
194 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

Virtual-Channel Flow Control
William J. Dally, Member, IEEE

Abstract- Network throughput can be increased by dividing
the buffer storage associated with each network channel into
several virtual channels 1111. Each physical channel is associ-
ated with several small queues, virtual channels, rather than
a single deep queue. The virtual channels associated with one
physical channel are allocated independently but compete with
each other for physical bandwidth. Virtual channels decouple
buffer resources from transmission resources. This decoupling
allows active messages to pass blocked messages using network
bandwidth that would otherwise be left idle. This paper studies
the performance of networks using virtual channels using both
analysis and simulation. These studies show that virtual channels
increase network throughput, by a factor of 4 for 10-stage
networks, and reduce the dependence of throughput on the depth
of the network

Index Terms- Communication networks, concurrent comput-
ing, flow control, interconnection networks, multicomputers, mul-
tiprocessors, packet routing, parallel processing, virtual channels,
wormhole routing.

I. INTRODUCTION

Interconnection Networks

HE processing nodes of a concurrent computer exchange T data and synchronize with one another by passing mes-
sages over an interconnection network [l], [2], [13], [4], [9],
(241, [23]. The interconnection network is often the critical
component of a large parallel computer because performance is
very sensitive to network latency and throughput and because
the network accounts for a large fraction of the cost and power
dissipation of the machine.

An interconnection network is characterized by its topology,
routing, and flow control [6]. The topology of a network
is the arrangement of nodes and channels into a graph.
Routing specifies how a packet chooses a path in this graph.
Flow control deals with the allocation of channel and buffer
resources to a packet as it traverses this path. This paper deals
only with flow control. It describes a method for allocating
resources to packets using virtual channels [l l] . This method
can be applied to any topology and routing strategy.

The Problem

The throughput of interconnection networks is limited to a
fraction (typically 20%-50%) of the network's capacity [7]
because of coupled resource allocation.

Interconnection networks are composed of two types of
resources: buffers and channels. Typically, a single buffer is
associated with each channel. Once a packet A is allocated a
buffer b,, no other packet B can use the associated channel c,
until A releases b,. In networks that use flit1-level flow control
[l l] , [1], [23], [9], packet A may be blocked due to contention
elsewhere in the network while still holding b,. In this case,
channel c, is idled even though there may be other packets
in the network, e.g., packet B, that can make productive use
of the channel.

This situation is illustrated in Fig. 1. In the figure, a fragment
of a network is depicted with a rounded box denoting a node, a
solid arrow a channel between two nodes, and a box denoting
a flit buffer. Shaded arrows denote routes that are in progress.
Packet A is blocked holding buffers 3E (east side of node 3)
and 4s. Packet B is unable to make progress even though all
physical channels it requires, (1E to 2W) through (4E to SW),
are idle because packet A holds buffer 3E which is coupled
to channel (3E to 4W).

This problem of idling channels due to resource coupling is
unique to interconnection networks that perform flow control
at the flit-level. Most modern multicomputer networks that use
circuit switching or wormhole routing [7] fall into this class.
The problem does not occur in traditional packet-switched
networks that perform flow control at the packet level since
such networks never block a partially transmitted packet.

Virtual Channel Flow Control
A virtual channel consists of a buffer that can hold one or

more flits of a packet and associated state information [l l] .
Several virtual channels may share the bandwidth of a single
physical channel.2

Virtual channels decouple allocation of buffers from al-
location of channels by providing multiple buffers for each

Manuscript received January 15, 1991; revised May 24, 1991. This work
was supported in part by the Defense Advanced Research Projects Agency
under Contracts N00014-88K-0738 and N00014-87K-0825 and in part by a
National Science Foundation Presidential Young Investigator Award Grant
MIP-8657531, with matching funds from General Electric Corporation and
IBM Corporation. A preliminary version of this paper appeared in the
proceedings of the 17th International Symposium on Computer Architecture

The author is with the Artificial Intelligence Laboratory and Laboratory for
Computer Science, Massachusetts Institute of Technology, Cambridge, MA
02139.

PI.

IEEE Log Number 9105524.

104 1-92 19/92$03

channel in the network: If a blocked packet A holds a buffer
bio associated with channel cz, another buffer bil is available
allowing other packets to pass A. Fig. 2 illustrates the addition
of virtual channels to the network of Fig. 1. Packet A remains
blocked holding buffers 3E.1 and 4S.1. In Fig. 2, however,

' A flit is a flow-control digit. See Section 11-C for a more complete
description.

2Virtual channels should not be confused with virtual circuits (named
connections in a connection-oriented network [26], [3]) or with virtual cut-
through (a packet-level flow-control technique [15]).

.Op 0 1992 IEEE

DALLY: VIRTUAL-CHANNEL FLOW CONTROL 195

Node 1 Node 2 Node3 Node4 Node5

Destination
of B

f
Block m

A 0

Fig. 1. Packet B is blocked behind packet A while all physical channels remain idle.

Node 1 Node 2 Node3 Node4 Node5

Destination
Of 0

+
Block I

A B

Fig. 2. Virtual channels provide additional buffers allowing packet B to pass blocked packet A.

Packet B is able to make progress because buffer 3E.2 is
available allowing it access to channel (3E to 4W).

Adding virtual channels to an interconnection network is
analogous to adding lanes to a street network. A network
without virtual channels is composed of one-lane streets. In
such a network, a single blocked packet blocks all following
packets. Adding virtual channels to the network adds lanes to
the streets allowing blocked packets to be passed.

In addition to increasing throughput, virtual channels pro-
vide an additional degree of freedom in allocating resources
to packets in the network. This flexibility permits the use of
scheduling strategies, such as routing the oldest packet first,
that reduce the variance of network latency.

