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Abstract

The use of a programmable stream architecture in polygon ren-
dering provides a powerful mechanism to address the high perfor-
mance needs of today’s complex scenes as well as the need for flex-
ibility and programmability in the polygon rendering pipeline. We
describe how a polygon rendering pipeline maps into data streams
and kernels that operate on streams, and how this mapping is used
to implement the polygon rendering pipeline on Imagine, a pro-
grammable stream processor. We compare our results on a cycle-
accurate simulation of Imagine to representative hardware and soft-
ware renderers.

CR Categories: 1.3.1 [Computer Graphics]: Hardware
Architecture—Graphics Processors C.1.2 [Processor Architec-
tures]: Multiple Data Stream Architectures—Single-instruction-
stream, multiple-data-stream processors (SIMD)
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1 Introduction

Modern graphics processors must be able to render tens of millions
of triangles per second and rasterize hundreds of millions of pixels
per second to render complex scenes at real-time rates. Recently,
commodity graphics processors have rendered increasingly more
complex scenes at these rates, but they do so with special-purpose
hardware that implements a fixed pipeline. Deviation from the spe-
cific functionality implemented either incurs a significant perfor-
mance penalty or is impossible.

Alvy Ray Smith’s observation that “Reality begins at eighty mil-
lion polygons” per frame [1, 32] implies that more than two or-
ders of magnitude of improvements to today’s fastest commodity
hardware are still required to produce real-world complex scenes at
real-time rates. However, as we approach that goal, future graphics
hardware must not only increase its geometry and fill rates but also
its flexibility.

The demand for more detailed lighting and shading is one of the
driving forces behind the desire for more flexibility in the pipeline.
Currently, many applications incur the large cost of sophisticated
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multipass methods to get the effects they need. Unfortunately, mul-
tipass methods are still not sufficient for many desirable effects such
as an environment mapped onto a bump-mapped object [3, 11]. To
enable further improvements, there are nearly 200 proposed exten-
sions to the latest version of OpenGL. There is no question that
developers are demanding more functionality, and that hardware
manufacturers are attempting to deliver it.

The most flexible, powerful rendering interfaces, such as Pixar’s
Renderman [34], are currently implemented as software running
on general-purpose microprocessors with little, if any, graphics
hardware support. While these systems produce high-quality ren-
dered images, they cannot achieve real-time performance on to-
day’s general-purpose processors.

High-performance, programmable polygon rendering hardware
is needed to bridge the gap between high-performance special-
purpose systems and flexible general-purpose systems. We present
our implementation of polygon rendering on the programmable
Imagine stream processor [26], which is designed to meet this goal.
By requiring the application to be cast as a set of computational ker-
nels that operate on homogeneous data streams, Imagine achieves
high computational density and efficiency while maintaining the
flexibility of a programmable processor.

The remainder of this paper describes and evaluates our imple-
mentation of polygon rendering on the Imagine stream architecture.
In Section 2 we describe the stream programming model and Imag-
ine, a stream processor that implements this model, and enumerate
the benefits of this programming model and machine organization.
Section 3 presents our implementation of the polygon rendering
pipeline. In Section 4 we describe our experimental setup and in
Section 5 we use this setup to compare the performance of our sys-
tem to representative hardware and software implementations of the
OpenGL pipeline to analyze the performance of polygon rendering
on our stream architecture.

2 Stream Processing

The characteristics of polygon rendering workloads and the trends
in modern VLSI technology together motivate the use of the stream
programming model and a stream architecture. Three characteris-
tics of polygon rendering make it poorly suited to general-purpose
processors but ideally suited to a stream architecture. First, poly-
gon rendering is an inherently parallel application. Operations on
pixels exhibit parallelism, and, subject to ordering constraints, tri-
angles may also be processed in parallel. Except for limited use
of SIMD instruction-set extensions, modern microprocessors are
unable to fully exploit this parallelism in the same way as stream
processors.

Next, the memory traffic generated by polygon renderers has
little temporal locality and hence does not take advantage of the
caching capabilities of the memory architectures of modern pro-
cessors. Input primitives have little to no immediate reuse, as they
are rendered then discarded. The large size of input datasets (on
the order of megabytes) precludes their storage in most caches, and
except for explicitly defined display lists, special-purpose proces-
sors rarely cache any primitive data at all. (Texture accesses are



an exception to this behavior and do benefit from caching, as de-
scribed by Hakura and Gupta [12].) While renderer memory traffic
has little conventional temporal locality, it does have considerable
producer-consumer locality, which is exploited by the register and
memory hierarchy of a stream processor.

Finally, in polygon rendering, the total bandwidth through the
pipeline is more important than the latency of any one item within
it. Modern special-purpose hardware heavily pipelines the opera-
tions on its datasets, and because these datasets are so large, the
time for the dataset is much greater than the latency for any primi-
tive. Thus, the time to finish the entire dataset is dependent not on
the time for any one primitive but instead on the rate at which prim-
itives can be sent into and through the pipeline. A stream processor
is better able to exploit this latency tolerance to increase throughput
than a general-purpose processor which is optimized to minimize
latency at the expense of throughput.

Meanwhile, modern VLSI technology has enabled designers to
place tens to hundreds of ALUs on a chip. Special-purpose ma-
chines have been successful at computationally intense tasks such
as polygon rendering in large part because they have been able to
harness this computing power. Because the bottleneck in modern
VLSI systems is shifting from computation to communication, the
challenge to designers of modern programmable architectures is to
efficiently structure data movement into, out of, and through the
chip.

