, but doing so often requires decreasing

the strip size or reducing parallelism. Memory/execution parallelism can be increased by

software pipelining the strip-mined loop so that kernels from one stage can be executed at

the same time as serial memory accesses between kernels of the other stage. However,

software pipelining requires intermediate data from different stages to fit in the SRF

simultaneously, which usually requires decreasing strip size.

Stream scheduling often achieves a larger strip size than a macrocode programmer,

improving performance. Macrocode programmers tend to allocate the SRF in a regular,

conceptually straightforward manner. Stream scheduling produces a less regular, non-intu-

itive layout that enables it to fit more data in the SRF. Stream scheduling also handles

loading initial inputs and/or storing final outputs in a more efficient manner. Macrocode

programmers usually software pipeline the loop and place these loads and stores in the

first stage and last stage, respectively. This approach ensures that the memory access can

always occur in parallel with execution but requires allocating space to hold the initial

inputs and final outputs for the entire duration of the loop. In contrast, stream scheduling

uses shadows to ensure that the loads and stores can occur in parallel with one or more

kernels as described in Section 6.3. Occasionally, using shadows causes it to allocate the

SRF so that memory accesses cannot occur completely in parallel with execution. This

loss of parallelism occurs when it reduces the duration of the shadows in order to fit all

streams in the SRF and/or the duration of the shadows encompasses kernels with very

short execution times. However, the loss is usually more than made up for by the increased

strip size.

The StreamC executed with stream caching does not perform nearly as well as the

StreamC compiled with stream scheduling. Stream caching increases memory traffic to
179

the point where all benchmarks except Q-R decomposition become memory bound, which

severely reduces performance. Since stream caching cannot anticipate future accesses, all

output streams must be stored back to memory. Further, streams are often arranged poorly

in the SRF, resulting in more loads than would otherwise be required. Since identical

StreamC was executed with stream scheduling and stream caching, the strip sizes are

same. However, stream caching often failed to fit all of the intermediate data in the SRF

resulting in even more memory traffic. These problems are discussed in more detail in

Section 6.1. The performance of stream caching is similar to the performance of a conven-

tional cache with perfect prefetching since streams are loaded in advance of execution.

Thus, these results also demonstrate why a conventional cache is poorly suited to stream-

ing applications.

8.2.5 Benchmark analysis
This section analyzes each benchmark to highlight specific examples of the tradeoffs

described in the previous section.

Depth extraction

The depth extraction benchmark demonstrates the importance of minimizing memory traf-

fic for applications with high throughput kernels. Depth extraction has only modest SRF

requirements, but many of the kernels involved have short run times relative to the amount

of data they produce. Stream scheduling and macrocode both make effective use of the

SRF and require the minimum amount of memory traffic, resulting in almost identical run

times (the StreamC run time is slightly higher due to a second-order effect involving the

order of accesses made by the SRF clients). Stream caching, however, requires roughly

twelve times as much memory traffic because it stores all intermediate results, most of

which are never reused. Since there is proportionally little kernel execution time to hide

the memory access time, these unnecessary stores quadruple run time.

MPEG2 encoding
180

Though the stream scheduled and macrocode versions of the MPEG benchmark have vir-

tually the same run-time, the stream scheduled version actually does more work. The

MPEG benchmark is strip-mined to process a batch of macroblocks each iteration. Stream

scheduling allocates the SRF efficiently enough to process an entire row of macroblocks

each iteration, primarily because it does not software pipeline loading the initial inputs and

storing the final outputs. The macrocode only processes half a row of macroblocks each

iteration. The stream scheduled version is able to search an entire row of reference mac-

roblocks using the blocksearch kernel, increasing the total execution time of that kernel.

Excluding the increase in the blocksearch kernel run time, the stream scheduled version is

3% faster.

Span-based polygon rendering

The polygon rendering benchmark demonstrates the effect of different tradeoffs between

strip size and parallelism. The primary difference between the stream scheduled version

and the macrocode involves how loading the initial triangles and storing the final depth

and color values are software pipelined. The macrocode version pipelines each of these

memory accesses as a separate software pipeline stage. It devotes SRF space to hold the

data for the entire loop. The stream scheduled version does not, enabling it to process 256

triangles per batch, while the macrocode can only process 80 triangles per batch.

Both the StreamC and macrocode versions are software pipelined in order to parallelize an

inherently serial memory access. The polygon rendering benchmark consists of the series

of kernels described in Section 8.2.2. The compact kernel produces a stream of addresses

into the depth buffer that is used to load a stream of z-values for the next kernel, zcom-

pare. This memory access is inherently serial. Both versions of polygon rendering are soft-

ware pipelined so that kernels from the next iteration can be executed at the same time as

this memory access. This reduces strip size, but the cost of the memory access is higher

than the overhead of all the kernels in the loop.
181

Q-R decomposition

Q-R decomposition is the only benchmark for which stream caching delivers performance

near that of stream scheduling, due to a relatively high ratio of computation to memory

traffic and a working set which eventually fits in the SRF. The majority of computation

involves repeated passes by the householder kernel. Each pass generates output which is

used as the input to the next pass. Both stream caching and stream scheduling keep this

data in the SRF, but stream caching writes it back to memory unnecessarily. However, the

time required to store the data is slightly less than the time required to produce it so this

extra memory traffic is hidden. After transforming each block along the diagonal, the

update kernels are used to update each of the remaining rows. Initially, all the rows do not

fit in the SRF. The least-recently-used replacement policy employed by stream caching

ejects all rows over the course of an update as a result. The additional time required to

reload the first of these rows slows stream caching relative to stream scheduling, but

reloading later rows is hidden by the update of earlier rows. Eventually, all of the remain-

ing rows fit in the SRF and both SRF allocation methods keep them there. For this partic-

ular benchmark, the stream caching run-time approaches that of stream scheduling.