The most costly resource in an interconnection network is
physical channel (wire) bandwidth. The second most costly
resource is buffer memory. Adding virtual channel flow control
to a network makes more effective use of both of these
resources by decoupling their allocation. The only expense
is a small amount of additional control logic.

Background

The use of virtual channels for flow control builds on
previous work in using virtual channels for deadlock avoidance
and in using output queueing or split input queues for partial
resource decoupling. Virtual channels were introduced in [111
for purposes of deadlock avoidance. A cyclic network can
be made deadlock-free by restricting routing so there are no
cycles in the channel dependency graph and then adding virtual
channels to reconnect the network. Virtual channels were first
implemented for this purpose in the torus routing chip [lo].

The network design frame [12] and the J-Machine network
[9] use virtual channels to provide two logical networks on
a single physical network. The iWARP processing element
[4], [5] uses virtual channels (called logical channels in [4])
primarily to guarantee bandwidth to virtual circuits. iWARP
virtual channels are sufficiently general that they can be used
to decouple resource allocation as described in this paper.

A single stage of resource decoupling is provided by output
queueing [14]. By performing the queueing in the output of
a switch rather than the input, arriving packets are able to
pass blocked messages arriving on the same input. Tamir [25]
has shown how to achieve the same single-stage resource
decoupling by partitioning the switch’s input queue. This
single stage resource decoupling is effective only if an entire
packet fits in a single node. As shown in Fig. 3, When a packet
too long to fit entirely in one input queue is blocked, it backs
up into the output stage of the previous node preventing any
following packet from passing it. With output queueing, there
is still only a single output buffer associated with each physical
channel. If a packet blocks while holding this output buffer,
the channel is idled.

Our network analysis builds on the work of Patel [22] and
of Kruskal and Snir [18] in analyzing unbuffered networks.
We also build on the work of Kermani and Kleinrock [16] in
analyzing buffered circuit switched, packet switched, and cut
through networks without virtual channels. The analysis here
extends this previous work by modeling the effect of virtual
channels and by modeling networks with fixed sized buffers
where packets are blocked (delay model) rather than dropped
(loss model) when contention occurs.

Summary
The next section introduces the notation and assumptions

that will be used throughout this paper. Section I11 describes
virtual channel flow control in detail. An analysis of network
performance is given in Section IV. The results of simulating
networks using virtual channel flow control are described in
Section V.

11. PRELIMINARIES

A. Topology
An interconnection network consists of a set of nodes,

N and a set of channels, C 5 N x N . Each channel

196 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

I
A B

Fig. 3. Output queueing or partitioned input queues provide one stage of decoupling. However, long packets (such as packet A) continue to couple resources
and cannot be passed.

is unidirectional and carries data from a source node to
a destination node. A bidirectional network is one where
(n l , n 2) E C + (n 2 , n I) E C.

We have analyzed the performance of virtual channel flow
control on multistage, k-ary n-fly, networks and have simu-
lated the use of virtual channels on both multistage, networks
and direct, k-ary n-cube, networks.

Multistage (k-ary n-fly) networks have k" inputs connected
to k" outputs by n-stages of k"-lk x k-switches. For example,
a 2-ary 4-fly is shown in Fig. 4.

A k-ary n-cube mesh network consists of k" nodes arranged
in an n-dimensional grid. Each node is connected to its
Cartesian neighbors in the grid. For example, a 16-ary 2-cube
is shown in Fig. 5.

The use of virtual channel flow control is in no way
restricted to these two classes of networks. It is equally ap-
plicable to other topologies including trees, sorting networks,
and irregular structures.

B. Routing

A packet is assigned a route through the network according
to a routing relation, R C x N x C, given the channel
occupied by the head of the packet and the destination node of
the packet, the routing relation specifies a (possibly singleton)
set of channels on which the packet can be routed.

C. Flow Control

Communication between nodes is performed by sending
messages. A message may be broken into one or more packets
for transmission. A packet is the smallest unit of information
that contains routing and sequencing information. A packet
contains one or more flow control digits or flits. A flit is the
smallest unit on which flow control is performed. Information
is transferred over physical channels in physical transfer units

Multistage Network

A 2-ary 4-fly network. Fig. 4.

Fig. 5. A 16-ary 2-cube network.

or phits. A phit is usually the same size or smaller than a flit.
The flow control protocol of a network determines 1) how it requires. The technique described in this paper is applicable

resources (buffers and channel bandwidth) are allocated and 2) to Of these flow strategies but is most appropriate

how packet collisions Over resources are resolved. A resource for networks that use Or limited buffering to
collision occurs when a packet P is unable to proceed because
some resource it needs (usually a buffer) is held by another
packet. Collisions may be resolved by 1) blocking p in place,
2) buffering P in a node prior to where the collision occurs, 3)
dropping P, or 4) misrouting P to a channel other than the one

The flow control strategy allocates buffers and Channel
bandwidth to flits. Because flits have no routing or sequencing
information, the allocation must be done in a manner that keeps
the flits associated with a particular packet together. This may

DALLY: VIRTUAL-CHANNEL FLOW CONTROL

be done by associating a set of buffers and some control state
together into a virtual channel. A virtual channel is allocated to
a packet and the buffers of the virtual channel are allocated in
a FIFO manner to the flits of that packet. In the remainder
of this paper, the terms lane and virtual channel are used
interchangeably.

Most networks associate only a single virtual channel with
each physical channel. This paper describes a method for
improving the performance of networks by associating several
virtual channels with each physical channel. This method
makes no assumptions about how wires are allocated.

