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Virtual-Channel Flow Control 
William J. Dally, Member, IEEE 

Abstract- Network throughput can be increased by dividing 
the buffer storage associated with each network channel into 
several virtual channels 1111. Each physical channel is associ- 
ated with several small queues, virtual channels, rather than 
a single deep queue. The virtual channels associated with one 
physical channel are allocated independently but compete with 
each other for physical bandwidth. Virtual channels decouple 
buffer resources from transmission resources. This decoupling 
allows active messages to pass blocked messages using network 
bandwidth that would otherwise be left idle. This paper studies 
the performance of networks using virtual channels using both 
analysis and simulation. These studies show that virtual channels 
increase network throughput, by a factor of 4 for 10-stage 
networks, and reduce the dependence of throughput on the depth 
of the network 

Index Terms- Communication networks, concurrent comput- 
ing, flow control, interconnection networks, multicomputers, mul- 
tiprocessors, packet routing, parallel processing, virtual channels, 
wormhole routing. 

I. INTRODUCTION 

Interconnection Networks 

HE processing nodes of a concurrent computer exchange T data and synchronize with one another by passing mes- 
sages over an interconnection network [l], [2], [13], [4], [9], 
(241, [23]. The interconnection network is often the critical 
component of a large parallel computer because performance is 
very sensitive to network latency and throughput and because 
the network accounts for a large fraction of the cost and power 
dissipation of the machine. 

An interconnection network is characterized by its topology, 
routing, and flow control [6]. The topology of a network 
is the arrangement of nodes and channels into a graph. 
Routing specifies how a packet chooses a path in this graph. 
Flow control deals with the allocation of channel and buffer 
resources to a packet as it traverses this path. This paper deals 
only with flow control. It describes a method for allocating 
resources to packets using virtual channels [ l l ] .  This method 
can be applied to any topology and routing strategy. 

The Problem 

The throughput of interconnection networks is limited to a 
fraction (typically 20%-50%) of the network's capacity [7] 
because of coupled resource allocation. 

Interconnection networks are composed of two types of 
resources: buffers and channels. Typically, a single buffer is 
associated with each channel. Once a packet A is allocated a 
buffer b,, no other packet B can use the associated channel c, 
until A releases b,. In networks that use flit1-level flow control 
[ l l ] ,  [1], [23], [9], packet A may be blocked due to contention 
elsewhere in the network while still holding b,. In this case, 
channel c, is idled even though there may be other packets 
in the network, e.g., packet B, that can make productive use 
of the channel. 

This situation is illustrated in Fig. 1. In the figure, a fragment 
of a network is depicted with a rounded box denoting a node, a 
solid arrow a channel between two nodes, and a box denoting 
a flit buffer. Shaded arrows denote routes that are in progress. 
Packet A is blocked holding buffers 3E (east side of node 3) 
and 4s. Packet B is unable to make progress even though all 
physical channels it requires, (1E to 2W) through (4E to SW), 
are idle because packet A holds buffer 3E which is coupled 
to channel (3E to 4W). 

This problem of idling channels due to resource coupling is 
unique to interconnection networks that perform flow control 
at the flit-level. Most modern multicomputer networks that use 
circuit switching or wormhole routing [7] fall into this class. 
The problem does not occur in traditional packet-switched 
networks that perform flow control at the packet level since 
such networks never block a partially transmitted packet. 

Virtual Channel Flow Control 
A virtual channel consists of a buffer that can hold one or 

more flits of a packet and associated state information [ l l ] .  
Several virtual channels may share the bandwidth of a single 
physical channel.2 

Virtual channels decouple allocation of buffers from al- 
location of channels by providing multiple buffers for each 
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channel in the network: If a blocked packet A holds a buffer 
bio associated with channel cz, another buffer bil is available 
allowing other packets to pass A. Fig. 2 illustrates the addition 
of virtual channels to the network of Fig. 1. Packet A remains 
blocked holding buffers 3E.1 and 4S.1. In Fig. 2, however, 

' A  flit is a flow-control digit. See Section 11-C for a more complete 
description. 