However, stream caching still requires 71% more memory traffic due to the unnecessary

writes. Higher computation speed relative to memory access time would rapidly degrade

performance under stream caching.

Programmable polygon rendering

The programmable polygon rendering benchmarks pose several significant challenges,

resulting in slightly lower occupancy (average of 83%). First, they contain many sequen-

tial memory accesses due to texture look-ups. Second, the size of most streams varies

widely, since a fixed number of vertices assembles into an unpredictable number of trian-

gles, which rasterize into an unpredictable number of pixels, etc. Third, some of the

streams are so small that the time to execute a kernel is less than the time to dispatch the

required operations from the host processor to Imagine. Fourth, handling unpredictable

stream lengths which can sometimes be zero requires data-dependent control flow.
182

The factors compound one another. Sequential memory accesses can be made to occur in

parallel with execution using software pipelining, but varying output sizes make the time

required for memory accesses and kernels unpredictable. The software pipelining algo-

rithm described in Section 7.3.2 mitigates this unpredictability by estimating times based

on average lengths and trying to cover all memory accesses with a constant proportion of

execution rather than covering some memory accesses with the minimum amount of exe-

cution and others with more than enough. The time to dispatch operations can be hidden

by dispatching them ahead of time, but operations can be only be dispatched up to the next

data-dependent branch. The stream scheduler mitigates this cost somewhat by minimizing

the number of operations that need to be dispatched by hoisting redundant operations out

of loops. This cost to dispatch operation would be diminished significantly by integrating

the host on the same chip as Imagine.
183

8.3 Summary
This chapter presented a quantitative evaluation of the compilers described in this thesis,

with an emphasis on the communication scheduling portion of the KernelC compiler and

the stream scheduling portion of the StreamC compiler. The results in this chapter demon-

strate that by using communication scheduling the KernelC compiler can schedule kernels

on a distributed register file architecture with schedule lengths comparable to an ideal sin-

gle register file architecture. The results in this chapter also demonstrate that by using

stream scheduling the StreamC compiler can deliver application performance that is com-

parable to, and in some cases better than, macrocode hand-written and optimized by

expert imagine programmers. Stream caching, a simpler technique that manages the SRF

at run-time, results in significantly worse performance due to increased memory traffic.
184

Chapter 9

Conclusion

9.1 Summary
The Imagine Media Processor introduces architectural innovations to meet the demands of

media processing applications, but these innovations place additional burdens on the com-

piler. Media processing applications demand very high arithmetic rates and data band-

width. To meet the arithmetic demands, Imagine connects functional units to multiple

register files with shared interconnect instead of to a single register file with dedicated

interconnect, which enables it to support many more functional units. To meet the data

bandwidth demands, Imagine uses a stream register file instead of a cache, which requires

an application to explicitly load and store long sequences of data called streams. These

two innovations place additional burdens on the compiler: allocating the shared intercon-

nect and managing the stream register file.

This thesis presents a programming system for the Imagine media processor that intro-

duces an implementation of the stream programming model and two compiler techniques

to support these architectural innovations. The stream programming model divides an

application into two parts: kernels, computation intensive functions that operate on

streams, and a stream program that defines the high-level control- and data-flow between

kernels. The kernels are written using a language called KernelC. The KernelC compiler

uses communication scheduling to allocate the shared interconnect and manage data

movement between functional units and multiple register files. The stream program is
185

written using a language called StreamC. The StreamC compiler uses stream scheduling to

manage the stream register file and determine when to load and store streams.

The programming system presented in this thesis enables efficient high-performance

application development for Imagine. Multiple applications have been implemented for

Imagine, including stereo depth extraction, MPEG2 encoding, Q-R decomposition, and

polygon rendering. Experimental results presented in this thesis demonstrate that the Ker-

nelC compiler, scheduling kernels used in these applications, can produce schedules for an

architecture with multiple register files with shared interconnect that are comparable to

those for the same architecture with an ideal single register file. Stream scheduling deliv-

ers performance equal to or better than a programmer can achieve with a kind of assembly

language called macrocode that requires allocating the SRF by hand, and significantly out-

performs a run-time “stream caching” approach.

9.2 Future Work
This thesis focused on the essential portions of a programming system for Imagine; there

are several capabilities that would be useful extensions to this system. These capabilities

include extending communication scheduling to consider register pressure and extending

the StreamC compiler to a multiprocessor system.

9.2.1 Communication scheduling with register pressure
Communication scheduling could be improved by considering register pressure when

assigning communications to routes. As described in this thesis, communication schedul-

ing only considers the availability of shared interconnect resources. Considering register

pressure would result in trying to store values in as few register files as possible, adding

copy operations to allow a value to be stored in a another register file until just before it is

used, and preferentially scheduling operations on functional units that can access register

files with relatively low register pressure.
186

9.2.2 Multiprocessor systems
Stream programs map to multiprocessor systems with relative ease because the stream

programming model makes high-level data flow and parallelism explicit, but finding the

best arrangement of kernels on processors is a challenging problem. The simplest arrange-

ment is to run each kernel only on a specific processor. More complicated arrangements

include stripmining the application and running a small number of strip-mined loop itera-

tions simultaneously on different processors.

9.3 Epilogue
Programming models and compilers need to evolve to allow more efficient application

development for media processing architectures. Media processing applications are

becoming the dominant desktop workload and are already prevalent in embedded systems

[11]. As the importance of these applications increases, processors optimized for media

processing will become more and more common. At present, applications for these pro-

cessors often are written at a very low level in order to achieve good performance. As this

thesis demonstrates, combining the right programming model and compiler techniques

can allow high-level development of these applications without sacrificing performance.
187

188

Appendix A: Detailed Results

The following are the detailed results for the KernelC compiler:

Kernel

SRF DRF CLB
SW

pipe.