A stream architecture is designed to address the needs of graph-
ics and other multimedia applications by exploiting the trends of
modern VLSI. This architecture offers the computational horse-
power necessary to meet the needs of demanding applications such
as polygon rendering. It allows its users to leverage the inher-
ent parallelism in these applications, to take advantage of their
producer-consumer data locality, and to exploit their latency tol-
erance to increase throughput.

2.1 The Stream Programming Model

In the stream programming model, a streamiis a set of data elements
of a single arbitrary datatype. Streams are consumed by popping
complex data elements from the front of a stream; streams are pro-
duced by appending data elements to the back of a stream. Streams
can be constructed from other streams through append, truncate, or
extract operations. A stream’s elements can also index into another
stream.

Programs are structured into kernels that operate on streams.
Kernels take one or more streams as inputs and produce one or more
streams as outputs. Typically, kernels loop over an input stream,
performing identical operations on each input element to produce
their outputs. Kernels can be chained together, where the output
stream from one kernel is fed into the next kernel as an input stream.
Producer-consumer locality is exploited by consuming the result of
one kernel as soon as it is produced. As an example, Figure 1 shows
how the transform and shade stages of a polygon renderer map to
streams and kernels.

Stream computation is most efficient when performed on ho-
mogeneous data elements. Repeated homogeneous operations on
streams permits simple control flow in the computational kernels,
allowing a stream architecture to forego the complicated control
hardware present in general-purpose processors.

Because of the importance of processing streams of homoge-
neous elements, a stream programming system provides an efficient
mechanism to sort a stream of heterogeneous elements into one or
more streams of homogeneous elements. This is accomplished by
either removing elements from the input stream or by splitting the
input stream into several homogeneous output streams. Each output
stream can then be processed by a simple kernel that needs no con-
ditional operations to distinguish between heterogeneous elements.

Shaded,
Input Vertices Transformed  Transformed
Vertices Vertices

Matrix Light/Material
Stream Stream
im_stream<raw_vtx> raw_vertices = streamLoad(file);

im_stream<xformed_vtx> xformed vertices;
im_stream<matrix> modelview matrix = ...;

transform(raw_vertices, modelview matrix,
xformed_vertices) ;

im_stream<shaded vtx> shaded vertices;
im_stream<light_ info> light_stream = ...;

glshader (xformed_vertices, light_stream,
shaded_vertices) ;

Figure 1: A simple geometry pipeline first transforms then shades
its input vertices. This example shows how this pipeline maps
into streams (indicated by arrows) and kernels (indicated by ovals).
Note the intermediate results (transformed vertices) are immedi-
ately fed into the shading kernel. The pseudocode indicates how
this pipeline is expressed in a stream programming system; stream-
level code is written with a C++ library.

... does this triangle
face forward?

Backface
Cull

projected
triangles

front-facing
triangles

loop stream(input_tris) {
tri t;
input_tris >> t;
cc faces_fwd =
(t.vo.x * t.vli.y - ...) > 0.0;
output_tris(faces_fwd) << t;

Figure 2: The backface cull kernel reduces a stream of triangles
which face both forward and backward into a homogeneous stream
of triangles all of which face forward. The > and < operators
indicate stream input and output. The pseudocode indicates how
this kernel is expressed in a stream programming system; kernel-
level code is written in a subset of C++.
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Imagine Stream Processor

Figure 3: The Imagine stream processor.

Figure 2 contains an example of a backface cull kernel which re-
moves elements from its input stream.

Finally, scalability using the stream programming model is
straightforward. Separate kernels can run on multiple nodes of a
system while data flows in streams from one node to another. Com-
putation is divided among multiple nodes either at the task level,
where separate kernels run on each node, or by running the same
kernel on multiple nodes, each working on a subset of the data.

2.2 Thelmagine Stream Processor

Figure 3 shows a block diagram of Imagine, a single-chip stream
processor that supports the stream programming system. Details
on Imagine’s architecture, reordering memory system, and register
organization can be found in Rixner et al. [26, 27, 28].

Imagine is centered around a 128 KB stream register file (SRF).
All data in Imagine is handled as sequential streams passing be-
tween the SRF and its clients, which include a streaming memory
system supporting two memory streams, a stream controller, a net-
work interface for communication in a multi-node system, a mi-
crocontroller, and eight arithmetic clusters. The stream controller
communicates with the host and sequences and issues stream oper-
ations. The microcontroller contains the microcode store and con-
trols kernel execution in the arithmetic clusters.

Imagine achieves high performance on stream applications for
three reasons. First, Imagine efficiently manages data movement
through the machine. Imagine’s bandwidth hierarchy [26] is tai-
lored to the needs of multimedia applications like polygon render-
ing. The bandwidth between Imagine and its off-chip memory is
4 GB/s; the SRF’s bandwidth to the clusters is 32 GB/s; and the
aggregate bandwidth of all of the local register files in the clusters
is 544 GB/s.

Each level of the memory hierarchy is optimized to implement
the stream programming system. Imagine’s streaming memory sys-
tem [27] is designed to maximize delivered bandwidth. On chip, the
local storage and reuse of intermediate streams (producer-consumer
locality) is captured in the SRF, allowing Imagine to amortize the
cost of memory accesses over all kernels in the pipeline. Finally,
Imagine’s partitioned register organization [28] captures data local-
ity within kernels and capably feeds operands to the cluster func-
tional units with substantial area, delay, and power savings over a
conventional, central register file.