2Virtual channels should not be confused with virtual circuits (named 
connections in a connection-oriented network [26], [3]) or with virtual cut- 
through (a packet-level flow-control technique [15]). 
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Fig. 1. Packet B is blocked behind packet A while all physical channels remain idle. 
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Fig. 2. Virtual channels provide additional buffers allowing packet B to pass blocked packet A. 

Packet B is able to make progress because buffer 3E.2 is 
available allowing it access to channel (3E to 4W). 

Adding virtual channels to an interconnection network is 
analogous to adding lanes to a street network. A network 
without virtual channels is composed of one-lane streets. In 
such a network, a single blocked packet blocks all following 
packets. Adding virtual channels to the network adds lanes to 
the streets allowing blocked packets to be passed. 

In addition to increasing throughput, virtual channels pro- 
vide an additional degree of freedom in allocating resources 
to packets in the network. This flexibility permits the use of 
scheduling strategies, such as routing the oldest packet first, 
that reduce the variance of network latency. 

The most costly resource in an interconnection network is 
physical channel (wire) bandwidth. The second most costly 
resource is buffer memory. Adding virtual channel flow control 
to a network makes more effective use of both of these 
resources by decoupling their allocation. The only expense 
is a small amount of additional control logic. 

Background 

The use of virtual channels for flow control builds on 
previous work in using virtual channels for deadlock avoidance 
and in using output queueing or split input queues for partial 
resource decoupling. Virtual channels were introduced in [ 111 
for purposes of deadlock avoidance. A cyclic network can 
be made deadlock-free by restricting routing so there are no 
cycles in the channel dependency graph and then adding virtual 
channels to reconnect the network. Virtual channels were first 
implemented for this purpose in the torus routing chip [lo]. 

The network design frame [12] and the J-Machine network 
[9] use virtual channels to provide two logical networks on 
a single physical network. The iWARP processing element 
[4], [5] uses virtual channels (called logical channels in [4]) 
primarily to guarantee bandwidth to virtual circuits. iWARP 
virtual channels are sufficiently general that they can be used 
to decouple resource allocation as described in this paper. 

A single stage of resource decoupling is provided by output 
queueing [14]. By performing the queueing in the output of 
a switch rather than the input, arriving packets are able to 
pass blocked messages arriving on the same input. Tamir [25] 
has shown how to achieve the same single-stage resource 
decoupling by partitioning the switch’s input queue. This 
single stage resource decoupling is effective only if an entire 
packet fits in a single node. As shown in Fig. 3, When a packet 
too long to fit entirely in one input queue is blocked, it backs 
up into the output stage of the previous node preventing any 
following packet from passing it. With output queueing, there 
is still only a single output buffer associated with each physical 
channel. If a packet blocks while holding this output buffer, 
the channel is idled. 

Our network analysis builds on the work of Patel [22] and 
of Kruskal and Snir [18] in analyzing unbuffered networks. 
We also build on the work of Kermani and Kleinrock [16] in 
analyzing buffered circuit switched, packet switched, and cut 
through networks without virtual channels. The analysis here 
extends this previous work by modeling the effect of virtual 
channels and by modeling networks with fixed sized buffers 
where packets are blocked (delay model) rather than dropped 
(loss model) when contention occurs. 

Summary 
The next section introduces the notation and assumptions 

that will be used throughout this paper. Section I11 describes 
virtual channel flow control in detail. An analysis of network 
performance is given in Section IV. The results of simulating 
networks using virtual channel flow control are described in 
Section V. 

11. PRELIMINARIES 

A.  Topology 
An interconnection network consists of a set of nodes, 

N and a set of channels, C 5 N x N .  Each channel 
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Fig. 3. Output queueing or partitioned input queues provide one stage of decoupling. However, long packets (such as packet A) continue to couple resources 
and cannot be passed. 

is unidirectional and carries data from a source node to 
a destination node. A bidirectional network is one where 
( n l , n 2 )  E C + ( n 2 , n I )  E C. 

We have analyzed the performance of virtual channel flow 
control on multistage, k-ary n-fly, networks and have simu- 
lated the use of virtual channels on both multistage, networks 
and direct, k-ary n-cube, networks. 

Multistage (k-ary n-fly) networks have k" inputs connected 
to k" outputs by n-stages of k"-lk x k-switches. For example, 
a 2-ary 4-fly is shown in Fig. 4. 