Crit.
path/
RMII

Res.
limit SRF DRF SRF

DRF
(dup)

DRF
(imb)

Block warper
blockwarp 62 63 58 n 58 22 105 109 46 86 204
Depth Extraction
blockfill 4 4 4 n 4 4 11 11 5 22 34
blocksad 14 14 12 y 12 12 117 128 44 82 136
byte2word 7 7 7 y 7 5 13 13 9 29 34
convfx3x3 10 11 9 y 9 7 59 61 40 62 119
convfx7x7 29 30 28 y 9 28 175 200 108 165 374
exdepth 11 11 10 n 10 5 16 16 9 30 34
extemp3 4 4 4 n 4 4 11 11 6 19 34
extemp7 6 6 6 y 6 6 23 23 6 23 34
FFT
fft8c1024 42 42 42 y 32 42 341 369 69 132 204
MPEG2 Encoding
blocksearch 96 99 77 n 69 77 409 466 91 187 323
corr 38 37 32 y 22 32 262 276 51 109 187
dct 40 40 36 y 14 36 220 242 73 130 238
diff 34 34 32 y 16 32 208 218 36 75 153
icolor 15 15 12 y 10 12 77 87 38 73 136
idct 41 42 37 y 14 37 250 281 63 178 408
idxgen 35 35 35 n 35 32 87 87 28 68 187
mv2idx 44 45 36 y 8 36 151 165 36 100 238
pcolor 143 150 107 n 72 107 705 763 86 191 272
rle 7 7 7 n 7 5 25 25 47 130 221
Polygon Rendering
compact_recycle 10 10 10 y 10 8 56 59 21 46 68
glshader 118 117 99 y 12 99 328 326 144 218 510
hash 18 18 17 y 10 17 124 129 66 107 204
mergefrag 45 45 34 n 31 34 149 154 39 99 136
project 27 27 27 y 27 27 197 205 78 141 238
sort32frag 247 245 208 n 130 208 826 905 50 132 204
spanrast 26 27 21 y 16 21 156 165 40 74 119
spansgen 61 61 53 y 30 53 360 398 60 117 204
spansprep 64 70 57 y 57 54 564 607 82 178 408
xform 12 12 12 y 12 9 50 50 27 54 153
zcompare 7 7 7 y 7 5 23 23 10 28 51
Q-R Matrix Decomposition
backsub1 14 14 14 n 14 5 16 16 17 46 68
backsub2 19 19 16 n 16 5 20 20 20 56 102
backsub3 32 32 31 n 31 10 34 34 16 43 85
house2 23 24 23 y 10 23 159 184 101 212 340
sumsqr 10 10 10 y 10 9 74 78 21 50 102
update1 37 37 26 y 26 16 101 102 39 85 289
update2 16 16 16 y 8 16 110 119 37 79 204
Sorting
bisort 10 10 10 y 10 8 75 83 20 59 85
merge 22 22 15 y 15 13 69 70 20 59 102
sort32 52 53 52 y 10 52 233 250 32 87 153

Computable lower bound
Loop sched.
len. Operations Registers
189

The following are the detailed results for the StreamC compiler:

Stream
Sched.

Stream
Cache

Macro-
code

Stream
Sched.

Stream
Cache

Macro-
code

Depth 2128680 8719210 2067664 1988066 1988066 1987936
MPEG2 4304550 6533840 4309075 4121082 4121082 4099464
Span-based render 11242940 28732810 12345158 10503796 10503796 11360700
Q-R Decomposition 712770 732690 657140 657140
Programmable render
P.R. - Sphere 13084160 22378320 11633104 11633104
P.R. - ADVS-1 3552850 8210430 2804293 2804293
P.R. - Earth 13007930 23988590 10479312 10479312
P.R. - Verona 23353710 49574070 19372688 19372688
P.R. - Pin 9975960 24794120 7933138 7933138
P.R. - Marble 12130460 21843240 10866323 10693943

Stream
Sched.

Stream
Cache

Macro-
code

Stream
Sched.

Stream
Cache

Macro-
code unit

Depth 907176 10551976 915232 1 1 1 rows
MPEG2 938648 3126104 970904 20 20 10 blocks
Span-based render 2480496 24699984 2400728 256 256 80 triangles
Q-R Decomposition 286400 489616 8 8 rows
Programmable render
P.R. - Sphere 2295600 16437864 480 480 vertices
P.R. - ADVS-1 797680 6426944 224 224 vertices
P.R. - Earth 2373696 17319808 64 64 vertices
P.R. - Verona 3163736 35634312 40 40 vertices
P.R. - Pin 1716448 21406848 88 88 vertices
P.R. - Marble 976608 16211176 64 64 vertices

Run Time (cycles)

Strip Size (varies, see unit)Memory Traffic (words)

Kernel Exec. Time (cycles)
190

Bibliography

[1] Aho, A., Sethi, R., and Ulman, J., Compilers. Addison-Wesly Publishing Company,
1998.

[2] Basoglu, C., et al., “The MAP-CA VLIW-based Media Processor From Equator
Technologies Inc. and Hitachi Ltd.”, www.equator.com, Nov. 2002.

[3] Benitez, M., and Davidson, J., “Code generation for streaming: an access/execute
mechanism.” Proceedings of the 4th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, April 1991, pp. 132-141.

[4] Breternitz, M., and Shen, J., “Implementation optimization techniques for architec-
ture synthesis of application-specific processors.” Proceedings of the 24th Annual
International Symposium on Microarchitecture, Nov. 1991, pp. 114-123.

