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Media-processing applications, such
as signal processing, 2D- and 3D-graphics ren-
dering, and image and audio compression and
decompression, are the dominant workloads
in many systems today. The real-time con-
straints of media applications demand large
amounts of absolute performance and high
performance densities (performance per unit
area and per unit power). Therefore, media-
processing applications often use special-
purpose (custom), fixed-function hardware.
General-purpose solutions, such as program-
mable digital signal processors (DSPs), offer
increased flexibility but achieve performance
density levels two or three orders of magnitude
worse than special-purpose systems.

One reason for this performance density gap
is that conventional general-purpose architec-
tures are poorly matched to the specific prop-
erties of media applications. These applications
share three key characteristics. First, operations
on one data element are largely independent
of operations on other elements, resulting in
a large amount of data parallelism and high
latency tolerance. Second, there is little glob-
al data reuse. Finally, the applications are com-
putationally intensive, often performing 100
to 200 arithmetic operations for each element
read from off-chip memory.

Conventional general-purpose architectures
don’t efficiently exploit the available data par-
allelism in media applications. Their memo-
ry systems depend on caches optimized for
reducing latency and data reuse. Finally, they
don’t scale to the numbers of arithmetic units
or registers required to support a high ratio of
computation to memory access. In contrast,
special-purpose architectures take advantage
of these characteristics because they effective-
ly exploit data parallelism and computation-
al intensity with a large number of arithmetic
units. Also, special-purpose processors direct-
ly map the algorithm’s dataflow graph into
hardware rather than relying on memory sys-
tems to capture locality.

Another reason for the performance densi-
ty gap is the constraints of modern technolo-
gy. Modern VLSI computing systems are
limited by communication bandwidth rather
than arithmetic. For example, in a contem-
porary 0.15-micron CMOS technology, a 32-
bit integer adder requires less than 0.05 mm2

of chip area. Hundreds to thousands of these
arithmetic units fit on an inexpensive 1-cm2

chip. The challenge is supplying them with
instructions and data. General-purpose
processors that rely on global structures such
as large multiported register files to provide
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data bandwidth cannot scale to the number
of arithmetic logic units (ALUs) required for
high performance rates in media applications.
In contrast, special-purpose processors have
many ALUs connected by dedicated wires and
buffers to provide needed data and control
bandwidth. However, special-purpose solu-
tions lack the flexibility to work effectively on
a wide application space.

To provide programmability yet maintain
high performance densities, we developed the
Imagine stream processor at Stanford Uni-
versity. Imagine consists of a programming
model, software tools, and an architecture, all
designed to operate directly on streams. The
stream programming model exposes the local-
ity and concurrency in media applications so
they can be exploited by the stream architec-
ture. This architecture uses a novel register file
organization that supports 48 floating-point
arithmetic units. We expect a prototype Imag-
ine processor to achieve 18.3 giga operations
per second (GOPS) in MPEG-2 encoding
applications, corresponding to 105 frames per
second on a 720 × 480-pixel, 24-bit color
image while dissipating 2.2 W.

Stream programming model
The stream programming model allows sim-

ple control, makes communication explicit,
and exposes the inherent parallelism of media
applications. A stream program organizes data

as streams and expresses all computation as
kernels. A stream is a sequence of similar ele-
ments. Each stream element is a record, such
as 21-word triangles or 8-bit pixels. A kernel
consumes a set of input streams, performs a
computation, and produces a set of output
streams. Streams passing among multiple com-
putation kernels form a stream program.

Figure 1 shows how we map stereo depth
extraction,1 a typical image-processing appli-
cation, to the stream programming model.
Stereo depth extraction calculates the dispar-
ity between objects in a left and right gray-
scale camera image pair. It outputs a depth
map corresponding to each object’s distance
from the cameras (in the example depth map,
brighter pixels are closer to the camera). The
input camera images are formatted as streams;
in the example, a single stream contains a row
of pixels from the image. The row streams
flow though two convolution kernels, which
produce a filtered stream. The filtered streams
then pass through a sum-of-absolute-differ-
ences (SAD) kernel, which produces a stream
containing a row of the final depth map. Each
kernel also outputs a stream of partial sums
(represented by the circular arrows in the dia-
gram) needed by the same kernel as it process-
es future rows.