Second, Imagine’s SIMD cluster organization takes advantage
of the inherent parallelism in polygon rendering while maintaining

Local Register
File

To SRF
(x 4 streams)

From SRF
(x 4 streams)

Figure 4: An Imagine cluster. Each functional unit input is fed by
a local register file, and the outputs are switched by a cluster-wide
switch.

the efficiencies of processing homogeneous streams characteristic
of the stream programming system. The end result of this organiza-
tion is ample arithmetic throughput to attack the high computational
needs of polygon rendering. Each kernel runs on all eight clusters
while processing its input streams and completes the processing of
its input streams before the next kernel begins. Only one kernel
runs at any point in time.

Each of Imagine’s eight clusters, shown in Figure 4, contains six
arithmetic functional units that operate under VLIW control. The
arithmetic units operate on 32-bit integer, single-precision floating
point, and 16- and 8-bit packed subword data. The six functional
units comprise three adders that execute adds, shifts, and logic op-
erations; two multipliers; and one divide/square root unit. In addi-
tion to the arithmetic units, each cluster also contains a 256-word
scratchpad register file that allows runtime indexing into small ar-
rays, and a communication unit that transfers data between clusters.
Each input of each functional unit is fed by a local two-port register
file. In each cluster are 1104 registers spread across 17 local regis-
ter files.! A cluster switch routes functional unit outputs to register
file inputs. Across all eight clusters, Imagine has peak arithmetic
bandwidth of 20 GOPS on 32-hit floating-point and integer data
and 40 GOPS on 16-hit integer data. Imagine achieves about half
of this peak bandwidth on typical media applications.

Third, the granularity of operations on a stream architecture is
at the stream level. Kernel operations, loads, and stores apply to
entire streams and complete when each element has been processed.
Thus, the instruction bandwidth in this architecture is less than that
of a conventional architecture, since complex operations on streams
can be issued with just a single instruction.

Currently, Imagine’s architecture and cycle accurate simulator
are complete; its kernel scheduler is complete except for register
spilling; and its runtime programming system and synthesizable
RTL Verilog model are nearly complete. Extensive circuit studies
and floorplanning of the layout are also finished. Imagine will be
fabricated in a 0.18 m process with a die size less than 0.7 cn?. It
is expected to operate at 500 MHz and tape out at the end of 2000.

3 Polygon Rendering

Our renderer is implemented as a pipeline of kernels as illustrated
in Figure 5. The pipeline’s inputs are streams of input data prim-
itives and other input parameters, such as transformation matrices
and lighting parameters; its output is an RGB image. We choose
to concentrate our effort on an OpenGL-like pipeline: Our system
runs in immediate mode, does not require frame semantics, and
respects OpenGL ordering semantics. However, it is important to

1\We use 64-word local register files for the simulations cited in this paper
because we have not yet added register spilling to the kernel scheduler, but
the final machine will have fewer registers.
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Figure 5: Our general pipeline consists of a series of kernels con-
nected by streams; we divide these kernels into geometry, rasteri-
zation, and composite stages.

note that because we have a programmable system, we could extend
OpenGL’s functionality or implement other APlIs.

Our pipeline kernels are grouped into three stages. In the ge-
ometry stage, input primitives are transformed from object space to
screen space. The rasterization stage converts screen-space primi-
tives to fragments, and the composite stage sorts and assembles the
fragments into a final image.

Each stage consists of several kernels connected by data streams.
For different rendering contexts, we exploit the programmability of
our system and use optimized pipelines and specialized kernels. In
general, however, the geometry stage consists of transform, light-
ing, primitive assembly, backface culling, and projection kernels;
the rasterization stage uses triangle setup (“spanprep”), span gener-
ation (““spangen”), and span rasterization (“spanrast”) kernels; and
the composite stage has hash, sort, compact, and depth buffering
kernels.

For efficiency, vertices are arranged into input batches; stream
operations are applied to an entire input batch at the same time. In
a real system, the application or driver would assemble the input
into batches, but in our tests we batch the input before beginning
processing. This method is modeled after the vector programming
technique of strip-mining [14, 17].

3.1 Implementation Challenges

Load balancing Stages of the rendering pipeline such as scan
conversion and span rasterization require unequal amounts of work
for each input element. Large triangles, for instance, require more
work to scan convert than do smaller ones. The challenge of load
balancing is to distribute the work across Imagine’s clusters in an
efficient manner.

Our implementation uses dynamic load balancing to keep all
of the clusters busy even when operating on elements that require
vastly different amounts of work. With this approach, each cluster
works on one input element at a time as the clusters iterate through
the input stream. On each loop iteration, any cluster that has com-
pleted its old element fetches a new element from the input stream.
Clusters that have not completed their previous element continue
without fetching a new input.

Because the clusters are controlled in a SIMD fashion, this mech-
anism incurs the overhead of fetching a new input on each iteration
whether or not the fetch actually takes place. However, it has the
advantage of giving the functional units useful work at all times.
Our system uses this method for scan conversion and span rasteri-

zation; in the latter, for example, we process spans by looping over
fragments and bringing a new span into each cluster only when the
old span is exhausted. As long as each cluster still contains valid
input, it outputs a valid fragment on each loop iteration.

Ordering OpenGL’s ordering rules require that input primitives
must be completed in order. Parallel implementations of OpenGL
that work on several primitives at once for efficiency must take spe-
cial care to meet this requirement. In our implementation, the out-
put of the rasterize stage of our pipeline generates fragments out
of order. Consequently, for applications that require ordered frag-
ments, such as alpha-compositing transparency, we must reorder
the fragments.

To accomplish this reordering, we first assign a unique, ordered
ID to each triangle in the batch. This ID is assigned during primitive
assembly and is trivially generated by incrementing a counter each
time a new triangle is passed through this kernel. During rasteriza-
tion, each triangle passes its ID to each of its generated fragments.