[5] Capitanio, A., Dutt, N., and Nicolau, A., “Partitioned register files for VLIWs: a pre-
liminary analysis of tradeoffs.” Proceedings of the 25th Annual International Sym-
posium on Microarchitecture, Dec. 1992, pp. 292-300.

[6] Carter, J., et al., “Impulse: building a smarter memory controller.” Proceedings of
the 5th International Symposium on High Performance Computer Architecture, Jan.
1999, pp. 132-141.

[7] Catthoor, F., Dutt, N., and Kozyrakis, C., “How to solve the current memory access
and data transfer bottlenecks: at the processor architecture or at the compiler level?”
Proceedings of Design, Automation, and Test in Europe Conference 2000, Mar.
2000, pp. 426-433.

[8] Colwell, R., et al. “Architecture and implementation of a VLIW supercomputer.”
Proceedings in Supercomputing, Nov. 1990, pp. 910-919.

[9] Dehnert, J., and Towle, R., “Compiling for the Cydra 5." Journal of Supercomput-
ing, Jan. 1993, 182-227.

[10] Desoli, G. “Instruction assignment for clustered VLIW DSP compilers: A new
approach.” Technical Report HPL-98-13, Hewlett-Packard Laboratories, Feb. 1998.

[11] Diefendorff, K. and Dubey, P. “How multimedia workloads will change processor
design.” Computer, Sept. 1997, pp. 43-45.

[12] Ellis, J., Bulldog: A compiler for VLIW architectures. MIT Press, 1986.
191

[13] Fabri, J., “Automatic storage optimization,” Proceedings of the ACM SIGPLAN
1979 Symposium on Compiler Construction, 1979, pp. 83-91.

[14] Fernandes, M., Llosa, J., and Topham, N., “Distributed modulo scheduling.” Pro-
ceedings of the 5th Annual International Conference on High Performance Com-
puter Architecture, Jan. 1999, pp. 130-134.

[15] Fisher, J., “Trace scheduling: a technique for global microcode compaction.” IEEE
Transactions on Computers, July 1981, pp. 478-490.

[16] Gergov, J., “Algorithms for compile-time memory optimization.” Proceedings of the
10th Annual ACM-SIAM Symposium on Discrete Algorithms, 1999, pp. 907-908.

[17] Grossman, J., and Dally, W., “Point sample rendering.” Proceedings of the 9th Euro-
graphics Workshop on Rendering, June 1998, pp. 181-192.

[18] Hennessy, J., and Patterson, D., Computer architecture: a quantitative approach.
Morgan Kaufmann Publishers, 1990.

[19] Hoogerbrugge, J., and Corporaal, H., “Transport-triggering vs. operation-trigger-
ing,” International Conference on Compiler Construction, April 1994.

[20] Huff, R., “Lifetime-sensitive modulo scheduling”, Proceedings of the Conference on
Programming Language Design and Implementation, June 1993, pp. 258-267.

[21] Hwu, W., et al., “The superblock: an effective structure for VLIW and superscalar
compilation,” Journal of Supercomputing, July 1993, pp. 229-248.

[22] Kanade, T., et al., “Development of a video-rate stereo machine.” Proceedings of the
International Robotics and Systems Conference, 1995, pp. 95-100.

[23] Kapasi, U., et. al, “Efficient conditional operations for data-parallel architectures.”
Proceedings of the 33rd Annual Symposium on Microarchitecture, Dec. 2000, pp.
159-170.

[24] Khailany, B., et al., “Imagine: signal and image processing using streams (ppt).”
Hotchips 12, Aug. 2000.

[25] Khailany, B., et al., “Imagine: media processing with streams.” IEEE Micro, Mar./
April 2001.

[26] Kirkpatrick, S., Gelatt, C., Vecchi, M., “Optimization by simulated annealing,” Sci-
ence, May 1983.

[27] Kozyrakis, C., and Patterson, D., “A new direction in computer architecture
research,” IEEE Computer, Nov. 1998, pp. 24-32.

[28] Lam, M., “Software pipelining: an effective scheduling technique for VLIW
machines.” Proceedings of the Conference on Programming Language Design and
Implementation, June 1988, pp. 318-328.

[29] Lavery, D., and Hwo, W., “Unrolling-based optimizations for modulo scheduling.”
Proceedings of the 28th Annual International Symposium on Microarchitecture,
1995, pp. 327-337.
192

[30] Lee, C., and Smith, J., “A study of partitioned vector register files.” Proceedings of
the 1992 Conference on Supercomputing, July 1992, pp. 94-103.

[31] Lee, W., et al., “Space-time scheduling of instruction-level parallelism on a raw
machine,” Proceedings of the 8th International Conference on Architectural Support
for Programming Languages and Operating Systems, Oct. 1998.

[32] Lowney, P., et al., “The Multiflow trace scheduling compiler.” Journal of Supercom-
puting, Jan. 1993, pp. 51-142.

[33] Mangione-Smith, W., Abraham, S., and Davidson, E. “Register requirements of
pipelined processors.” Proceedings of the International Conference on Supercom-
puting, July 1992, pp. 260-271.

[34] Mattson, P., et al., “Communication scheduling,” Proceedings of the 9th Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems, Nov. 2000, pp. 82-92.

[35] McKee, A., et al., “Design and evaluation of dynamic access ordering hardware,
Proceedings of the 1996 International Conference on Supercomputing, May 1996,
pp. 125-132.

[36] McKee, A., et. al., “Smarter Memory: Improving Bandwidth for Streamed Refer-
ences,” IEEE Computer, July 1998, pp. 54-63.

[37] Muchnick, S., Advanced Compiler Design and Implementation, Morgan Kaufmann,
1997.