Stereo depth extraction possesses important
characteristics common to all media-process-
ing applications:
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Figure 1. Stereo depth extraction.



• Little data reuse. Pixels are read once from
memory and are not revisited.

• High data parallelism. The same set of
operations independently computes all
pixels in the output image.

• Computationally intensive. The applica-
tion requires 60 arithmetic operations per
memory reference.

Mapping an application to streams and ker-
nels exposes these characteristics so that hard-
ware can easily exploit them. Streams expose
an application’s inherent data parallelism. The
flow of streams between kernels exposes the
application’s communication requirements.

Stream architecture
Imagine is a programmable processor that

directly executes applications mapped to streams
and kernels. Figure 2 diagrams the Imagine
stream architecture. The processor consists of a
128-Kbyte stream register file (SRF), 48 float-
ing-point arithmetic units in eight arithmetic
clusters controlled by a microcontroller, a net-
work interface, a streaming memory system
with four SDRAM channels, and a stream con-
troller. Imagine is controlled by a host proces-
sor, which sends it stream instructions. The
following are the main stream instructions:

• Load transfers streams from off-chip
DRAM to the SRF.

• Store transfers streams from the SRF to
off-chip DRAM.

• Receive transfers streams from the net-
work to the SRF.

• Send transfers streams from the SRF to
the network.

• Cluster op executes a kernel in the arith-
metic clusters that reads inputs streams
from the SRF, computes output streams,
and writes the output streams to the SRF.

• Load microcode loads streams consisting
of kernel microcode—576-bit very long
instruction word (VLIW) instructions—
from the SRF into the microcontroller
instruction store (a total of 2,048
instructions).

Imagine supports streams up to 32K
(32,768) words long. The host processor
sends stream instructions to the stream con-
troller. When instructions are ready for issue,
the stream controller decodes them and issues
the necessary commands to other on-chip
modules.

Each arithmetic cluster, detailed on the
right side of Figure 2, contains eight func-
tional units. A small two-ported local register
file (LRF) connects to each input of each func-
tional unit. An intracluster switch connects
the outputs of the functional units to the
inputs of the LRFs. During kernel execution,
the same VLIW instruction is broadcast to all
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eight clusters in single-instruction, multiple-
data (SIMD) fashion.

Kernels typically loop through all input-
stream elements, performing a compound
stream operation on each element. A com-
pound stream operation reads an element
from its input stream(s) in the SRF and com-
putes a series of arithmetic operations (for
example, matrix multiplication or convolu-
tion). Then it appends the results to output
streams that are transferred back to the SRF.
A compound stream operation stores all tem-
porary data in the LRFs. It sends only final
results to the SRF.

Compound stream operations are com-
pound in the sense that they perform multi-
ple arithmetic operations on each stream
element. In contrast, conventional vector
operations perform a single arithmetic oper-
ation on each vector element and store the
results back in the vector register file after each
operation.

Stream application example
The stereo depth extraction application pre-

sented in Figure 1 demonstrates how the Imag-
ine stream architecture functions. The
convolution stage performs a pair of 2D con-
volutions on both the left and right camera
images, first using a 7 × 7 filter and then a 3 ×
3 filter. (The application uses two separate fil-
ters to reduce the operation count.) Figure 3a
shows the application-level pseudocode for the
convolution of one image. Figure 3b shows
how the commands in pseudocode lines 3
through 6 map to stream operations on the
Imagine architecture (circled numbers indi-
cate pseudocode lines).

The stream controller dynamically sched-
ules each stream instruction. When the
required resources are ready and interinstruc-
tion dependencies are satisfied, the stream
controller issues the following operations:

Load operation. Line 3 translates into a stream
Load instruction that causes a stream transfer
from off-chip DRAM to the SRF. In this case,
the stream being transferred contains a row of
the image. Each element in the stream is a
pixel from the source image, and the stream
length corresponds to the image width. Dur-
ing the Load operation, the streaming mem-
ory system generates addresses corresponding

to the pixel elements’ locations, which are laid
out sequentially in memory. The memory sys-
tem then reorders these accesses to maximize
DRAM bandwidth. As the Load operation
executes, elements are written back to the SRF
in their original order. At completion of the
operation, the SRF contains a stream consist-
ing of all the pixels in a row.