Fragments carry color, depth, and an offset into the frame-
buffer. 2 Ordering requires that only fragments with the same offset
must now be processed in ID order. While a sort of all fragments by
offset and ID would meet the ordering requirement, the cost of this
sort would dominate the runtime. However, many if not most frag-
ments in a batch of tens or hundreds of fragments do not conflict
with any other fragments; their depth complexity within the batch,
on average, is rarely greater than one.

Instead of a general sort, then, we separate the fragment stream
into two streams, a unique stream made of fragments which have no
conflicts with other fragments in the batch, and a conflicting stream,
consisting of the remaining fragments. This separation is performed
by hashing the offsets of each of the fragments in the batch into a
conflict table. In our implementation, we use a 12-bit hash value
constructed from the low 6 bits of each of the x and y coordinates
of the fragment’s framebuffer offset. At 2 bits per hash entry, this
uses 32 words in each of the 8 Imagine scratchpad register files.

The conflicting stream is then sorted and appended to the unique
stream; the resulting fragment stream can then be processed and
retired while obeying the ordering constraint.

3.2 Implementation Advantages

Capturing producer-consumer locality Figure 6 demon-
strates how we capture the producer-consumer locality of the inter-
mediate streams that are passed between the kernels of our pipeline.
Because large data sets do not fit into our SRF, we partition the in-
put primitives into batches and process an entire batch at one time.
We choose the size of a batch such that at all times the working set
of streams fits into the SRF.2 Thus, intermediate data is passed from
one kernel to the next via the SRF (32 GB/s) and need not be passed
through the memory (4 GBJ/s).

Latency tolerance The design of our pipeline affords signifi-
cant overlap between computation and memory access, hiding the
cost of the memory operations. For example, while the arithmetic
clusters process a batch of vertices, the next batch can be fetched
from memory and be present in the SRF by the time the current
batch’s processing is complete. In fact, in our implementation, the
depth buffer and texture lookups associated with one batch execute
concurrently with geometry processing of the next batch.

To exploit this concurrency, Imagine takes advantage of its abil-
ity to overlap the execution of independent instructions. Imagine’s

2The framebuffer is treated as a linear stream, so the offset is just a func-
tion of the x and y coordinates of the fragment.

3We discuss methods of processing large triangles, which may generate
more fragments than can be stored in the SRF, in Section 5.2.
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Figure 6: This sample polygon rendering pipeline shows how the
locality of the intermediate streams are captured in the stream reg-
ister file. Memory accesses are only necessary for the initial load
of a batch of triangles and for buffer accesses. All other data flows
through the SRF and does not leave the chip.

stream controller issues a single instruction to the microcontroller
to execute a complex kernel on an entire batch of primitives. While
this instruction is executing, the stream controller can issue a sep-
arate instruction to the memory system to load the next batch of
primitives into memory, and so on. Dependencies between instruc-
tions are enforced by the stream controller to ensure that this over-
lap does not violate sequential semantics.

Pipeline reordering A programmable pipeline offers the op-
portunity to reorder the steps of the traditional OpenGL pipeline for
more efficient execution. Our ADVs-1 test scene, described in the
next section, is an excellent example. ADvs-1’s rendering context
has depth buffering enabled and blending disabled, so the texturing
operation can be moved after the depth test. Thus, fragments which
fail the depth test do not incur the cost of the texture lookup.

Flexible resource allocation A hardwired pipeline must fix
the allocation of resources to different stages of the graphics
pipeline at fabrication time. Typically the resources are balanced
for some typical input scene, but may become very unbalanced for
other scenes. For example, a scene with very large triangles may
leave the geometry stages idle while the rasterizers are overloaded
and a scene with very small triangles may overload the geometry

stages while the rasterizers go idle. In contrast, our pipeline imple-
mentation uses the same hardware (SRF, arithmetic clusters, and
memory system) for each stage of the pipeline. Thus our pipeline
dynamically adapts to the balance of work between the different
stages and avoids the inefficiency of fixed resource allocation.

4 Experimental Setup

We implemented our polygon renderer on a simulator of the Imag-
ine stream processor. This simulator models the complete Imagine
architecture, including computation, stream and kernel level con-
trol, and memory traffic and control* with cycle accuracy and has
been validated against our RTL models and circuit studies. At the
beginning of each simulation, all input data streams (the list of
vertices, transformation matrices, lighting parameters, etc.) were
located in Imagine’s main (off-chip) memory, and at the end, the
complete output image was also in Imagine’s main memory.

We compared our results with representative hardware-
accelerated and software-only OpenGL systems. The hardware-
accelerated system is a 450 MHz Intel Pentium I11 Xeon worksta-
tion with 128 MB of RAM running Microsoft Windows NT 4.0.
Its graphics system is an NVIDIA Quadro with DDR SDRAM on
an AGP4X bus running NVIDIA’s build 363 of their OpenGL 1.15
driver. The software-only system is the same machine and graph-
ics hardware with OpenGL hardware acceleration disabled, using
Microsoft’s opengl32.dll, GL version 1.1.

We measured the performance on these scenes with a runtime
utility that recorded all of the OpenGL commands made by an ap-
plication in a trace file. On the PC systems, we played back these
traces on a low-overhead trace player to remove the effects of appli-
cation time on frame rate. We eliminated startup costs by allowing
the system to warm up (in particular, to load textures into texture
memory) and then averaging frame times over hundreds of frames.
Refresh synchronization costs were eliminated by disabling the ver-
tical retrace sync, allowing a new frame to begin immediately after
the old frame completed.