[38] Nystrom, E., and Eichenberger, A., “Effective cluster assignment for modulo sched-
uling.” Proceedings of the 31st Annual International Symposium on Microarchitec-
ture, Dec. 1998, pp. 103 - 114.

[39] Owens, J., Dally, et al., “Polygon rendering on a stream architecture.” Proceedings
of the 2000 SIGGRAPH / Eurographics Workshop on Graphics Hardware, Aug.
2000, pp. 23-32.

[40] Ozer, E., Banerjia, S., and Conte, T., “Unified assign and schedule: A new approach
to scheduling for clustered register file microarchitectures.” Proceedings of the 31st
Annual International Symposium on Microarchitecture, Dec. 1998, pp. 308-315.

[41] Ramakishnan, S., “Software-pipelining in PA-RISC compilers.” Hewlett-Packard
Journal, June 1992.

[42] Rau, B., Glaeser, C., and Picard, R., “Efficient code generation for horizontal archi-
tectures: Compiler techniques and architectural support." Proceedings of the Inter-
national Symposium on Computer Architecture, July 1982, pp. 131-139.

[43] Rixner, S., et al., “A bandwidth-efficient architecture for media processing,” Pro-
ceedings of the 31st Annual International Symposium on Microarchitecture, Dec.,
1998, pp. 3-13.

[44] Rixner, S., et al., “Register organization for media processing.” 6th International
Symposium on High-Performance Computer Architecture, Jan. 2000, pp. 375-386.
193

[45] Rixner, S., et al., “Memory Access Scheduling”, 27th Annual International Sympo-
sium on Computer Architecture, June 2000, pp. 128-138.

[46] Rixner, S., A bandwidth efficient architecture for a streaming media processor. Ph.D.
thesis, Massachusetts Institute of Technology, 2000.

[47] Schreiber, R., and Van Loan, C., “A storage-efficient WY representation for prod-
ucts of Householder transformations,” SIAM Journal of Scientific and Statistical
Computing, 10(1):53--57, 1989.

[48] Stotzer, E. and Leiss, E., “Modulo scheduling for the TMS320C6x VLIW DSP
architecture,” Proceedings of the ACM SIGPLAN 1999 Workshop on Languages,
Compilers, and Tools for Embedded Systems, May 1999, pp. 28-34.

[49] Wolfe, M., “More iteration space tiling.” Proceedings of the 1989 Conference on
Supercomputing, Nov. 1989, pp. 655-664.
194

	Chapter 1
	Introduction

	1.1 The Problem
	FIGURE 1-1. Simplified diagram of a conventional processor
	FIGURE 1-2. Simplified diagram of an Imagine processor
	FIGURE 1-3. Simplified polygon rendering using stream programming model
	FIGURE 1-4. Communication scheduling assigns each communication to a route
	FIGURE 1-5. Stream scheduling assigns each stream access to a buffer in the SRF

	1.2 Contributions
	1. An implementation of the stream programming model which introduces the StreamC and KernelC lan...
	2. Communication scheduling, a compiler technique for allocating shared interconnect between func...
	3. Stream scheduling, a compiler technique for allocating a stream register file and managing the...

	1.3 Thesis Roadmap
	Chapter 2
	Background

	2.1 VLIW Scheduling
	2.2 Streams
	2.3 Imagine Media Processor
	FIGURE 2-1. Imagine Media Processor
	2.3.1 Stream controller/host interface
	2.3.2 Stream register file
	2.3.3 Memory system
	2.3.4 Processor core

	2.4 Summary
	Chapter 3
	Stream Programming Model

	3.1 Overview
	FIGURE 3-1. Stream programming model
	FIGURE 3-2. Simplified polygon rendering using stream programming model
	FIGURE 3-3. Code transformation to stream programming model

	3.2 KernelC
	FIGURE 3-4. Abbreviated definition of KernelC
	3.2.1 Structured data access
	FIGURE 3-5. Example with data access highlighted

	3.2.2 Limited control flow
	FIGURE 3-6. Example with limited control flow highlighted

	3.2.3 Additional data types and math operators
	FIGURE 3-7. Kernel to brighten an 8-bit grayscale image

	3.2.4 SIMD processing support
	FIGURE 3-8. Kernel to sum a stream of integers

	3.3 StreamC
	FIGURE 3-9. C++ declarations for StreamC components
	3.3.1 Streams
	FIGURE 3-10. A basic stream is an array of records
	FIGURE 3-11. A derived stream is a subset of the records in a basic stream defined by a start, en...
	FIGURE 3-12. Sequential access pattern includes every record
	FIGURE 3-13. Strided access pattern includes every strideth record
	FIGURE 3-14. Indexed access pattern includes records with positions given by index stream
	FIGURE 3-15. Example with streams highlighted
	FIGURE 3-16. Derived streams mapped to the underlying basic stream

	3.3.2 Microcontroller variables
	FIGURE 3-17. Extended example with microcontroller variables highlighted

	3.3.3 Kernels
	FIGURE 3-18. Kernel call in example

	3.3.4 Stream copies and transfers
	FIGURE 3-19. Copies and transfers
	FIGURE 3-20. Simple example of stream copies and transfers

	3.3.5 Data-dependence annotations
	FIGURE 3-21. Data dependent control flow annotations
	FIGURE 3-22. Example of data dependence annotations

	3.4 Summary
	Chapter 4
	Communication Scheduling

	4.1 Motivation
	FIGURE 4-1. Example code fragment
	FIGURE 4-2. Single register file architecture
	FIGURE 4-3. Schedule for single register file architecture
	FIGURE 4-4. Shared interconnect architecture
	FIGURE 4-5. Schedule for shared interconnect architecture