A k-ary n-cube mesh network consists of k" nodes arranged 
in an n-dimensional grid. Each node is connected to its 
Cartesian neighbors in the grid. For example, a 16-ary 2-cube 
is shown in Fig. 5. 

The use of virtual channel flow control is in no way 
restricted to these two classes of networks. It is equally ap- 
plicable to other topologies including trees, sorting networks, 
and irregular structures. 

B. Routing 

A packet is assigned a route through the network according 
to a routing relation, R C x N x C, given the channel 
occupied by the head of the packet and the destination node of 
the packet, the routing relation specifies a (possibly singleton) 
set of channels on which the packet can be routed. 

C. Flow Control 

Communication between nodes is performed by sending 
messages. A message may be broken into one or more packets 
for transmission. A packet is the smallest unit of information 
that contains routing and sequencing information. A packet 
contains one or more flow control digits or flits. A flit is the 
smallest unit on which flow control is performed. Information 
is transferred over physical channels in physical transfer units 

Multistage Network 

A 2-ary 4-fly network. Fig. 4. 

Fig. 5.  A 16-ary 2-cube network. 

or phits. A phit is usually the same size or smaller than a flit. 
The flow control protocol of a network determines 1) how it requires. The technique described in this paper is applicable 

resources (buffers and channel bandwidth) are allocated and 2) to Of these flow strategies but is most appropriate 

how packet collisions Over resources are resolved. A resource for networks that use Or limited buffering to 
collision occurs when a packet P is unable to proceed because 
some resource it needs (usually a buffer) is held by another 
packet. Collisions may be resolved by 1) blocking p in place, 
2) buffering P in a node prior to where the collision occurs, 3) 
dropping P, or 4) misrouting P to a channel other than the one 

The flow control strategy allocates buffers and Channel 
bandwidth to flits. Because flits have no routing or sequencing 
information, the allocation must be done in a manner that keeps 
the flits associated with a particular packet together. This may 
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be done by associating a set of buffers and some control state 
together into a virtual channel. A virtual channel is allocated to 
a packet and the buffers of the virtual channel are allocated in 
a FIFO manner to the flits of that packet. In the remainder 
of this paper, the terms lane and virtual channel are used 
interchangeably. 

Most networks associate only a single virtual channel with 
each physical channel. This paper describes a method for 
improving the performance of networks by associating several 
virtual channels with each physical channel. This method 
makes no assumptions about how wires are allocated. 

D. Wormhole Routing 

The technique described here is particularly suitable for use 
in networks that use wormhole routing [7]. Wormhole routing 
refers to a flow-control protocol that advances each flit of a 
packet as soon as it arrives at a node (pipelining) and blocks 
packets in place when required resources are unavailable. 
Wormhole routing is attractive in that 1) it reduces the latency 
of message delivery compared to store and forward routing, 
and 2) it requires only a few flit buffers per node. Wormhole 
routing differs from virtual cut-through routing [15] in that 
with wormhole routing it is not necessary for a node to allocate 
an entire packet buffer before accepting each packet. This 
distinction reduces the amount of buffering required on each 
node making it possible to build fast, inexpensive routers. 

111. VIRTUAL CHANNEL FLOW CONTROL 

A.  Structure 

Each node of an interconnection network contains a set of 
buffers and a   witch.^ In this paper, we assume that the buffers 
are partitioned into sets associated with each input channel, an 
input-buffered node, as shown in Fig. 6. An output-buffered 
switch [14], [25] can be considered to be an input buffered 
switch with a nonblocking first stage by associating the buffers 
on the output of each stage with the inputs of the next stage. 

A conventional network organizes the flit buffers associated 
with each channel into a first-in, first-out (FIFO) queue as 
shown in Fig. 7(a). This organization restricts allocation so 
that each flit buffer can contain only flits from a single packet. 
If this packet becomes blocked, the physical channel is idled 
because no other packet is able to acquire the buffer resources 
needed to access the channel. 

A network using virtual channel flow control organizes the 
flit buffers associated with each channel into several lanes as 
shown in Fig. 7(b). The buffers in each lane can be allocated 
independently of the buffers in any other lane. This added 
allocation flexibility increases channel utilization and thus 
throughput. A blocked message, even one that extends through 
several nodes, holds only a single lane idle and can be passed 
using any of the remaining lanes. 