With this setup, we accurately model Imagine’s chip and mem-
ory performance but not its performance in a complete system. A
comparison against a commercial system, then, is biased in favor
of Imagine, because real systems have other bottlenecks that are
not present in the Imagine simulation. In particular, the interaction
between the host processor and the graphics subsystem is not mod-
eled, and many hardware-accelerated systems are limited by the bus
between the processor and the graphics subsystem. On the scenes
tested, we expect the bus communication overhead to be small, but
more complex scenes will have a greater cost associated with this
communication.

For this reason, we linearly scale the hardware-accelerated sys-
tem’s delivered performance to reach NVIDIA’s peak quoted vertex
numbers of 15 million vertices per second [10] and trilinear-filtered
pixel fill rate numbers of 480 million pixels per second and as-
sume that the causes of the difference are strictly system issues that
we do not model in our Imagine simulation as well as departures
from the hardware’s fast path. The figures cited for this hardware-
accelerated extrapolated system could be regarded as performance
that could not be exceeded by the hardware system.

The NVIDIA system also uses an older technology: Having
shipped in November 1999, it is built in a 0.22 pm process with
approximately 23 million transistors; Imagine is targetted for a 0.18
wm process with 16 million transistors. Imagine’s clock rate is also
significantly higher (500 MHz vs. 120 MHz). While some of this
difference can be attributed to the speedup from a smaller feature

4We modeled Imagine’s main memory with a cycle-accurate simulation
of the NEC pPD45D128164 DDR SDRAM [20], clocked at 125 MHz.
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Figure 7: In the left graph, we compare the performance of each system on our four test scenes. On the right graph, we present the performance

relative to Imagine = 1 for each scene.

size,® Imagine’s high clock rate is also the result of our design de-
cision to achieve high arithmetic rates by using deeper pipelines
and a faster clock rate instead of more complex control and more
arithmetic units, a difference which has nothing to do with the tech-
nology. Of course, clock rate in general is by no means the best
predictor of overall performance.

Despite all these differences, a comparison between current com-
mercial graphics systems and Imagine is instructive for two main
reasons. First, running our test scenes on commercial systems gives
a sense of the relative complexity of those scenes. Second, compar-
ing several different scenes against commercial systems indicates
on which kinds of graphics tasks Imagine performs relatively well
and relatively poorly, providing insight into the bottlenecks of our
implementation, both in software and hardware.

4.1 Test Scenes

To facilitate comparison between scenes, each of these scenes was
rendered into a 24-bit RGB color framebuffer with a window size of
720 x 720 pixels. All textures are 32 bits, and mipmapping calcu-
lations are performed using a square root per fragment. References
below to batch sizes apply only to the Imagine implementation.

Scene 1: Sphere Our first scene is an immediate-mode
Gouraud-shaded rendering of a finely subdivided sphere lit with
three positional lights with diffuse and specular lighting compo-
nents. The sphere has 81,920 unmeshed triangles and generates
361,816 fragments. Backface culling is disabled so the depth com-
plexity is 2 for each drawn pixel. SPHERE is rendered in 80-triangle
batches.

Scene 2: Advs-1 The ADVS dataset is the first frame of the
SPECviewperf 6.1.1 Advanced Visualizer benchmark with lighting
and blending disabled and all textures point-sampled from a 512 x
512 texture map. The benchmark is run in immediate mode and has
62,576 vertices organized as polygons. It generates 25,704 trian-
gles, of which approximately half are backface culled, and 70,384
fragments, and is rendered with 256-vertex batches.

5To first order, logic delays are inversely proportional to feature size, so
the speedup for a 0.18 um process should be roughly 22% over a 0.22 pm
process.

Scene 3: Advs-8 This scene uses the same dataset and ren-
dering modes as ADVs-1 except for filtering each texel using a
mipmapped texture with base level size of 512 x 512. This scene
is rendered in 24-vertex batches.

Scene 4: Fill This artificial benchmark simply fills its entire
window with 20,000 mipmapped 25-pixel triangles arranged in
long (200-vertex) triangle strips. The texture map has a base level
size of 512 x 512. By construction, the texture for each pixel ac-
cess is locked to mipmap level 0.5 and thus fetches and interpolates
4 texels from each of mipmap levels 0 and 1. FiLL is rendered in
16-vertex batches.

5 Discussion

5.1 Imagine’s Performance

The results of our experiments are summarized in Figure 7. We
present our results in two ways. First, we show the raw perfor-
mance of each system on each test scene in frames per second.
Next, we normalize each system’s performance to Imagine’s in or-
der to gauge Imagine’s relative performance.

The immediate conclusion from a relative comparison between
Imagine and the special-purpose hardware system is that Imagine
performs relatively better on scenes weighted towards geometry
performance and relatively poorer on scenes weighted towards ras-
terization performance. In the remainder of this section, we will
analyze Imagine’s performance and bottlenecks and suggest exten-
sions to our implementation and our hardware.

Stream-level performance The time spent in one representa-
tive batch for the Abvs-1 dataset is illustrated in Figure 8. All
4 benchmarks achieve high occupancy in the arithmetic clusters:
ADVs-8, the lowest, is busy 94.3% of the time and SPHERE, the
highest, is busy 98.8% of the time. The remainder of the time can
be accounted for by stream dependencies, where either the kernel
cannot start because its input stream is not yet ready, or further
stream operations cannot be reordered due to control dependencies.
Figure 9 depicts the breakdown of kernel time for the entire ADV's-
8 run.