	4.2 Overview
	FIGURE 4-6. Communication scheduling assigns each communication to a route
	FIGURE 4-7. Communications in motivating example
	FIGURE 4-8. Routes for communications in motivating example
	FIGURE 4-9. Composition of a route
	FIGURE 4-10. Composition of route for communication of a from operation 1 to operation 4
	4.2.1 Role in a VLIW scheduler
	FIGURE 4-11. Flowgraph for a simple scheduler with communication scheduling
	FIGURE 4-12. Incremental composition of a route (left to right)

	4.3 Algorithm
	1. determine the valid read stubs for each communication to the current operation and the valid w...
	2. find a non-conflicting permutation of read stubs for communications to operations on the cycle...
	3. find a non-conflicting permutation of write stubs for communications from operations on the cy...
	4. for each closing communication, if the read stub and write stub form a route then assign the c...
	5. for each closing communication, if the read stub and write stub do not form a route then inser...
	Step 1. Determine valid stubs
	FIGURE 4-13. Valid write stubs
	FIGURE 4-14. Valid read stubs

	Step 2. Find permutation of read stubs
	Step 3. Find permutation of write stubs
	FIGURE 4-15. Permutation of write stubs when scheduling operation 1
	FIGURE 4-16. Permutation of write stubs when scheduling operation 2
	FIGURE 4-17. Operation 3 cannot be scheduled due to stub conflicts

	Step 4. Assign routes
	FIGURE 4-18. Route for communication of b from operation 2 to operation 4

	Step 5. Insert copy operations
	FIGURE 4-19. Copy operation code transformation
	FIGURE 4-20. A copy operation effectively splits original communication into two communications
	FIGURE 4-21. Copy ranges based on location of read operation
	FIGURE 4-22. Route for communication of a from operation 1 to operation 4

	4.4 Implementation
	4.4.1 Determining valid stubs for a communication
	FIGURE 4-23. Copy connected architecture constraint

	4.4.2 Finding a permutation of stubs
	FIGURE 4-24. Pseudocode for stub permutation search

	4.4.3 Scheduling copy operations

	4.5 Performance
	4.6 Summary
	Chapter 5
	KernelC Compiler

	5.1 Pre-scheduling
	5.1.1 Parsing
	FIGURE 5-1. Example kernel in KernelC and corresponding primitive operations

	5.1.2 Control flow analysis
	FIGURE 5-2. Control flow graph

	5.1.3 Data flow analysis
	FIGURE 5-3. Communication graph

	5.1.4 Dependency analysis
	FIGURE 5-4. Dependency graph

	5.1.5 Stream input/output ordering
	FIGURE 5-5. Dependency graph before and after stream input/output ordering.

	5.1.6 Scratch pad access ordering

	5.2 Scheduling
	FIGURE 5-6. Example architecture
	5.2.1 Basic block ordering
	5.2.2 Scheduling algorithm
	FIGURE 5-7. Scheduling algorithm flowchart
	FIGURE 5-8. Cycle-driven schedule
	FIGURE 5-9. Operation 5 can’t be scheduled due to communication conflict
	FIGURE 5-10. Operation-driven schedule
	FIGURE 5-11. Operation 5 can be scheduled without conflict
	FIGURE 5-12. Optimal schedule
	FIGURE 5-13. Possible communication conflict with a two-phase scheduler

	5.2.3 Operation prioritization
	(1)
	FIGURE 5-14. Functional unit usage calculation

	(2)
	(3)

	5.2.4 Functional unit assignment
	(4)
	FIGURE 5-15. Communications to and from operation 4

	(5)

	5.2.5 Randomization

	5.3 Post-scheduling
	5.3.1 Register allocation
	FIGURE 5-16. Communications with routes through left register file of adder 0
	FIGURE 5-17. Routes through left register file of adder 0

	5.3.2 Machine code generation
	FIGURE 5-18. Cycle 3 of final schedule
	FIGURE 5-19. Driver encoding
	FIGURE 5-20. Resource encoding

	5.4 Summary
	Chapter 6
	Stream Scheduling

	6.1 Motivation
	FIGURE 6-1. Available bandwidth in Imagine
	FIGURE 6-2. Example stream program
	FIGURE 6-3. SRF allocation graph for stream caching
	FIGURE 6-4. SRF allocation graph for stream scheduling

	6.2 Overview
	FIGURE 6-5. Stream scheduling assigns each stream access to a buffer in SRF
	FIGURE 6-6. Profile of all stream accesses for the example program
	FIGURE 6-7. Buffers for each stream access in the example program
	FIGURE 6-8. Double-buffered stream read
	FIGURE 6-9. Double buffered stream write
	FIGURE 6-10. Stream operations with accesses assigned to different buffers
	FIGURE 6-11. Stream operations with accesses assigned to the same buffer
	FIGURE 6-12. Buffers arranged to allow parallel execution and memory accesses
	FIGURE 6-13. Buffers in two-dimensions for the example program

	6.3 Algorithm
	1. Determine which stream accesses are double-buffered
	2. Assign each group of compatible accesses to the same buffer
	3. Mark stream accesses that require memory accesses
	4. Repeatedly divide each buffer in time and space if it is possible to do so without requiring a...
	5. Extend buffers with load or store shadows
	6. Position buffers in the SRF
	7. If the buffers do not fit in the SRF, reduce a buffer and repeat steps 3-7
	Step 1. Determine which stream accesses are double-buffered
	FIGURE 6-14. Example program with double-buffering

	Step 2. Assign accesses to buffers
	FIGURE 6-15. Example program with initial buffers

	Step 3. Mark stream accesses that require memory accesses
	FIGURE 6-16. Write to sx does not reach read of s
	FIGURE 6-17. Write to sx reaches read of s
	FIGURE 6-18. Example program with required memory loads