Each node also contains driver and receiver circuits to communicate across 
the physical wires and control logic. 

197 - .- 
Buffers 

Buffers 

Fig. 6 .  Node organization. Each network node contains a set of buffers for 
each input channel and a switch. 

Fig. 7. (a) Conventional nodes organize their buffers into FIFO queues 
restricting routing. (b) A network using virtual-channel flow control organizes 
its buffers into several independent lanes. 

B. Operation 

In a network using virtual channel flow control, flow control 
is performed at two levels. Virtual channel assignment is made 
at the packet level while physical channel bandwidth is allo- 
cated at the flit level. When a packet arrives at a node, it is as- 
signed (according to the routing algorithm) to an output virtual 
channel. This assignment remains fixed for the duration of the 
packet. The virtual channels associated with a physical channel 
arbitrate for physical channel bandwidth on a flit-by-flit basis. 

Fig. 8 illustrates the hardware required to support virtual 
channel flow control on one physical channel. The transmitting 
node (node A) contains a status register for each virtual 
channel that contains the state of the lane buffer on the 
receiving node (node B). This state information includes: a 
bit to indicate if the lane is free, a count of the number of free 
flit buffers in the lane, and optionally the priority of the packet 
occupying the lane. node B contains a lane buffer and a status 
register for each virtual channel. The status maintained on 
node B includes input and output pointers for each lane buffer 
and the state of the channel: free, waiting (to be assigned an 
output), and active. 

Lane assignment for physical channel P is performed by 
node A. When a packet arrives in an input buffer on node A 
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(not shown), it is assigned a particular output channel based 
on its destination, the status of the output channels, and the 
routing algorithm in use. The flow-control logic then assigns 
this packet to any free lane of the selected channel. If all 
lanes are in use, the packet is blocked in the waiting state 
until a lane is available. Maintaining lane state information 
on the transmitting end of the channel allows lane assignment 
to be performed on a single node. No additional internode 
communication is required to maintain this information as it 
is already required for flit-level flow control. 

Once a lane is assigned to a packet, flit-level flow control 
is used to advance the packet across the switch and physical 
channel. To advance from an input buffer on the node A to 
an input buffer on node B, a flit must gain access to 1) a 
path through the switch to reach the output of node A, and 2) 
the physical channel to reach the input of node B. Typically 
either the switch is nonblocking, and thus always available 
(see Section 111-D), or a few optional flit buffers are provided 
at the output of node A so that switch and channel resources 
do not have to be allocated simultaneously. 

When the last flit of a message (the tail flit) leaves a node 
the lane assigned to that packet is deallocated and may be 
reassigned to another packet. 

The status register storage required to implement virtual 
channel flow control for one physical channel, S,, is shown 
below in terms of the number of lanes, I, the total number of 
flit buffers in the receiver, b, and the number of bits used to 
encode priority, pri. Setting 1 = 1 and pri = 0 gives the status 
register storage required by a conventional channel, S,,,,. The 
first term of the expression corresponds to the storage on node 
A while the second term describes the storage on node B. 
For typical values of b = 16, 1 = 4, and pri= 0, S,, is 36 
bits compared with 17 bits for S,,,,. This overhead is small 
compared to the storage required for the lane buffers, 512 bits 
if the flit size is 32 bits. 

C. Allocation Policies 

Flit-level flow control across the physical channel involves 
allocating channel bandwidth among lanes that 1) have a flit 
ready to transmit and 2) have space for this flit at the receiving 
end. Any arbitration algorithm can be used to allocate this 
resource including random, round-robin, or priority. For each 
physical channel, the arbitration algorithm is implemented as 
combinational logic that operates on the contents of the status 
registers and picks the highest priority lane that has space 
available at the receiving end. For random and round-robin 
arbitration schemes, priority information is generated by logic 
based on the lane’s position and the previous state. For priority 
based schemes, priority information is stored in the status 
register for each lane. 

Deadline scheduling [20] can be implemented by allo- 
cating channel bandwidth based on a packet’s deadline or 
age-earliest deadline or oldest age first. Scheduling packets 
by age reduces the variance of message latency. Deadline 

scheduling provides several classes of delivery service and 
reduces the variance within each class. 