Convolve7×7 kernel execution. Next, the
stream controller issues pseudocode line 4,
causing the convolve7×7 kernel (Figure 3c) to
execute. This kernel has two input streams:
the pixel stream just loaded from memory
(src) and a stream containing the partial sums
produced earlier in the application (old_par-
tials7). During kernel execution, the micro-
controller fetches VLIW microcode
instructions from the instruction store every
cycle. Then the microcontroller sends these
instructions to all eight arithmetic clusters in
parallel.

As the kernel executes, it loops through all
input-stream elements. During each loop iter-
ation, the clusters read eight new stream ele-
ments (one new element to each cluster) in
parallel from the SRF into their LRFs. Then
each cluster performs the same compound
stream operation on its stream element.

In the convolve7×7 kernel, the compound
stream operation must first perform six inter-
cluster communications that broadcast the
current data. As a result, the first cluster has
the values src[n − 6: n], the second has src[n −
5: n + 1], and so on. Edge clusters use data
buffered from the previous iteration if neces-
sary. Each cluster then multiplies these seven
values with a 7 × 7 matrix of filter coefficients
by executing seven dot products. The kernel
uses the seven results to generate a new output
element and to update the partial sums for
future rows.

The convolve computation occurs in par-
allel on all eight arithmetic clusters. In each
loop iteration, the LRFs temporarily store
intermediate data between operations. At the
end of the loop, the output stream elements
are written back eight at a time (one from each
cluster) to the SRF. In this manner, six values
from each cluster are written to the partials7
output stream, and one new value per cluster
is written to the tmp output stream. Upon
completion, the SRF contains a stream con-
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sisting of a new row of convolved pixels (tmp)
and a stream consisting of partial sums (par-
tials7) for later use.

Convolve3×3 kernel execution. Now the stream
controller issues the convolve3x3 kernel on
line 5 of Figure 3a. The output stream of the
previous convolve7x7 kernel is used as one of
the input streams. Once the convolve3×3 ker-

nel completes, the SRF contains the final con-
volved row of pixels.

Storage. Finally, line 6 transfers the final out-
put stream to the memory system for storage
and use in later stages of the application.

The rest of the stereo depth extraction
application and other stream applications exe-
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convolve7x7(in, partials_in, out, partials_out){
:
:
while (! in.empty()){
  in >> curr[6]; // Input stream element
  
  // Communicate values to neighboring
  // clusters (edge clusters get buffered
  // data from prev iteration)
  for (i = 0; i < 6; i++)
    curr[i] = communicate(curr[6], perm[i])

  for (i = 0; i < 7; i++)
    rowsum[i] = dotproduct(curr, fltr[6-i]);

  partials_in >> p;
  out << p[0] + rowsum[0];
  for (i = 0; i < 5; i++)
    p[i] = p[i+1]+ rowsum [i+1];
  p[5] = r[6];
  partials_out << p;
 }
}

Memory (or I/O) Stream register file Arithmetic clusters

Source
image
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(one row in the
source image)

old_partials7

partials7

tmp

old_partials3

partials3

cnv
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Convolve3x3

4
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(a)

(b) (c)

1  prime partials with arc_rows[0..5]
2  for (n = 6; n < numRows; n++){
3    src = load( src_rows[n] );                          //'src' stream gets one row of source image
4    convolve7x7( src, old_partials7, &tmp, &partials7 );
5    convolve3x3( tmp, old_partials3, &cnv, &partials3 );
6    convolved_rows[n-6 ] = store( cnv );                // store 'cnv' stream to memory
7    swap pointer to start of old_partials and partials for next time through the loop
8  }
9  drain partials to get convolved_rows[numRows-6..numRows-1]

Figure 3. The convolution stage of stereo depth extraction: application-level pseudocode (a); Imagine execution of pseudocode
lines 3 through 6 (b); kernel-level pseudocode for 7 × 7 convolution (c).



cute similarly. That is, kernels execute on the
arithmetic clusters and streams pass between
kernels through the SRF. In this manner, the
stream programming model maps directly to
the Imagine architecture. As a result, Imag-
ine’s 48 on-chip arithmetic units can take
advantage of the high ratio of arithmetic oper-
ations to memory accesses. The SIMD nature
of the arithmetic clusters and compound
stream operations enables Imagine to exploit
data parallelism.