D. Wormhole Routing

The technique described here is particularly suitable for use
in networks that use wormhole routing [7]. Wormhole routing
refers to a flow-control protocol that advances each flit of a
packet as soon as it arrives at a node (pipelining) and blocks
packets in place when required resources are unavailable.
Wormhole routing is attractive in that 1) it reduces the latency
of message delivery compared to store and forward routing,
and 2) it requires only a few flit buffers per node. Wormhole
routing differs from virtual cut-through routing [15] in that
with wormhole routing it is not necessary for a node to allocate
an entire packet buffer before accepting each packet. This
distinction reduces the amount of buffering required on each
node making it possible to build fast, inexpensive routers.

111. VIRTUAL CHANNEL FLOW CONTROL

A. Structure

Each node of an interconnection network contains a set of
buffers and a witch.^ In this paper, we assume that the buffers
are partitioned into sets associated with each input channel, an
input-buffered node, as shown in Fig. 6. An output-buffered
switch [14], [25] can be considered to be an input buffered
switch with a nonblocking first stage by associating the buffers
on the output of each stage with the inputs of the next stage.

A conventional network organizes the flit buffers associated
with each channel into a first-in, first-out (FIFO) queue as
shown in Fig. 7(a). This organization restricts allocation so
that each flit buffer can contain only flits from a single packet.
If this packet becomes blocked, the physical channel is idled
because no other packet is able to acquire the buffer resources
needed to access the channel.

A network using virtual channel flow control organizes the
flit buffers associated with each channel into several lanes as
shown in Fig. 7(b). The buffers in each lane can be allocated
independently of the buffers in any other lane. This added
allocation flexibility increases channel utilization and thus
throughput. A blocked message, even one that extends through
several nodes, holds only a single lane idle and can be passed
using any of the remaining lanes.

Each node also contains driver and receiver circuits to communicate across
the physical wires and control logic.

197 - .-
Buffers

Buffers

Fig. 6 . Node organization. Each network node contains a set of buffers for
each input channel and a switch.

Fig. 7. (a) Conventional nodes organize their buffers into FIFO queues
restricting routing. (b) A network using virtual-channel flow control organizes
its buffers into several independent lanes.

B. Operation

In a network using virtual channel flow control, flow control
is performed at two levels. Virtual channel assignment is made
at the packet level while physical channel bandwidth is allo-
cated at the flit level. When a packet arrives at a node, it is as-
signed (according to the routing algorithm) to an output virtual
channel. This assignment remains fixed for the duration of the
packet. The virtual channels associated with a physical channel
arbitrate for physical channel bandwidth on a flit-by-flit basis.

Fig. 8 illustrates the hardware required to support virtual
channel flow control on one physical channel. The transmitting
node (node A) contains a status register for each virtual
channel that contains the state of the lane buffer on the
receiving node (node B). This state information includes: a
bit to indicate if the lane is free, a count of the number of free
flit buffers in the lane, and optionally the priority of the packet
occupying the lane. node B contains a lane buffer and a status
register for each virtual channel. The status maintained on
node B includes input and output pointers for each lane buffer
and the state of the channel: free, waiting (to be assigned an
output), and active.

Lane assignment for physical channel P is performed by
node A. When a packet arrives in an input buffer on node A

198 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

(not shown), it is assigned a particular output channel based
on its destination, the status of the output channels, and the
routing algorithm in use. The flow-control logic then assigns
this packet to any free lane of the selected channel. If all
lanes are in use, the packet is blocked in the waiting state
until a lane is available. Maintaining lane state information
on the transmitting end of the channel allows lane assignment
to be performed on a single node. No additional internode
communication is required to maintain this information as it
is already required for flit-level flow control.

Once a lane is assigned to a packet, flit-level flow control
is used to advance the packet across the switch and physical
channel. To advance from an input buffer on the node A to
an input buffer on node B, a flit must gain access to 1) a
path through the switch to reach the output of node A, and 2)
the physical channel to reach the input of node B. Typically
either the switch is nonblocking, and thus always available
(see Section 111-D), or a few optional flit buffers are provided
at the output of node A so that switch and channel resources
do not have to be allocated simultaneously.

When the last flit of a message (the tail flit) leaves a node
the lane assigned to that packet is deallocated and may be
reassigned to another packet.

The status register storage required to implement virtual
channel flow control for one physical channel, S,, is shown
below in terms of the number of lanes, I, the total number of
flit buffers in the receiver, b, and the number of bits used to
encode priority, pri. Setting 1 = 1 and pri = 0 gives the status
register storage required by a conventional channel, S,,,,. The
first term of the expression corresponds to the storage on node
A while the second term describes the storage on node B.
For typical values of b = 16, 1 = 4, and pri= 0, S,, is 36
bits compared with 17 bits for S,,,,. This overhead is small
compared to the storage required for the lane buffers, 512 bits
if the flit size is 32 bits.

C. Allocation Policies

Flit-level flow control across the physical channel involves
allocating channel bandwidth among lanes that 1) have a flit
ready to transmit and 2) have space for this flit at the receiving
end. Any arbitration algorithm can be used to allocate this
resource including random, round-robin, or priority. For each
physical channel, the arbitration algorithm is implemented as
combinational logic that operates on the contents of the status
registers and picks the highest priority lane that has space
available at the receiving end. For random and round-robin
arbitration schemes, priority information is generated by logic
based on the lane’s position and the previous state. For priority
based schemes, priority information is stored in the status
register for each lane.

Deadline scheduling [20] can be implemented by allo-
cating channel bandwidth based on a packet’s deadline or
age-earliest deadline or oldest age first. Scheduling packets
by age reduces the variance of message latency. Deadline

scheduling provides several classes of delivery service and
reduces the variance within each class.

D. Implementation Issues

Virtual channel flow control can be integrated into existing
switch designs by replacing FIFO buffers with multilane
buffers. When this replacement is made, however, the switch
must be modified to deal with a larger number of inputs and
outputs, and the flow control protocol between nodes must be
modified to identify lanes.