D. Implementation Issues 

Virtual channel flow control can be integrated into existing 
switch designs by replacing FIFO buffers with multilane 
buffers. When this replacement is made, however, the switch 
must be modified to deal with a larger number of inputs and 
outputs, and the flow control protocol between nodes must be 
modified to identify lanes. 

Increasing the number of virtual channels multiplexed on 
each physical channel increases the number of inputs and 
outputs that must be switched at each node. If the switch 
handles each of these inputs and outputs separately as shown 
in Fig. 9(a), the switch complexity will increase significantly. 
Increasing the switch complexity is not required, however. The 
average data rate out of the set of lanes associated with a given 
physical channel is limited to the bandwidth of the channel. 
Thus it is sufficient to provide a single switch input for each 
physical input and output channel as shown in Fig. 9(b). With 
this organization, a small (one or two flit) output buffer is 
desirable to decouple switch allocation from physical channel 
allocation. Individual lanes are multiplexed onto the single 
path through the switch in the same manner that they are 
multiplexed over the single physical channel between the 
nodes. 

An intermediate organization, shown in Fig. 9(c), is to 
provide a switch with separate inputs and multiplexed outputs. 
This configuration has the advantage of simple arbitration. An 
input virtual channel competes only for switch output ports. 
It need not simultaneously arbitrate for both input and output 
ports as is required for a fully multiplexed switch. 

Any network that uses blocking or buffering flow control 
must, for each channel, send information in the reverse direc- 
tion to indicate the availability of buffering on the receiving 
node. These acknowledgment signals can be transmitted on 
separate wires [12] or, in a bidirectional network, they can be 
transmitted out-of-band on a channel in the opposite direction 

In a network using multilane buffers, two effects increase 
the acknowledgment traffic. First, a few bits must be added 
to each acknowledgment signal to identify the lane being ac- 
knowledged. Second, because a lane buffer is typically smaller 
than a channel FIFO, the use of block acknowledgments to 
amortize the cost of the signal over several flits is re~tricted.~ 

Even with these effects, acknowledgment signal bandwidth 
is still a small fraction of forward bandwidth. In a network 
with 32-bit flits, 15 lanes per channel, and no block acknowl- 
edgment, 4 bits must be sent along the reverse channel for each 
flit transmitted along the forward channel, a 12.5% overhead. 
An additional 12.5% overhead is required to identify the lane 
associated with each flit sent in the forward direction. Such 
a scheme could be realized by a physical channel consisting 
of a 9-bit forward path (8-bit phits) and a I-bit reverse path. 
Every four channel cycles a 32-bit flit is transmitted over the 

~ 9 1 .  

4A block acknowledgment signals the availability of a block (several flits) 
of storage in a single action rather than signaling each flit separately 
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Fig. 8. Logic associated with one physical channel P to support virtual channel flow control. The transmitting node (node A) includes status registers for 
each virtual channel and optional flit buffers. The receiving node (node B) contains buffers and status registers. 
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Fig. 9. (a) Adding virtual channels increases switch complexity if a complete 
switch is used. (b) Using a multiplexed switch leaves switch complexity 
unchanged. (c) Multiplexing only switch outputs give intermediate complexity 
and results in simpler arbitration than (b). 

forward path along with its 4-bit lane identifier and a 4-bit 
acknowledgment code is transmitted over the reverse path. 

1V. ANALYSIS 

This section develops an analytical performance model for 

For convenience, the following is a summary of the notation 

b i , j  The probability that all occupied virtual channels are 

javg The expected number of virtual channels sharing a 

1 Number of virtual channels per physical channel. 
L Message length in bits. 
X The offered traffic rate. 
Xmax Network throughput, the maximum rate for which a 

n Number of stages in the network. 
p i , j  The probability that j virtual channels are occupied in 

k-ary n-fly networks that use virtual channel flow control. 

used in this section. 

blocked in stage i when j virtual channels are occupied. 

physical channel-averaged over packets. 

steady state solution exists. 

stage i. 

qi,3 An intermediate variable used in the calculation of p i , j .  

to The service time at the destination. 
ti,j The effective service time out of stage i when j virtual 

channels are occupied. 
T Network latency. 
T d  Time required for a flit to propagate through one node. 
wi The average total amount of time spent acquiring virtual 

W Channel width in bits. 
2, The average amount of time spent waiting to acquire a 

We make the following assumptions 
1) Packet destinations are uniformly randomly distributed. 
2) A packet that arrives at its destination is consumed 

3) All packets are of length L. 
4) At each source packets are created by a Poisson process 

5 )  Each virtual channel is associated with a single flit 

6 )  Packet blocking probabilities are independent. 
The analysis considers a single path through the network. 