This high occupancy in the clusters is achieved by efficiently
managing memory bandwidth at all levels of the hierarchy. Except
for vertex loads, depth buffer reads and writes, texture reads, and
color buffer writes, all data references remain local in the SRF. The



MEMORY MEMORY
CLUSTERS STREAM 0 STREAM 1
102,000 compact
xform Load Z
project
103,000 p zcompare
Store Z_, LaEd]
texture
assemble mapped
colors
104,000 p
Store color
backfacecull
105,000 p spanprep
Load input
vertices
106,000 p
spangen l__._._|
| I I
| || |
|| |
107,000 p || I
spanrast Clear Z ! l Clear color !
| buffer for | | buffer for |
| next frame | | nextframe |
| | |
108,000 b ! | I
hash | |
I [ I
- || |
| S ——— ——
compact
109,000 p
xform l Load Z, l
|_zcompare
[ Store Z, ] Load
project texture
mapped
110,000 p colors
Store color
assemble
Load input
vertices
I:I batch i-1 I:I batch i+1 per frame work
amortized over all
|:| batch i . batch i+2 batches

Figure 8: This representative batch of ADvs-1 depicts cluster and
memory system occupancy. The leftmost column is cycle number.
The CLUSTERS column shows which kernels were running dur-
ing which cycles, and the MEMORY STREAM columns show the
streams passing between Imagine and its off-chip memory. Note
that because the memory system is not fully occupied during a
batch, we distribute the work of clearing the depth and color buffers
across the batches. (If depth and color buffer clears are done at the
end of a frame instead, they take roughly 500,000 cycles, or 1 ms,
for a 720 x 720 window.) The batch displayed has 256 vertices.
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Figure 9: This chart indicates the relative kernel time, organized by
stage, for each of the kernels used in the ADvs-8 pipeline for an
entire frame.

benchmark sustaining the highest memory bandwidth is ADvs-1,;
in this benchmark, the average memory store latency is 126 Imag-
ine cycles and the average memory load latency is 42 cycles. The
reordered memory system is occupied 58.7% of the time. On this
benchmark, the amplification of bandwidth from memory traffic
(1.75 GBIs) to the SRF (9.39 GBI/s) to the cluster register files
(234.8 GB/s) demonstrates that we have adequately captured the
locality of streams with our machine organization.

Kernel-level performance The use of data parallelism and
software pipelining allows Imagine to sustain a high computation
rate. For example, on SPHERE, Imagine averages 11.2 arithmetic
operations per cycle across all the clusters for an aggregate rate of
5.58 GOPS. This high computation rate indicates that the stream
programming system delivers high computational density on the
polygon rendering application.

The O(nlogn) cost of a general fragment sort makes the effi-
ciency of the hash function vital for high performance. For exam-
ple, the ADVS dataset, when batched in 256-vertex chunks, only
has 14.7% of the fragments conflicting with other fragments, pro-
viding a frame rate speedup over an implementation with no hash-
ing and a sort for all fragments of nearly 2:1. Still, many of these
conflicting fragments have false conflicts with other fragments in
the hash table; we plan to explore better hashing functions in future
work.

Bottlenecks Imagine’s relative performance against the hard-
ware comparison system is poorest on the fill-intensive datasets.
Special purpose hardware, with its powerful rasterization hardware,
would be expected to excel at these scenes. For several reasons,
Imagine falls short of this performance goal.

For mipmapped fragments, where each fragment requires one
depth buffer read and write, one color buffer write, and eight texel
reads, Imagine’s memory system can sustain a peak fill rate of
slightly less than 100 million fragments per second. Our hardware-
comparison system quotes a fill rate of 480 million fragments per
second [10], and even though this fill rate uses 16-bit texture sam-
ples and Imagine’s uses 32-bit samples, the gap is still substantial.
In Section 5.3, we discuss possible remedies to increase fill band-
width.

The memory, however, is not the primary bottleneck on even a
simple scene such as FiLL. One bottleneck is simply the amount of
computation, particularly in rasterization, as demonstrated in Fig-
ure 9: ADVs-8, with the same dataset, takes almost 2.5 times the



number of arithmetic ops to render than does ADVs-1.

Another bottleneck is the loss of efficiency from running shorter
streams. Because mipmapped triangles, spans, and especially frag-
ments take up more room than their unmipmapped counterparts,
and because the SRF only has a finite amount of space, the num-
ber of primitives that can fit in a batch is greatly decreased. For
instance, ADVs-1 uses batches with 256 vertices, but ADVS-8 can
only fit 24. Shorter streams are less efficient for two reasons: first,
each kernel has startup costs such as variable initialization which
must be paid per batch, and second, software-pipelined kernels
must incur the cost of priming and draining their software-pipelined
inner loops. Comparing the runtime of the identical geometry com-
putation in ADVs-8 and ADVSs-1 reveals that ADvs-1’s smaller
batch size causes it to take more than twice the runtime as Abvs-8
in this section.

5.2 Implementation Extensions

Further pipeline developments Currently, the modelview
and projection transformation matrices are input as a stream but
do not change throughout the scene. Allowing arbitrary matrix
changes could be handled in one of two ways. If matrix changes are
infrequent, a new matrix could be loaded for each batch of geome-
try that passes through the pipeline. More frequent changes could
be addressed with flags per input primitive (similar to the per-vertex
flags used for carrying mesh information to the primitive assembly
kernel) indicating a change in the transformation matrix.