Increasing the number of virtual channels multiplexed on
each physical channel increases the number of inputs and
outputs that must be switched at each node. If the switch
handles each of these inputs and outputs separately as shown
in Fig. 9(a), the switch complexity will increase significantly.
Increasing the switch complexity is not required, however. The
average data rate out of the set of lanes associated with a given
physical channel is limited to the bandwidth of the channel.
Thus it is sufficient to provide a single switch input for each
physical input and output channel as shown in Fig. 9(b). With
this organization, a small (one or two flit) output buffer is
desirable to decouple switch allocation from physical channel
allocation. Individual lanes are multiplexed onto the single
path through the switch in the same manner that they are
multiplexed over the single physical channel between the
nodes.

An intermediate organization, shown in Fig. 9(c), is to
provide a switch with separate inputs and multiplexed outputs.
This configuration has the advantage of simple arbitration. An
input virtual channel competes only for switch output ports.
It need not simultaneously arbitrate for both input and output
ports as is required for a fully multiplexed switch.

Any network that uses blocking or buffering flow control
must, for each channel, send information in the reverse direc-
tion to indicate the availability of buffering on the receiving
node. These acknowledgment signals can be transmitted on
separate wires [12] or, in a bidirectional network, they can be
transmitted out-of-band on a channel in the opposite direction

In a network using multilane buffers, two effects increase
the acknowledgment traffic. First, a few bits must be added
to each acknowledgment signal to identify the lane being ac-
knowledged. Second, because a lane buffer is typically smaller
than a channel FIFO, the use of block acknowledgments to
amortize the cost of the signal over several flits is re~tricted.~

Even with these effects, acknowledgment signal bandwidth
is still a small fraction of forward bandwidth. In a network
with 32-bit flits, 15 lanes per channel, and no block acknowl-
edgment, 4 bits must be sent along the reverse channel for each
flit transmitted along the forward channel, a 12.5% overhead.
An additional 12.5% overhead is required to identify the lane
associated with each flit sent in the forward direction. Such
a scheme could be realized by a physical channel consisting
of a 9-bit forward path (8-bit phits) and a I-bit reverse path.
Every four channel cycles a 32-bit flit is transmitted over the

~ 9 1 .

4A block acknowledgment signals the availability of a block (several flits)
of storage in a single action rather than signaling each flit separately

DALLY VIRTUAL-CHANNEL FLOW CONTROL

Node A

199

Node B

status

I : I

Optional Flit Buffers . .
Other Physical

Channels

Physical Channel
P

status

Lane Buffers . .
b

Other Physical
Channels

Fig. 8. Logic associated with one physical channel P to support virtual channel flow control. The transmitting node (node A) includes status registers for
each virtual channel and optional flit buffers. The receiving node (node B) contains buffers and status registers.

(a) (b) (c)

Fig. 9. (a) Adding virtual channels increases switch complexity if a complete
switch is used. (b) Using a multiplexed switch leaves switch complexity
unchanged. (c) Multiplexing only switch outputs give intermediate complexity
and results in simpler arbitration than (b).

forward path along with its 4-bit lane identifier and a 4-bit
acknowledgment code is transmitted over the reverse path.

1V. ANALYSIS

This section develops an analytical performance model for

For convenience, the following is a summary of the notation

b i , j The probability that all occupied virtual channels are

javg The expected number of virtual channels sharing a

1 Number of virtual channels per physical channel.
L Message length in bits.
X The offered traffic rate.
Xmax Network throughput, the maximum rate for which a

n Number of stages in the network.
p i , j The probability that j virtual channels are occupied in

k-ary n-fly networks that use virtual channel flow control.

used in this section.

blocked in stage i when j virtual channels are occupied.

physical channel-averaged over packets.

steady state solution exists.

stage i.

qi,3 An intermediate variable used in the calculation of p i , j .

to The service time at the destination.
ti,j The effective service time out of stage i when j virtual

channels are occupied.
T Network latency.
T d Time required for a flit to propagate through one node.
wi The average total amount of time spent acquiring virtual

W Channel width in bits.
2, The average amount of time spent waiting to acquire a

We make the following assumptions
1) Packet destinations are uniformly randomly distributed.
2) A packet that arrives at its destination is consumed

3) All packets are of length L.
4) At each source packets are created by a Poisson process

5) Each virtual channel is associated with a single flit

6) Packet blocking probabilities are independent.
The analysis considers a single path through the network.

Our analysis starts at the destination and works back to
the source. Network stages are numbered starting from the
destination. The final stage is stage 0. The stage connected to
the source is stage n - 1.

The destination, stage 0, is always able to accept a packet,
so the service time seen by a packet in the final stage is
t o = L/W which we will normalize to be unit time, t o = 1.0.

The service time at internal stages is increased because a
channel may be idled when all of the virtual channels at a
subsequent stage of the network are occupied. The average

channels between stage i and the destination inclusive.

virtual channel at stage i.

without waiting.

with rate A.

buffer.

200 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

amount of time that a packet waits to acquire a virtual channel
at stage i of the network, xi, is given by the product of the
probability of all virtual channels in stage i being occupied,
p ~ , and the average waiting time, t j , 1 / 2 .

L

The total time spent waiting to acquire virtual channels be-
tween stage i and the network output is the summation of the
acquisition delays at each stage.

z

w; = c x j . (3)
j = O

If j virtual channels at stage i are occupied, the total time
required to service all j channels with no idling is j t o . Each
channel is individually blocked for a total time of wi-1, so the
probability of an individual channel being blocked is approx-
imately5 wi-1 / j t o . Assuming that the blocking probabilities
are independent, the probability of the channel being idled
because all virtual channels are blocked, bi , j , is the product
of the individual probabilities.

j
bi , j = (2) (4)

Assuming independence of channel blocking probabilities is an
approximation that slightly underestimates bi,j. There is some
dependence between blocking probabilities as it is possible
for two packets to be blocked waiting on the same channel.
This approximation, however, is justified because 1) it gives a
result that agrees closely with experiment and 2) a calculation
of bi,j that accounted for dependence did not give appreciably
different results.