Finally, multiprocessor solutions can take
advantage of even more parallelism by using
the network interface, which supports a peak
bandwidth of 4 Gbytes per second in and out.
For example, the stereo depth extraction appli-
cation could use different Imagine processors
to work on different portions of the image to
be convolved. The application could exploit
even more parallelism with control partition-
ing: One set of processors could work on the
convolution stage and send the result streams
to another set working on the SAD stage.

Bandwidth hierarchy
The stream programming model also

exposes the application’s bandwidth require-
ments to the hardware. Imagine exploits this
by providing a three-level bandwidth hierar-
chy:2 off-chip memory bandwidth (2.67
Gbytes per second), SRF bandwidth (32
Gbytes/s), and intracluster bandwidth (544
Gbytes/s). The three levels of the bandwidth
hierarchy correspond to the three columns of
Figure 3b. Stream programs’ communication
patterns match this bandwidth hierarchy.
Stream programs use memory bandwidth
only for application input and output and
when intermediate streams cannot fit in the
SRF and must spill to memory. SRF band-
width serves only when streams pass between
kernels. Finally, intracluster bandwidth into
and out of the LRFs handles the bulk of data

during kernel execution.
Table 1 shows how four stream applications

use Imagine’s peak bandwidths. The four
applications are the stereo depth extractor
(Depth) described earlier, a video-encoding
application (MPEG2), a QR matrix decom-
position (QR), and polygon rendering on the
SPECViewperf 6.1 ADVS-1 benchmark
(Render). Each application shows roughly an
order-of-magnitude increase in bandwidth
requirements across each hierarchy level. By
keeping the 48 arithmetic units supplied with
data, the bandwidth hierarchy enables Imag-
ine to sustain a large amount of its peak per-
formance in these applications.

Imagine’s bandwidth hierarchy also match-
es the capabilities of modern VLSI technolo-
gy. The off-chip memory bandwidth is
roughly the maximum processor-to-DRAM
bandwidth available in today’s technology.
The SRF bandwidth is roughly the maximum
bandwidth available from a single on-chip
SRAM. The intracluster bandwidth is approx-
imately the maximum bandwidth attainable
from on-chip interconnect.

Streaming memory system. The memory sys-
tem supports data stream transfers between
the SRF and off-chip DRAM. Imagine makes
all memory references using stream Load and
Store instructions that transfer an entire
stream between memory and the SRF. In the
convolution stage example, stream elements
were laid out sequentially in memory. How-
ever, the memory system also supports strid-
ed, indexed, and bit-reversed record
addressing, for which records must be con-
tiguous. In addition, because memory-refer-
ence granularity is streams, users can optimize
the memory system for stream throughput
rather than the reference latency of individ-
ual stream elements. A stream consumer, such
as a kernel executing in the arithmetic clus-
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Table 1. Application bandwidth requirements versus Imagine’s bandwidth hierarchy.

Memory (Gbytes/s) SRF (Gbytes/s) Clusters (Gbytes/s) Performance

Imagine peak 2.67 32 544 20 Gflops (40 16-bit GOPS)
Depth 0.83 21.08 263.02 12.1 GOPS (16-bit)
MPEG2 0.45 2.21 214.31 18.3 GOPS (16- and 8-bit)
QR 0.37 3.99 294.82 13.1 Gflops
Render 1.61 8.59 205.05 5.1 GOPS (16-bit and floating-point)



ters, cannot begin until the entire stream is
available in the SRF. Therefore, the time it
takes to load the entire stream is far more
important than the latency of any particular
reference. Moreover, these references and
computation can easily overlap. During the
current set of computations, the memory sys-
tem can load streams for the next set and store
streams from the previous set.