	Step 4. Repeatedly divide each buffer in space and time
	FIGURE 6-19. Buffer divided in space
	FIGURE 6-20. Buffer divided in time
	FIGURE 6-21. Buffers that can be divided in the example program
	FIGURE 6-22. Example program with divided buffers

	Step 5. Extend buffers with load and store shadows
	FIGURE 6-23. Example program with load and store shadows

	Step 6. Position buffers in the SRF
	FIGURE 6-24. Order of positioning for buffers in the example program
	FIGURE 6-25. First arrangement of buffers for the example program

	Step 7. If the buffers do not fit, reduce a buffer and repeat Steps 3-7
	(6)
	FIGURE 6-26. Example program showing the buffer that is divided in time
	FIGURE 6-27. Revised order of positioning for buffers in the example program
	FIGURE 6-28. Final arrangement of buffers for the example program

	6.3.1 Completion

	6.4 Special Cases
	6.4.1 Variable length and variable bounds streams
	FIGURE 6-29. write to sv reaches read of s1
	FIGURE 6-30. sv doesn’t cover s1 so write to s also reaches read of s1

	6.4.2 Indexed Streams
	6.4.3 Other Stream Operations
	FIGURE 6-31. if s is produced closer, streamCopy(s, t) saves s as t
	FIGURE 6-32. if t is used closer, streamCopy(s, t) loads s as t

	6.5 Summary
	Chapter 7
	StreamC Compiler and Dispatcher
	FIGURE 7-1. Roles of the StreamC compiler and run-time dispatcher

	7.1 StreamC Compiler
	7.1.1 Profile compilation
	FIGURE 7-2. Stream program EyeMatch
	FIGURE 7-3. Profile of EyeMatch(--, 200, 200, --, 100, 100)

	7.1.2 Resource allocation
	FIGURE 7-4. Microcode store allocation for EyeMatch
	FIGURE 7-5. SRF allocation for EyeMatch
	FIGURE 7-6. Memory allocation for EyeMatch
	FIGURE 7-7. Control register allocation for EyeMatch

	7.1.3 Operation translation
	FIGURE 7-8. Imagine operations by purpose
	1. SDR Write(s) for each stream access
	2. Other register writes (see Figure 7-9)
	3. MAR Write for each stream access that requires a memory access
	4. Memory Load for each stream read that requires a memory access
	5. Core operations (see Figure 7-9)
	6. Memory Store for each stream write that requires a memory access
	7. Register reads (see Figure 7-9)

	FIGURE 7-9. Stream operation specific Imagine operations
	FIGURE 7-10. Imagine operations for first four stream operations in EyeMatch

	7.1.4 Issue slot assignment and dependency analysis
	(7)
	FIGURE 7-11. RAW masks for first fifteen Imagine operations in EyeMatch

	7.2 Run-time Dispatcher
	7.2.1 Imagine operation dispatching
	7.2.2 Host/Imagine data transfers
	7.2.3 Double-buffering
	FIGURE 7-12. Imagine operations for double-buffered stream write to image

	7.3 Optimizations
	7.3.1 Strip-mining
	FIGURE 7-13. Basic and strip-mined data flow
	FIGURE 7-14. Strip-mined loop

	7.3.2 Software-pipelining
	FIGURE 7-15. Loop with sequential memory access
	FIGURE 7-16. Software-pipelined loop
	FIGURE 7-17. Software-pipelining groups
	FIGURE 7-18. Moving an operation between groups to reduce run time
	FIGURE 7-19. Input to StreamC compiler software-pipelining
	FIGURE 7-20. Output from StreamC compiler software-pipelining

	7.4 Summary
	Chapter 8
	Evaluation

	8.1 KernelC Compiler
	8.1.1 Evaluation Architectures
	FIGURE 8-1. Single register file architecture
	FIGURE 8-2. Distributed register file architecture
	FIGURE 8-3. Representative latencies

	8.1.2 Evaluation Benchmarks
	FIGURE 8-4. KernelC benchmarks

	8.1.3 Results
	FIGURE 8-5. Relative increase in schedule length for DRF over single RF
	FIGURE 8-6. Increase in schedule length for DRF over single RF in cycles
	FIGURE 8-7. Relative difference between DRF schedule length and CLB
	FIGURE 8-8. Relative increase in operation count for DRF over single RF due to copies
	FIGURE 8-9. Relative increase in register demand due to duplication
	FIGURE 8-10. Relative increase in register demand due to load imbalance
	FIGURE 8-11. Relative increase in register demand

	8.1.4 General analysis
	8.1.5 Benchmark analysis
	Convfx7x7
	FIGURE 8-12. Single register file schedule for convfx7x7 (29 cycles)
	FIGURE 8-13. Distributed register file schedule for convfx7x7 (30 cycles)

	Spansprep
	FIGURE 8-14. Single register file schedule for spansprep (64 cycles)
	FIGURE 8-15. DRF schedule for spansprep (70 cycles)

	8.2 StreamC Compiler
	8.2.1 Methodology
	FIGURE 8-16. Equivalent StreamC and Macrocode

	8.2.2 Benchmarks
	Depth extraction
	MPEG2 encoding
	Span-based polygon rendering
	Q-R decomposition
	Programmable polygon rendering

	8.2.3 Results
	FIGURE 8-17. StreamC benchmark run times
	FIGURE 8-18. Strip size
	FIGURE 8-19. Memory traffic
	FIGURE 8-20. Occupancy

	8.2.4 General analysis
	8.2.5 Benchmark analysis
	Depth extraction
	MPEG2 encoding
	Span-based polygon rendering
	Both the StreamC and macrocode versions are software pipelined in order to parallelize an inheren...
	Q-R decomposition
	Programmable polygon rendering