The effective service time seen by a packet at stage i with
j virtual channels occupied, t ; , j , is thus

Equation (2) uses the probability of all 1 virtual channels
being occupied. We calculate the occupancy probabilities for
the virtual channels in a stage, z, using a Markov model as
illustrated in Fig. 10. State Sj corresponds to j virtual channels
being occupied. This state transitions to j + 1 at rate A, and to
state j-1 at rate l / t i , j . The rate out of the last stage is reduced
to account for the arrival of packets while the stage is in this
state. Solving this model for the steady state probabilities gives

(1 i f j = O

SThis is a slight overestimate as we are not considering the increase in
effective service time due to blockage. The actual expression should be
t u - ~ / (j t ~ (I + b 1 , 3)) which results in a set of equations that cannot be
solved in closed form for j > 3.

Network latency has four components as shown in (8).

The first term accounts for multiplexing delay due to virtual
channels. If in the most congested stage javg virtual channels
are occupied on average, a packet takes javgL/W time to
entirely traverse one channel. As the first stage, stage n - 1,
is always the most congested, jaVg can be calculated by

(9)

The second term, w,L/W, is the time spent waiting to acquire
virtual channels.

The third term is the queueing delay in the source which is
that of an M P / 1 queue with utilization p = A(to + xn-l) and
average service time Z = L/W(to + xn-l) [17]. For heavily
loaded networks this term is the most significant. Modeling the
source queue as M/D/l is a slight approximation since even
though message length is fixed the service time seen by the
source has nonzero variance.

The final term, Tdn, is the time one flit of a packet spends
traversing the n stages of the network in the absence of
contention.

Fig. 11 shows the latency predicted by (8) as a function of
offered traffic, A, for a 2-ary 8-fly network. The figure shows
that the addition of virtual channels greatly increases the traffic
that can be offered to the network before saturation occurs.
The figure also indicates that adding lanes has little effect on
latency below saturation throughput. The curves lie on top of
each other until traffic approaches saturation throughput.

Using virtual channel flow control increases saturation
throughput because it decreases both waiting time and physical
channel idle time. Waiting time, wn-l (3), is reduced because
a packet waits only when all 1 virtual channels are occupied.
In a conventional network, 1 = 1, the blocking probability pz,l
is much larger and wrL-l is increased proportionally. Waiting
time is particularly important since it determines the service
time seen by the source queue and hence the source queueing
delay.

Physical channel idle time is reduced because a physical
channel idles only when all of its virtual channels are blocked.
Because virtual channels make this blocking probability, b;,J
(4), small, the effective service time increases more slowly
with traffic than in a conventional network.

The throughput Amax of a multistage network using virtual
channels can be determined by solving the equation

Fig. 12 shows the throughput of seteral multistage networks
as a function of the number of virtual channels, 1. The figure
shows that adding a small number of virtual channels causes a
large increase in throughput with diminishing returns as more
channels are added. The data suggests that four to eight lanes
per physical channel is adequate for most networks. For all of

20 1 DALLY: VIRTUAL-CHANNEL FLOW CONTROL

Fig. 10. Virtual channel occupancy probabilities are calculated using a Markov model. State S, corresponds to j virtual channels being occupied.

0 I I I I I
0.0 0.2 0.4 0.6 0.8 1 .o

Traffic(fraction of capacity)

Fig. 11 . Latency as a function of offered traffic as predicted by analysis for
a 2-ary 8-fly network with 1, 2, 4, 8, and 16 virtual channels per physical
channel.

the networks shown, eight lanes per physical channel results
in at least 80% of the throughput as a network with 20 lanes.

Adding virtual channels to a network also reduces the
dependence of throughput on the number of stages in the
network. For conventional networks, 1 = 1 on the left side
of the figure, there is a large difference in throughput with
network size. Conventional networks with four and fourteen
stages have throughputs of 0.39 and 0.14, respectively. With
18 virtual channels, the difference is narrowed to 6%, 0.83
versus 0.88. The effect of the number of stages on throughput
is reduced by virtual channels because the reduction in waiting
time and channel idle time reduce the rate at which service
time increases with stage number.

V. EXPERIMENTAL RESULTS
To measure the effect of virtual channel flow control on

network performance (throughput and latency), we have sim-
ulated a number of k-ary n-cube and k-ary n-fly networks.
These simulations serve to check our analytical model, pre-
sented in Section IV, and to measure the performance of
networks not covered by our model.

Our analytical model is limited to networks where lanes
have unit depth independent of the number of virtual channels.
We have simulated networks where the total buffer storage
per physical channel is held constant constant while varying
the number of lanes per channel. If lanes are added, the
depth of each lane is proportionally reduced. These simulations
compare the effect of increasing the number of virtual channels
with increasing the depth of each virtual channel.

a

6 0.8.-
c 0

2 - t
2 0.6.-
c m
0

0.4.-

0.2 .-

...... n = 4

-.- n = 8
n = 1 0 - n = 1 2

...... n - 1 4

-.

- - - n = 6 - - - n = 6
-.- n = 8

n = 1 0 - n = 1 2
...... n - 1 4

n = 4 1
I I I I I
4 a 12 16 20

0.0

Number of Vittual Channels

Fig. 12. Throughput of 2-ary n-cube networks with virtual channels as a
function of the number of virtual channels.

We have also simulated k-ary n-cube networks with-virtual
channels, a topology not covered by our analytic model, and
networks employing deadline and priority scheduling.