Imagine uses memory access scheduling to
reorder the DRAM operations (bank
precharge, row activation, and column access)
necessary to complete the set of currently
pending memory references. When schedul-
ing memory accesses, the memory system can
delay references to let other references access
the DRAM, improving memory bandwidth.
Furthermore, a good reordering reduces the
average latency of memory references by using
the DRAM’s internal resources more effi-

ciently. Imagine’s memory access scheduling
has achieved a 30 percent performance
improvement on a set of representative media-
processing applications.3

Stream register file. The SRF contains a 128-
Kbyte SRAM organized as 1,024 blocks of 32
words of 32 bits each. Figure 4 shows two con-
current SRF accesses. Stream Y (length 64
words) is being written from the memory sys-
tem to the SRF, and stream X (length 96
words) is being read from the SRF by the
arithmetic clusters. All client stream accesses
go through stream buffers, which can hold
two blocks of a stream each. Imagine has a
total of 22 stream buffers, each with different-
size ports:

• eight cluster stream buffers (eight words
per cycle),
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• eight network stream buffers (two words
per cycle),

• four memory system stream buffers (one
word per cycle),

• one microcontroller stream buffer (one
word per cycle), and

• one stream buffer that interfaces to the
host processor (one word per cycle).

Different clients have different numbers of
stream buffers with various-size ports to pro-
vide the bandwidths and number of concur-
rent streams necessary for a typical
application.

During execution, active stream buffers
contend for access to a SRAM block. In Fig-
ure 4, the second block of stream X is cur-
rently being read from the SRAM and written
into the bottom stream buffer. The clusters
read eight words out of their stream buffers at
a time (one word to each cluster). In this
example, the clusters have already completed
two reads (X0-X7 and X8-X15) on previous
cycles from the bottom stream buffer. Once
the clusters have read elements X16-X31, the
third block of stream X (X64-X95) replaces
X0-X31 in the stream buffer.

Concurrently, the memory system is writ-
ing element Y33 of stream Y into its stream
buffer. Once elements Y34-Y63 are written
into the stream buffer, the second block of
stream Y (Y32-Y63) is transferred to the
SRAM, and the SRF stream write ends. The
first block of the stream (Y0-Y31) was trans-
ferred into the SRF on a previous cycle.

Because all data and accesses to the SRF are
organized as streams, stream buffers can take
advantage of the sequential access pattern of
streams. Stream buffers prefetch data one
block at a time from the SRF, while clients
read data from stream buffers at lower band-
widths. As a result, stream buffers effectively
time-multiplex the single physical port of the
SRF SRAM into 22 logical ports that can be
accessed simultaneously. In contrast with
building large multiported structures to pro-
vide the necessary bandwidth, stream buffers
lead to an area- and power-efficient VLSI
implementation.4 Moreover, they provide a
simple, extensible mechanism by which clients
can execute stream transfers with the SRF.

Arithmetic clusters. Each arithmetic cluster con-

tains eight functional units: three adders, two
multipliers, a divide and square-root unit, a
scratch-pad register file unit, and an interclus-
ter communication unit. The adders and mul-
tipliers execute floating-point and integer
arithmetic with a throughput of one instruc-
tion per cycle at varying latencies. They also sup-
port parallel subword operations such as those
in MMX5 and other multimedia extensions.6

The divide and square-root unit executes float-
ing-point and integer operations and is
pipelined to accept two instructions every 13
cycles. The scratch-pad unit is a 256-word reg-
ister file that executes indexed read and write
instructions useful for small table lookups. The
intercluster communication unit, a software-
controlled crossbar between the clusters, is used
when kernels are not fully data parallel. The
communication unit is also used by condition-
al streams,7 a mechanism for handling data-
dependent conditionals in a stream architecture.

In front of each functional unit is a small,
16-word, two-ported LRF. (Multipliers have
32-word LRFs because many kernels require
a larger number of registers in the multiplier
than in other units.) The intracluster switch
transfers data between functional units or
cluster stream buffers and LRFs. The switch
consists of a multiplexer in front of every LRF
input; the multiplexer selects a functional unit
or cluster stream buffer output to write from.

The LRFs are a much more area- and power-
efficient structure for providing local band-
width and storage than the equivalent
multiported global register file. A multiported
register file has, in effect, an implicit switch that
is replicated many times inside each register
cell. The distributed LRFs replace this struc-
ture with an explicit switch outside the LRFs.