We have not yet implemented clipping to the view frustum. This
will most easily be handled after the project stage, which would
output separate streams of primitives that trivially pass clipping
and primitives that must be clipped, while eliminating primitives
that trivially fail. The primitives that must be clipped will then be
passed into a clip kernel. We will also analyze other algorithms
such as those that clip during scan conversion [22]. Amortized over
all input primitives, we expect that the cost of clipping will be on
the same order as a matrix transformation; the more complex arith-
metic in clipping will be offset by the need to clip only a subset of
the primitives.

The benchmarks we chose had relatively uniform triangle size,
but other datasets with huge triangles will invariably overflow the
SRF with fragments. Our stream programming system supports a
double-buffering mode that spills streams to memory as they be-
come full at the cost of a degradation in performance. Instead, it
may be desirable to split large triangles in screen space before ras-
terization, then process them in smaller batches which would not
incur the cost of spilling. To handle triangle streams with larger
variance in screen-space area, another option is to analyze the in-
put size of primitives as they are brought into the clusters for the
first time, stopping further transfer when the optimal batch size is
reached. This solution imposes an up-front cost to estimate primi-
tive size, but should allow greater efficiency and flexibility.

Until the texture lookup and final color generation, our algo-
rithms use floating-point data throughout the entire rasterization
pipeline. We plan to explore the benefits of using Imagine’s packed
16- and 8-bit integer datatypes, which should provide gains in band-
width through the clusters, operation density in the clusters, and
SRF space utilization.

Multiple textures, though not supported in the current implemen-
tation, could simply be appended onto the stream of texture data.
Each triangle would carry an offset into the texture stream (or multi-
ple indices for multitextured pipelines) that would identify the base
address of its texture.

Complex scenes Real scenes are more complicated than the
scenes benchmarked above. Our implementation is well-suited to
handle the larger datasets in real scenes. However, more complex

scenes also imply many more rendering modes and options than our
benchmarked scenes.

Much of the efficiency of our implementation comes from spe-
cialized kernels for specialized tasks. For example, the span raster-
ization kernel used for mipmapped fragments is not the same ker-
nel as the Gouraud-shaded span rasterizer. While creating several
specialized flavors for each kernel is both achievable and desirable,
clearly, supporting every permutation of the pipeline is unworkable.
Fortunately, the modularity of using kernels allows us to factor the
complexity of supporting thousands of pipelines into merely sup-
porting tens of kernels, and compositing those kernels together into
specialized pipelines.

Schmidt and Lam describe a similar problem [30] and imple-
ment an evolutionary software system to address it. This dynamic
method is applicable to our situation, and because kernel special-
ization information can often be inferred from compile-time anal-
ysis of the context, even a static method would work. Fortunately,
even the most complex scenes typically use only a subset of the
full power of their graphics APIs, and the runtime cost of fre-
quent changes to the rendering context often means complex state
changes are infrequent in demanding applications.

Exploiting programmability  All of Imagine’s kernels are im-
plemented in microcode with no custom graphics specialization.
Consequently, the performance of the graphics kernels in the
OpenGL pipeline should translate well to kernels which are not in
the pipeline. In future work, we intend to explore using the pro-
grammability of Imagine to add interesting features to the graphics
pipeline, such as programmable shading and flexible multitextur-
ing, the use of more complex input primitives such as subdivision
surfaces, and the integration of non-polygon rendering approaches
such as image-based rendering.

5.3 Imagine Hardware Extensions

Imagine was designed to run a variety of multimedia applications,
including signal- and image-processing workloads. A stream ar-
chitecture built to run only a polygon rendering pipeline might add
additional hardware that would aid its performance. These features
would take the form of additional clients to the SRF and additional
functional units in a cluster. Adding either additional SRF clients or
additional function units is supported by both the architecture and
the software tools.

The addition of caching capabilities to the memory system would
help texture performance. Modest amounts of texture cache on the
order of 16 KB allow significant savings in bandwidth [12]. A by-
passable cache attached to the memory system, with streams des-
ignated as either cacheable or noncacheable, bears further investi-
gation. Though the scenes tested were not limited by texture band-
width, more complex, multitextured scenes, or scenes with more
sophisticated texture filtering algorithms, may benefit from a cache.

Another design option is to put a small programmable ALU in
the memory system (as in Deering et al. [5]) that performs simple
operations like a depth test, an alpha blend, or a filtering operation.
This would avoid the round-trip from the memory system through
the SRF to the clusters and back. Different cluster and functional
unit organizations might also be interesting additions or modifica-
tions to the Imagine architecture.

The stream programming model is well-suited to multi-node im-
plementations, and Imagine’s 750 MB/s network interface provides
a high-bandwidth path to pass streams between nodes of a multi-
node system. Such a system could implement sort-middle or sort-
last parallel machines. It could run one pipeline stage per node and
pass intermediate results to the next node, or it could divide its in-
put among multiple nodes, working on them concurrently and com-
positing their outputs in a final stage. Because of the large amount



of parallelism available in the graphics pipeline, we expect to be
able to achieve nearly linear improvements in rendering bandwidth
with the addition of Imagine processors to a rendering pipeline.

6 Previous Work

The use of streams as programming elements in media applications
is common; Gabriel [2] and its successor Ptolemy [25] are repre-
sentative examples. Imagine’s contribution to the field is its use of
streams as architectural primitives in hardware.

SIMD extensions to microprocessor instruction sets are used
to exploit data-level parallelism and provide the option of more,
lower-precision operations, which are useful in a number of mul-
timedia applications. Sun Microsystems’ VIS is described by
Tremblay et al. [33] and Intel’s MMX is described by Peleg and
Weiser [24]. However, adding operations on partitioned data does
not address the producer/consumer locality of graphics applica-
tions.