The simulator is a 3000 line C program that simulates in-
terconnection networks at the flit-level. A flit transfer between
two nodes is assumed to take place in one time unit. The
network is simulated synchronously moving all flits that have
been granted channels in one time step and then advancing
time to the next step. The simulator is programmable as to
topology, routing algorithm, and traffic pattern.

The simulations were run with packet length fixed at 20
flits and uniformly distributed random packet destinations. Ex-
cept where otherwise noted, channel bandwidth was allocated
randomly to lanes.

Each simulation was run for a total of 30000 flit times.
Statistics gathering was inhibited for the first 10000 flit times
to avoid distortions due to the startup transient. For a typical
test, (A = 0.4, n = 8), measurements were taken for 100000
packets. The standard deviation of both latency and throughput
measurements for an individual packet is M 30% of the
mean value. Assuming that these values are independent and
normally distributed, the standard deviation of the ensemble
average measurements reported below is M 0.1% of the mean
value.

A. Throughput
Throughput is measured by applying to each network input

a saturation source that injects a new packet into the network
whenever a lane is available on its input channel. Throughput
is given as a fraction of network capacity. A uniformly loaded
network is operating at capacity if the most heavily loaded
channel is used 100% of the time.

202 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

0 2 -

E 0.41 1
-

i
l q I

o'2 t I
o . o J ! ! ! ! ! ! ! ! ! 1 ! ! ! ! ! 1

0 1 2 3 4 5 6 7 8 9 1011 1 2 1 3 1 4 1 5 1 6
Lanes

Fig. 13. Comparison of predicted (solid line) and measured (points) through-
put for radix-2 eight stage networks.

Fig. 13 compares the throughput predicted by the analytic
model of Section IV with measurements from the simulator.
The figure shows the throughput of 2-ary 8-fly networks with
a single flit buffer per virtual channel as the number of virtual
channels (lanes) per physical channel are varied. There is close
agreement between the predicted and measured data.

To compare the effect of adding lanes to the network with
adding depth to each lane, networks with equal storage were
simulated. Each network simulated has 16 flits of storage per
physical channel. The number of lanes per channel was varied
from 1 (conventional network) to 16 in powers of two. The
results of these simulations are shown in Fig. 14. The figure
shows the saturation throughput versus the number of lanes per
channel for radix-2 multistage networks (2-ary n-flys). Data
are shown for networks with dimensions of 4, 6, 8, and 10.
The data show that given a fixed amount of storage, adding
lanes gives a far greater throughput improvement than does
increasing the total amount of buffering with a single lane
(see [21]).

B. Latency

Latency is measured by applying a constant rate source with
exponentially distributed interarrival times to each input and
measuring the time from packet creation until the last flit of
the packet is accepted at the destination. Source queueing time
is included in the latency measurement.

Fig. 15 compares the latency predicted by the model of
Section IV with measurements from the simulator. The figure
shows the latency of a 2-ary 8-fly network with four virtual
channels per physical channel. Each virtual channel has a
single flit buffer. As with the throughput comparison shown
in Fig. 13, the latency measurements are in close agreement
with the value predicted by analysis.

Fig. 16 shows latency results for 2-ary 8-fly networks with
equal storage. Each network simulated has 16 flits of storage
per physical channel. The number of lanes per node was varied
from 1 to 16 in powers of two. As with the throughput results,
Fig. 16 shows that adding lanes to a network is a more effective
use of storage than adding depth to a lane. However, with

................. . . 4

...... n=4
n=6
n=8

_.
- - _
- n=10 _.

0.01 ! ! 1 ! ! ! ! ! ! I ! ! ! ! ! 1
0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

Lanes

Fig. 14. Throughput verpus number of lanes for radix-2 multistage networks
holding the amount of storage per physical channel constant at 16 flits.

0.0 0.2 0.4 0.6 0.8 1 .o
Traffic(fracti0n of capacity)

Fig. 15. Comparison of predicted (solid line) and measured (points) latency
for a 2-ary %fly network with four lanes.

storage held constant, there is a small latency penalty (as much
as 7%) at mid to high traffic rates associated with the shorter
buffers that result when more virtual channels are used. For
example, the curve for eight lanes drops below the curve for
16 lanes until it nears its saturation throughput.

Adding lanes is more effective in increasing throughput than
adding depth for two reasons. First, adding lanes reduces the
channel blocking probability exponentially, (4), while adding
depth has a very small effect on blocking probability. Second,
adding a single flit virtual channel buffer allows one packet to
pass another. This has an effect on waiting time comparable
to increasing the depth of a buffer by the packet length.

C. Scheduling Algorithm

Fig. 17 shows the effect of the channel scheduling algorithm
on latency. The figure shows two latency histograms, one for
a random assignment of channel bandwidth to packets, and
the other for oldest-packet-first channel bandwidth allocation
(deadline scheduling). Both curves are for 2-ary 6-fly networks
with random traffic operating at 50% capacity. The histograms
have been truncated at 140 cycles latency.

DALLY: VIRTUAL-CHANNEL FLOW CONTROL 203

0
0.0 0.2 0.4 0.6 0.8 1 .o

I I I I I
Traffic(fraction of capacity)

-.
Latency (Cycles)

Fig. 16. Simulated latency versus offered traffic for 2-ary 8-fly networks Fig. 18. Latency histogram for a 2-arY 6-flY network with random traffic at
50% capacity where 10% of the traffic is marked high-priority and scheduled
by age. 80% of the high-priority traffic is delivered with the minimum latency.

with 16 flits of storage per physical channel.

1500

i_ 600

,$ 900

!
!
I1

I1

! !.!
I i
I !
! j
i i

Random Scheduling - Deadline Scheduling

-.