	8.3 Summary
	Chapter 9
	Conclusion

	9.1 Summary
	9.2 Future Work
	9.2.1 Communication scheduling with register pressure
	9.2.2 Multiprocessor systems

	9.3 Epilogue
	Appendix A: Detailed Results
	Bibliography
	[1] Aho, A., Sethi, R., and Ulman, J., Compilers. Addison-Wesly Publishing Company, 1998.
	[2] Basoglu, C., et al., “The MAP-CA VLIW-based Media Processor From Equator Technologies Inc. an...
	[3] Benitez, M., and Davidson, J., “Code generation for streaming: an access/execute mechanism.” ...
	[4] Breternitz, M., and Shen, J., “Implementation optimization techniques for architecture synthe...
	[5] Capitanio, A., Dutt, N., and Nicolau, A., “Partitioned register files for VLIWs: a preliminar...
	[6] Carter, J., et al., “Impulse: building a smarter memory controller.” Proceedings of the 5th I...
	[7] Catthoor, F., Dutt, N., and Kozyrakis, C., “How to solve the current memory access and data t...
	[8] Colwell, R., et al. “Architecture and implementation of a VLIW supercomputer.” Proceedings in...
	[9] Dehnert, J., and Towle, R., “Compiling for the Cydra 5." Journal of Supercomputing, Jan. 1993...
	[10] Desoli, G. “Instruction assignment for clustered VLIW DSP compilers: A new approach.” Techni...
	[11] Diefendorff, K. and Dubey, P. “How multimedia workloads will change processor design.” Compu...
	[12] Ellis, J., Bulldog: A compiler for VLIW architectures. MIT Press, 1986.
	[13] Fabri, J., “Automatic storage optimization,” Proceedings of the ACM SIGPLAN 1979 Symposium o...
	[14] Fernandes, M., Llosa, J., and Topham, N., “Distributed modulo scheduling.” Proceedings of th...
	[15] Fisher, J., “Trace scheduling: a technique for global microcode compaction.” IEEE Transactio...
	[16] Gergov, J., “Algorithms for compile-time memory optimization.” Proceedings of the 10th Annua...
	[17] Grossman, J., and Dally, W., “Point sample rendering.” Proceedings of the 9th Eurographics W...
	[18] Hennessy, J., and Patterson, D., Computer architecture: a quantitative approach. Morgan Kauf...
	[19] Hoogerbrugge, J., and Corporaal, H., “Transport�triggering vs. operation�triggering,” Intern...
	[20] Huff, R., “Lifetime-sensitive modulo scheduling”, Proceedings of the Conference on Programmi...
	[21] Hwu, W., et al., “The superblock: an effective structure for VLIW and superscalar compilatio...
	[22] Kanade, T., et al., “Development of a video-rate stereo machine.” Proceedings of the Interna...
	[23] Kapasi, U., et. al, “Efficient conditional operations for data-parallel architectures.” Proc...
	[24] Khailany, B., et al., “Imagine: signal and image processing using streams (ppt).” Hotchips 1...
	[25] Khailany, B., et al., “Imagine: media processing with streams.” IEEE Micro, Mar./ April 2001.
	[26] Kirkpatrick, S., Gelatt, C., Vecchi, M., “Optimization by simulated annealing,” Science, May...
	[27] Kozyrakis, C., and Patterson, D., “A new direction in computer architecture research,” IEEE ...
	[28] Lam, M., “Software pipelining: an effective scheduling technique for VLIW machines.” Proceed...
	[29] Lavery, D., and Hwo, W., “Unrolling-based optimizations for modulo scheduling.” Proceedings ...
	[30] Lee, C., and Smith, J., “A study of partitioned vector register files.” Proceedings of the 1...
	[31] Lee, W., et al., “Space-time scheduling of instruction-level parallelism on a raw machine,” ...
	[32] Lowney, P., et al., “The Multiflow trace scheduling compiler.” Journal of Supercomputing, Ja...
	[33] Mangione-Smith, W., Abraham, S., and Davidson, E. “Register requirements of pipelined proces...
	[34] Mattson, P., et al., “Communication scheduling,” Proceedings of the 9th International Confer...
	[35] McKee, A., et al., “Design and evaluation of dynamic access ordering hardware, Proceedings o...
	[36] McKee, A., et. al., “Smarter Memory: Improving Bandwidth for Streamed References,” IEEE Comp...
	[37] Muchnick, S., Advanced Compiler Design and Implementation, Morgan Kaufmann, 1997.
	[38] Nystrom, E., and Eichenberger, A., “Effective cluster assignment for modulo scheduling.” Pro...
	[39] Owens, J., Dally, et al., “Polygon rendering on a stream architecture.” Proceedings of the 2...
	[40] Ozer, E., Banerjia, S., and Conte, T., “Unified assign and schedule: A new approach to sched...
	[41] Ramakishnan, S., “Software-pipelining in PA-RISC compilers.” Hewlett-Packard Journal, June 1...
	[42] Rau, B., Glaeser, C., and Picard, R., “Efficient code generation for horizontal architecture...
	[43] Rixner, S., et al., “A bandwidth-efficient architecture for media processing,” Proceedings o...
	[44] Rixner, S., et al., “Register organization for media processing.” 6th International Symposiu...
	[45] Rixner, S., et al., “Memory Access Scheduling”, 27th Annual International Symposium on Compu...
	[46] Rixner, S., A bandwidth efficient architecture for a streaming media processor. Ph.D. thesis...
	[47] Schreiber, R., and Van Loan, C., “A storage-efficient WY representation for products of Hous...
	[48] Stotzer, E. and Leiss, E., “Modulo scheduling for the TMS320C6x VLIW DSP architecture,” Proc...
	[49] Wolfe, M., “More iteration space tiling.” Proceedings of the 1989 Conference on Supercomputi...