Imagine inherits many ideas from vector processor architectures.
An early vector machine is the CRAY-1 [29]; a more recent vector
architecture is the Berkeley VIRAM [13]. These vector machines
lack the local register level of the bandwidth hierarchy and do not
have the kernel-level instruction bandwidth savings of Imagine.

VLIW architectures, first described by Josh Fisher [7], have been
common in programmable media processors due to their ability to
effectively exploit instruction level parallelism. A recent example
is the Equator MAP1000A [21], which uses both VVLIW and SIMD
organizations in its hardware. The use of a bandwidth hierarchy is
not addressed by VLIW machines, nor do they simplify the instruc-
tion overhead.

The field of computer graphics has seen both architectures
of varying programmability and architectures which use custom,
special-purpose hardware. For many years, designers have taken
advantage of the inherent parallelism in polygon rendering. Pixar’s
Chap (described by Levinthal and Porter [16]) was one of the earli-
est processors to explore a programmable SIMD computational or-
ganization, on 16-bit integer data; Flap [15], described three years
later, extended Chap’s integer capabilities with SIMD floating-point
pipelines.

The Chromatic Mpact architecture [8] employs a VLIW pro-
cessor together with a specialized rendering pipeline to add some
degree of flexibility to rendering. The Pixel-Planes [9] and Pix-
elFlow [19] family of architectures employ both custom SIMD
processors built into enhanced memory chips that evaluate linear
equations to accelerate rasterization and more general-purpose pro-
cessors for other tasks and pipeline enhancements (such as pro-
grammable shading [23]). Imagine differs from both of these pre-
vious approaches in that it provides no specialization for rendering,
but does provide a bandwidth hierarchy that enables much higher
arithmetic rates without specialization.

Many systems implement the geometry stages of their pipelines
with microcoded computational engines; a representative exam-
ple is the LeoFloat unit of Deering and Nelson’s Leo graphics
system [4]. Rasterization is more commonly done with special-
purpose hardware.

More recently, the vector units in the Sony Emotion Engine [6]
use a single cluster of VLIW-controlled arithmetic units fed with
vectors of data. The functional units are connected to either an
integer or a floating-point centralized register file.

Recent manufacturers of high-performance consumer-level
graphics accelerators have been reluctant to discuss the microar-
chitectures of their implementations. An exception is Digital’s
Neon [18], a single-chip graphics accelerator designed with special
attention to reducing memory bandwidth requirements.

7 Conclusion

Implementing polygon rendering on a stream processor allows per-
formance approaching that of special-purpose graphics hardware
while at the same time providing the flexibility traditionally asso-
ciated with a software-only implementation. This performance is
achieved using a pipeline that is entirely programmed in software.
The pipeline can easily be changed by adding, removing, or reorder-
ing the kernels, and new kernels can be created by programming in
a subset of C++.

The Imagine stream processor achieves this level of perfor-
mance because it matches the capabilities of VLSI technology to
the needs of rendering algorithms in three ways. First, it exploits
the producer-consumer locality to reduce the demand for memory
bandwidth. Data generated by one pipeline kernel is staged in local
storage, the SRF, and then used by the next pipeline kernel with-
out ever being sent to main memory. Second, Imagine provides
the large number of arithmetic units (48 total) needed to exploit
the parallelism inherent in graphics applications and to provide the
arithmetic density required. Finally, by overlapping stream opera-
tions, each of which moves or transforms hundreds of data records,
Imagine is able to exploit the latency tolerance inherent in graph-
ics applications to further increase throughput. In short, Imagine
achieves its performance using the same methods that have tradi-
tionally been exploited in special-purpose hardware, but without
giving up programmability.

Measurements of a rendering pipeline implemented on Imag-
ine show that the architecture is successful in exploiting producer-
consumer locality and in overlapping operations. On all test scenes,
the pipeline is entirely compute bound with the arithmetic clus-
ters busy more than 94% of the time while the memory system is
busy a maximum of 59% of the time. However, there is consid-
erable room for improvement: Imagine sustains only 5.58 GOPS,
28% of peak performance, on the SPHERE data set. Ideally, further
advances in stream algorithms and architectures will make these
scenes memory-bound.

There is a continuum of solutions between the general-purpose
stream processor we have evaluated in this paper and a special-
ized graphics chip. Stream processors can easily be extended and
specialized by adding either additional stream units, e.g., a texture
cache or a scalar unit, or additional functional units. With an Imag-
ine chip measuring only 0.7 cm?, there is plenty of room for such
specialized units, which can be easily supported by the existing pro-
gramming tools. We expect that considerable performance gains
can be realized by such limited specialization without giving up the
flexibility and programmability of the stream processor?

As both rendering techniques and models continue to increase in
complexity in the quest for even greater realism, we see stream pro-
cessing as an attractive direction for graphics architecture. A stream
processor can easily be configured to handle new rendering meth-
ods by coding one or more additional kernels and integrating them
into the rendering pipeline. With this approach, new or enhanced
rendering methods can be applied with only a gradual degradation
in performance. In contrast, using a new rendering method to-
day usually means falling off the performance cliff associated with
moving from special-purpose hardware to a software-only solution.
Because it manages bandwidth efficiently at all levels of the storage
hierarchy, a single stream processor has performance that is com-
petitive with special-purpose solutions. At the point where both are
bandwidth-limited, there is no advantage to specialization. More-
over, multiple stream processors can easily be applied to running
larger models by exploiting either control parallelism (partitioning
the pipeline across processors) or data parallelism.

60f course, specialized features may be of little use in other stream pro-
cessor application areas such as video compression, radar processing, and
signal processing for wireless and wire-line communication.
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