Evaluation
The Imagine stream architecture directly

runs media applications written in the stream
programming model and expressed in two
programming languages: StreamC and Ker-
nelC. A StreamC program describes the inter-
actions of streams and kernels and
corresponds to the pseudocode in Figure 3a.
A kernel is written in KernelC and corre-
sponds to the pseudocode in Figure 3c. Both
languages use C-like syntax. StreamC is com-
piled by a stream scheduler, which handles
SRF block allocation and memory manage-
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ment. The stream scheduler runs on the host
processor and uses a combination of static and
runtime techniques to send stream instruc-
tions to the Imagine processor’s stream con-
troller. KernelC is compiled statically by an
optimizing VLIW kernel scheduler that han-
dles the communication required by the dis-
tributed register file architecture of the
arithmetic clusters.8

Using these programming tools, we wrote
kernels and applications for the Imagine
processor. We simulated the four applications
listed in Table 2 (next page) on a cycle-accu-
rate C++ simulator, assuming a 500-MHz

cycle time and a 167-MHz SDRAM. Indi-
vidual kernels are usually part of a larger appli-
cation, so we simulated the kernels with their
working sets already in the SRF.

Table 2 shows that Imagine sustained over
half its peak performance on a range of appli-
cations and kernels. The performance dif-
ferences between kernels and applications
reflect the overhead of accessing off-chip
memory and the start-up cost of stream
transfers. An example is the performance
degradation between the discrete cosine
transform kernel and the rest of the MPEG-
2 encoding application.
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Prior industry and research media processors fall into four categories:

• VLIW media processors and DSPs,
• SIMD extensions,
• hardwired stream processors, and
• vector processors.

VLIW DSPs, such as the Texas Instruments C6x,1 and VLIW media
processors, such as Trimedia,2 efficiently exploit the instruction-level par-
allelism in media applications. SIMD extensions of instruction sets enable
many general-purpose processors3,4 to perform low-precision operations
and exploit fine-grained data parallelism.

Imagine’s VLIW arithmetic clusters and subword arithmetic operations
build on this previous work. However, the stream architecture enables
Imagine to scale to much larger numbers of ALUs. Moreover, because
both the VLIW and the SIMD approaches focus on execution unit archi-
tecture, neither addresses the data bandwidth problem solved by Imag-
ine’s register hierarchy.

Hardwired stream processors attempt to map the stream programming
model directly into hardware. Cheops,5 for example, consists of a set of
specialized stream processors. Each processor accepts one or two data
streams as input and produces one or two data streams as output. Data
streams are either forwarded directly from one stream processor to the
next according to the application’s dataflow graph or transferred between
memory and the stream processors.

Programmable stream processors like Imagine are closest in spirit to
vector processors. Vector supercomputers,6 SIMD processor arrays, and
vector microprocessors such as the T0,7 Vector IRAM,8 and others effi-
ciently use vectors to exploit data parallelism. Vector memory systems
are suitable for media processing because they are optimized for band-
width instead of latency. Vector processors perform simple arithmetic
operations on vectors stored in a vector register file, using three words of
vector register bandwidth per arithmetic operation.

In contrast, Imagine performs compound stream operations, using local
register files to stage intermediate results. This reduces bandwidth demand

on the stream register file by an order of magnitude or more. Imagine also
differs from vector processors by using stream buffers to take advantage
of the sequential data access patterns of streams and by supporting data
records. Finally, vector processors execute instructions from one sequencer
that manages tightly coupled vector and scalar units. In contrast, Imagine
works directly on the stream programming model. Therefore, Imagine main-
tains an explicit division between stream-sequencing instructions (writ-
ten in StreamC) executed on the host processor and VLIW instructions
(written in KernelC) executed on Imagine’s arithmetic clusters.
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Table 2 also shows Imagine’s estimated
power dissipation. We used trial layouts,
netlists, and SRAM data sheets in conjunction
with average unit occupancies from the cycle-
accurate simulator to estimate the total capac-
itance switched at runtime. We expect Imagine
to dissipate less than 4 W over a range of appli-
cations, providing power efficiencies of more
than 2 Gflops/W. Imagine’s power efficiency
stems from its efficient register file organiza-
tion. For architectures with many ALUs, the
SRF and LRF structures dissipate much less
power in inter-ALU communications than do
conventional register file organizations.4