Our analysis starts at the destination and works back to 
the source. Network stages are numbered starting from the 
destination. The final stage is stage 0. The stage connected to 
the source is stage n - 1. 

The destination, stage 0, is always able to accept a packet, 
so the service time seen by a packet in the final stage is 
t o  = L/W which we will normalize to be unit time, t o  = 1.0. 

The service time at internal stages is increased because a 
channel may be idled when all of the virtual channels at a 
subsequent stage of the network are occupied. The average 

channels between stage i and the destination inclusive. 

virtual channel at stage i. 

without waiting. 

with rate A. 

buffer. 
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amount of time that a packet waits to acquire a virtual channel 
at stage i of the network, xi, is given by the product of the 
probability of all virtual channels in stage i being occupied, 
p ~ ,  and the average waiting time, t j , 1 / 2 .  

L 

The total time spent waiting to acquire virtual channels be- 
tween stage i and the network output is the summation of the 
acquisition delays at each stage. 

z 

w; = c x j .  (3) 
j = O  

If j virtual channels at stage i are occupied, the total time 
required to service all j channels with no idling is j t o .  Each 
channel is individually blocked for a total time of wi-1, so the 
probability of an individual channel being blocked is approx- 
imately5 wi-1 / j t o .  Assuming that the blocking probabilities 
are independent, the probability of the channel being idled 
because all virtual channels are blocked, bi , j ,  is the product 
of the individual probabilities. 

j 
bi , j  = (2) (4) 

Assuming independence of channel blocking probabilities is an 
approximation that slightly underestimates bi,j. There is some 
dependence between blocking probabilities as it is possible 
for two packets to be blocked waiting on the same channel. 
This approximation, however, is justified because 1) it gives a 
result that agrees closely with experiment and 2) a calculation 
of bi,j that accounted for dependence did not give appreciably 
different results. 

The effective service time seen by a packet at stage i with 
j virtual channels occupied, t ; , j ,  is thus 

Equation (2) uses the probability of all 1 virtual channels 
being occupied. We calculate the occupancy probabilities for 
the virtual channels in a stage, z, using a Markov model as 
illustrated in Fig. 10. State Sj corresponds to j virtual channels 
being occupied. This state transitions to j + 1 at rate A, and to 
state j-1 at rate l / t i , j .  The rate out of the last stage is reduced 
to account for the arrival of packets while the stage is in this 
state. Solving this model for the steady state probabilities gives 

( 1  i f j = O  

SThis is a slight overestimate as we are not considering the increase in 
effective service time due to blockage. The actual expression should be 
t u - ~ / ( j t ~ ( I  + b 1 , 3 ) )  which results in a set of equations that cannot be 
solved in closed form for j > 3. 

Network latency has four components as shown in (8). 

The first term accounts for multiplexing delay due to virtual 
channels. If in the most congested stage javg virtual channels 
are occupied on average, a packet takes javgL/W time to 
entirely traverse one channel. As the first stage, stage n - 1, 
is always the most congested, jaVg can be calculated by 

(9) 

The second term, w,L/W, is the time spent waiting to acquire 
virtual channels. 

The third term is the queueing delay in the source which is 
that of an M P / 1  queue with utilization p = A( to  + xn-l) and 
average service time Z = L/W( to  + xn-l) [17]. For heavily 
loaded networks this term is the most significant. Modeling the 
source queue as M/D/l is a slight approximation since even 
though message length is fixed the service time seen by the 
source has nonzero variance. 

The final term, Tdn, is the time one flit of a packet spends 
traversing the n stages of the network in the absence of 
contention. 