20 40 60 80 100 120 140
Latency (Cycles)

Latency Histogram

Fig. 17. Latency histogram for a 2-ary 6-fly network with random traffic at
50% capacity using deadline (oldest first) and random scheduling of physical
channels. The histogram for deadline scheduling has a very sharp peak at 24
and a broad peak at 57. The curve for random scheduling shows a peak at 44.

The use of deadline scheduling reduced the average packet
latency from 75.1 cycles to 62.2 cycles and reduced the
standard deviation of packet latency by a factor of two. The
deadline curve shows a sharp peak at 24 cycles latency, the
minimum latency required to traverse the network, and a broad
peak at 57 cycles. The random curve shows peaks at 44 and 84
cycles. The data suggest that deadline scheduling can be useful
in reducing average message latency and in making message
latency more predictable.

Fig. 18 shows how virtual channel scheduling can be used
to provide different classes of service. The figures shows the
result of an experiment where a network was loaded with 90%
standard traffic and 10% priority traffic. The standard traffic
was scheduled randomly, the priority traffic took precedence
over standard traffic and was scheduled by age-oldest packet
first. The figure shows that 80% of the priority traffic is
delivered with the minimum latency (24 cycles). This type
of scheduling would be useful, for example, in a switch that
handles both voice and data where the voice traffic has a tight
deadline and should be dropped if it cannot make its deadline.

...... 1 Lane
2 Lanes
4 Lanes

.-..- 8 Lanes - 16 Lanes

c I .

6 250

L

-1

200

o J I I I I I I I I I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Traffic (fraction of capacity)

Fig. 19. Latency versus offered traffic for 16-ary 2-cube mesh networks
under random traffic. As with the butterfly networks, adding lanes to a network
has little effect on latency below the saturation throughput for a single lane.
Adding a lane dramatically increases throughput at first with diminishing
returns for 8 and 16 lanes.

D. k-ary n-cube Simulations

Fig. 19 shows average packet latency as a function of
offered traffic for radix-16, dimension-2 mesh networks (16-
ary 2-cubes). Each network simulated has 32 flits of storage
per physical channel. The number of lanes per channel was
varied from 1 to 16 in powers of two. The simulated network
uses deterministic dimension-order routing.

The figure shows that adding lanes has little effect on
latency below the saturation throughput for a single lane
while it greatly increases the saturation throughput of the
network. With a single lane, the network saturates at 50%
capacity while with 16-lanes throughputs of 90% capacity are
achievable. Most of the throughput gain is realized with four
lanes. Adding additional lanes yields diminishing returns and
actually increases latency by as much as 20%. As with the IC-
ary n-fly, latency in the mid to high traffic range is increased
slightly by adding lanes. We suspect that this increase occurs
because adding lanes while holding storage constant increases
buffer utilization.

204 IEEE TRANSACTI(

Direct, k-ary n-cube, networks using dimension-order rout-
ing require fewer virtual channels than multistage networks be-
cause most contention in these -networks occurs when packets
enter a new dimension. For purposes of analyzing contention,
each dimension of a direct network is analogous to a stage of
a multistage network. With few dimensions, there are fewer
opportunities for blocking and fewer lanes are required to pass
blocked packets.

VI. CONCLUSION

The performance of interconnection networks can be im-
proved by organizing the buffers associated with each network
channel into several lanes or virtual channels rather than
a single FIFO queue. Associating several lanes with each
physical channel decouples the allocation of virtual channels to
packets from the allocation of physical channel bandwidth to
flits. This decoupling allows active messages to pass blocked
messages dramatically improving network throughput.

The use of virtual channel flow control also allows flexibility
in allocating physical channel bandwidth. By decoupling re-
source allocation, a channel’s bandwidth need not be allocated
to the “next packet in line.” Instead, this bandwidth may be
allocated on the basis of packet type, age, or deadline. The
use of deadline scheduling may be particularly important in
networks where one class of packets must be delivered in a
bounded amount of time.

This paper has developed a model for the performance
of k-ary n-fly networks with virtual channels. This model
can be used to calculate the latency and throughput of these
networks. The model shows that adding virtual channels to a
network greatly improves network throughput with little effect
on latency at low traffic rates. For a 2-ary 10-fly network (1024
input butterfly), the throughput with 16 lanes per channel is
4 times the throughput with a single lane. The use uf virtual
channels also reduces the dependence of throughput on the
number of stages in a network. Without virtual channels,
throughput asymptotically varies as the inverse of the number
of stages [181. With virtual channels, throughput remains
relatively constant as stages are added.

Several indirect (k-ary n-fly) and direct (k-ary n-cube)
networks have been simulated to validate our model and
to study networks not covered by the model. Simulation
results agree closely with the values predicted by our model.
Simulations also show that with the total amount of buffer
storage per node held constant, adding lanes to a network is a
significantly more effective use of storage than adding depth
to a channel FIFO. The use of deadline scheduling reduces
average latency by a small amount and makes latency much
more predictable.

The critical resources in an interconnection network are
wire bandwidth and buffer memory. Virtual channel flow
control is a method for allocating these critical resources in
a more efficient manner. With network switches constructed
using VLSI circuits, the cost of adding the small amount of
control state and logic required to implement multiple lanes
per channel is well worth the cost.

INS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

ACKNOWLEDGMENT

I thank S. Ward, A. Agarwal, T. Knight, and C. Leiserson
for many discussions about interconnection networks and their
analysis. I thank all the members of the MIT Concurrent VLSI
Architecture group and especially S. Wills, D. Chaiken, W.
Horwat, and H. Aoki for their help with and contributions to
this paper. L. Sardegna deserves thanks for preparing several
of the illustrations in this paper. I thank the editor, B. Buckles,
for arranging a speedy review of this manuscript and the
referees (especially referee 4) for many helpful comments and
suggestions.