Imagine’s performance and power efficien-

cy across a range of applications are roughly
an order of magnitude higher than those of
today’s programmable processors such as the
Texas Instruments TMS320C67x. For com-
parison, a 167-MHz TI TMS320C6701 exe-
cutes a 1,024-point floating-point complex
FFT in 124.3 µs with an estimated 1.9-W
power dissipation (0.41 Gflops and 0.22
Gflops/W).9 Imagine’s performance is also
comparable to that of special-purpose proces-
sors on complex applications such as polygon
rendering. A study compared Imagine poly-
gon-rendering simulations with a 120-MHz
NVIDIA Quadro with DDR SDRAM on an
Intel AGP 4X system.10 In rendering a raster-
ization-limited scene, the NVIDIA Quadro
provided a 5.3-times speedup over Imagine.
For geometry-limited scenes (such as the
SPECViewperf 6.1 ADVS-1 polygon-
rendering scene with point-sampled texture
listed in Table 2), Imagine outperformed the
NVIDIA Quadro.

VLSI implementation
We are currently designing a prototype

Imagine stream processor. Our goal is to vali-
date architectural studies and provide an exper-
imental prototype for future research. The
processor consists of approximately 21 million
transistors: 6 million in the SRF SRAM, 6 mil-
lion in the microcode store, 6 million in the
arithmetic clusters, and 3 million elsewhere.
We have targeted the prototype to operate at
500 MHz in a 0.15-µm, 1.5-V static CMOS
standard-cell technology. As Figure 5 shows,
Imagine has a die size of 1.44 cm.2 It is also
area-efficient. Nearly 40 percent of the die area
is devoted to the arithmetic clusters.
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Figure 5. Floor plan of the Imagine prototype.

Table 2. Application and kernel performance.

Arithmetic Power Application

bandwidth estimate (W) performance

Applications

Depth 12.1 GOPS (16-bit) 2.9 320 × 240 8-bit gray scale at 212 frames/s
MPEG2 18.3 GOPS (16- and 8-bit) 2.2 720 × 480 24-bit color at 105 frames/s
QR 13.1 Gflops 3.6 192 × 96 matrix decomposition in 1.1 ms
Render 5.1 GOPS (16-bit and floating-point) 2.9 14.9 million vertices/s (16.8 million pixels/s)
Kernels

Discrete cosine transform 22.6 GOPS (16-bit) 2.6 34.8 ns per 8 × 8 block (16-bit)
Convolve7×7 25.6 GOPS (16-bit) 3.0 1.5 µs per row of 320 16-bit pixels
Fast Fourier transform 6.9 Gflops 3.8 7.4 µs per 1,024-point floating-point complex FFT



In addition to providing high performance
density, the Imagine stream architecture meets
the challenges of modern VLSI design com-
plexity. The architecture’s regularity lets
designers heavily optimize one module and
then instantiate it in many parts of the design.
The statically scheduled arithmetic clusters
contain explicit communication with only
local data forwarding, eliminating the need
for complicated global control structures.
Data and control communication between
different storage hierarchy levels (LRFs, SRF,
and streaming memory system) is local, mit-
igating the effect of long wire delays.

The Imagine design team consists of eight
graduate students. Two to three people work
on architecture and logic design, two to three
on software tools, and the others on VLSI
implementation. With this limited staff, we
need a CAD flow that minimizes design time
with minimal performance degradation. We
use a typical application-specific integrated
circuit synthesis flow with automatic place-
ment and routing for control blocks. For reg-
ular data path blocks such as the multiplier
array, we avoid synthesis, instead using data-
path-style placement of standard cells with
automatic routing. We synthesize other, less
regular blocks, such as the floating-point
adder, and use data-path-style standard-cell
placement. This CAD flow provides a good
trade-off between design time and perfor-
mance and helps the team build a high-
performance processor in spite of the limited
resources.

We completed many design tools and stud-
ies to verify Imagine’s performance and VLSI
feasibility. We developed a cycle-accurate C++
simulator, which we used to generate all per-
formance numbers given here. We also com-
pleted a synthesizable register-transfer level
model of Imagine and mapped the design to
logic gates. Placement and routing are in
progress, and we expect to have prototype
processors available in August 2001.

To gain more experience with stream pro-
gramming, we plan to build Imagine sys-

tems ranging from a single-processor,
20-Gflops system to a 64-processor, Tflops
system for demanding applications.

Stream processing is a promising technolo-
gy now in its infancy. Our future research will

focus on generalizing the stream model for a
wider range of applications and refining the
stream processor architecture. MICRO
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