REFERENCES

[11 R. Arlauskas, “iPSC/2 system: A second generation hypercube,” in Proc.
Third Conj Hypercube Concurrent Comput. and Appl., ACM, 1988, pp.
33-36.

[2] W. C. Athas and C. L. Seitz, ”Multicomputers: Message-passing concur-
rent computers,” IEEE Comput. Mag., vol. 21, pp. 9-24, Aug. 1988.

[3] D. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs, NJ:
Prentice-Hall, 1987.

[4] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, M. Lam,
B. Moore, C. Peterson, J. Pieper, L. Rankin, P. S. Tseng, J. Sutton, J.
Urbanski, and J. Webb, ‘?WARP: An integrated solution to high-speed
parallel computing,” in Proc. Supercomput. Conj, IEEE, Nov. 1988,
pp. 33G338.

[5] S. Borkar et al., “Supporting systolic and memory communication in
iWarp,” in Proc. 17th Int. Symp. Comput. Architecture, May 1990, pp.
7 G 8 1.

[6] W. J . Dally, “Network and processor architecture for message-driven
computers,” in VLSI and Parallel Computation, Suaya and Birtwhistle,
Eds.

(71 __, ”Performance analysis of X-ary n-cube interconnection net-
works,” IEEE Trans. Comput., vol. 39, June 1990. Also appears as a
chapter in Artificial Intelligence at MIT, Expanding Frontiers, edited by
P. H. Winston, with Sarah A. Shellard, vol. 1. Cambridge, MA: MIT
Press, 1990, pp. 548-581.

[8] -, “Virtual-channel flow control,” in Proc. 17th Annu. Int. Symp.
Comput. Architecture, Los Alamitos, CA, IEEE Computer Society Press,
May 1990, pp. 6&68.

[9] W. J. Dally et al., “The J-Machine: A fine-grain concurrent computer,”
in Proc. IFIP ConEress, G. X . Ritter, Ed. New York: North-Holland,

Los Altos, CA: Morgan Kaufmann, 1990.

Aug. 1989, pp. li47-1153.
I101 W. J. Dally and C. L. Seitz, “The torus routing chip,” Distributed . * - -

Comput., vol. 1, pp. 187-196, 1986.
[111 __, “Deadlock free message routing in multiprocessor interconnec-

tion networks,” IEEE Trans. Comput., vol. C-36, pp. 547-553, May
1987, VLSI memo 87417.

(121 W. J. Dally and P. Song, “Design of a self-timed VLSI multicomputer
communication controller,” in Proc. Int. Con& Comput. Design, IEEE
Computer Society Press, Oct. 1987, pp. 23G234.

[13] BBN Advanced Computers Inc., “Butterfly parallel processor overview,”
BBN Rep. 6148, Mar. 1986.

[14] M. Karol, M.G. Hluchyj, and S.P. Morgan, “Input versus output
queueing on a space-division packet switch,” IEEE Trans. Commun.,
vol. COM-35, Dec. 1987.

[15] P. Kermani and L. Kleinrock, “Virtual cut through: A new computer
communication switching technique,” Comput. Networks, vol. 3, pp.

[16] -, “A tradeoff study of switching systems in computer commu-
nication networks.” IEEE Trans. Comuut., vol. C-29, DP. 1052-1060,

267-286, 1979.

..
Dec. 1980.

1975.
[I71 L. Heinrock, Queueing Systems, Vol. I : Theory. New York: Wiley,

[18] C.P. Kruskal and M. Snir, “The performance of multistage intercon-
nection networks for multiprocessors,” IEEE Trans. Comput., vol. C-32,
pp. 1091-1098, Dec. 1983.

[19] InMOS Ltd., IMS T424 Reference Manual, Order Number 72 TRN 006
00, Nov. 1984.

[20] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J . ACM, vol. 20, no. 1, pp.
46-61, Jan. 1973.

[21] J. N. Mailhot, “Routing and flow control strategies in multiprocessor
networks,” S.B. thesis, May 1988.

DALLY: VIRTUAL-CHANNEL FLOW CONTROL 205

122) J. H. Patel, “Performance of processor-memory interconnections for William J. Dally (S’78-M’86) received the B.S.
multiprocessors,” IEEE Trans. Comput., vol C-30, pp. 771-780, 1981. degree in electrical engineering from Virginia

[23] C.L Seitz et al., “The architecture and programming of the Ametek Polytechnic Institute, the M.S. degree in electrical
Series 2010 multicomputer,” in Proc. Third Con& Hypercube Concurrent engineering from Stanford University, and the Ph.D
Comput. andAppl., ACM, 1988, pp, 33-36. degree in computer science from Caltech.

[24] C L. Seitz, “The Cosmic Cube,” Commun. ACM, vol. 28, pp. 22-33, He has worked at Bell Telephone Labora-
Jan. 1985. tories where he contributed to the design of

[25] Y. Tamir and G. L. Frazier, “High-performance multi-queue buffers for the BELLMAC-32 microprocessor. Later as a
V U 1 communication switches,” In Proc. 15th Annu. ACM/IEEE Int. consultant to Bell Laboratories he helped design the
Symp. Comput. Architecture, June 1988, pp. 343-354. MARS hardware accelerator. He was a Research

Englewood Cliffs, Assistant and then a Research Fellow at Caltech
NJ. Prentice-Hall 1988. where he designed he MOSSIM Simulation Engine and the Torus Routing

Chip. He is currently an Associate Professor of Computer Science at the
Massachusetts Institute of Technology, Cambridge, where he directs a research
group that is building the J-Machine, a fine-grain concurrent computer.
His research interests include concurrent computing, computer architecture,
computer aided design, and VLSI design.

1261 A S. Tanenbaum, Computer Networks, second ed.