Fig. 11 shows the latency predicted by (8) as a function of 
offered traffic, A, for a 2-ary 8-fly network. The figure shows 
that the addition of virtual channels greatly increases the traffic 
that can be offered to the network before saturation occurs. 
The figure also indicates that adding lanes has little effect on 
latency below saturation throughput. The curves lie on top of 
each other until traffic approaches saturation throughput. 

Using virtual channel flow control increases saturation 
throughput because it decreases both waiting time and physical 
channel idle time. Waiting time, wn-l (3), is reduced because 
a packet waits only when all 1 virtual channels are occupied. 
In a conventional network, 1 = 1, the blocking probability pz,l 
is much larger and wrL-l is increased proportionally. Waiting 
time is particularly important since it determines the service 
time seen by the source queue and hence the source queueing 
delay. 

Physical channel idle time is reduced because a physical 
channel idles only when all of its virtual channels are blocked. 
Because virtual channels make this blocking probability, b;,J 
(4), small, the effective service time increases more slowly 
with traffic than in a conventional network. 

The throughput Amax of a multistage network using virtual 
channels can be determined by solving the equation 

Fig. 12 shows the throughput of seteral multistage networks 
as a function of the number of virtual channels, 1. The figure 
shows that adding a small number of virtual channels causes a 
large increase in throughput with diminishing returns as more 
channels are added. The data suggests that four to eight lanes 
per physical channel is adequate for most networks. For all of 
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Fig. 10. Virtual channel occupancy probabilities are calculated using a Markov model. State S, corresponds to j virtual channels being occupied. 

0 I I I I I 
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Fig. 11 .  Latency as a function of offered traffic as predicted by analysis for 
a 2-ary 8-fly network with 1, 2, 4, 8, and 16 virtual channels per physical 
channel. 

the networks shown, eight lanes per physical channel results 
in at least 80% of the throughput as a network with 20 lanes. 

Adding virtual channels to a network also reduces the 
dependence of throughput on the number of stages in the 
network. For conventional networks, 1 = 1 on the left side 
of the figure, there is a large difference in throughput with 
network size. Conventional networks with four and fourteen 
stages have throughputs of 0.39 and 0.14, respectively. With 
18 virtual channels, the difference is narrowed to 6%, 0.83 
versus 0.88. The effect of the number of stages on throughput 
is reduced by virtual channels because the reduction in waiting 
time and channel idle time reduce the rate at which service 
time increases with stage number. 

V. EXPERIMENTAL RESULTS 
To measure the effect of virtual channel flow control on 

network performance (throughput and latency), we have sim- 
ulated a number of k-ary n-cube and k-ary n-fly networks. 
These simulations serve to check our analytical model, pre- 
sented in Section IV, and to measure the performance of 
networks not covered by our model. 

Our analytical model is limited to networks where lanes 
have unit depth independent of the number of virtual channels. 
We have simulated networks where the total buffer storage 
per physical channel is held constant constant while varying 
the number of lanes per channel. If lanes are added, the 
depth of each lane is proportionally reduced. These simulations 
compare the effect of increasing the number of virtual channels 
with increasing the depth of each virtual channel. 
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Fig. 12. Throughput of 2-ary n-cube networks with virtual channels as a 
function of the number of virtual channels. 

We have also simulated k-ary n-cube networks with-virtual 
channels, a topology not covered by our analytic model, and 
networks employing deadline and priority scheduling. 

The simulator is a 3000 line C program that simulates in- 
terconnection networks at the flit-level. A flit transfer between 
two nodes is assumed to take place in one time unit. The 
network is simulated synchronously moving all flits that have 
been granted channels in one time step and then advancing 
time to the next step. The simulator is programmable as to 
topology, routing algorithm, and traffic pattern. 

The simulations were run with packet length fixed at 20 
flits and uniformly distributed random packet destinations. Ex- 
cept where otherwise noted, channel bandwidth was allocated 
randomly to lanes. 

Each simulation was run for a total of 30000 flit times. 
Statistics gathering was inhibited for the first 10000 flit times 
to avoid distortions due to the startup transient. For a typical 
test, (A = 0.4, n = 8), measurements were taken for 100000 
packets. The standard deviation of both latency and throughput 
measurements for an individual packet is M 30% of the 
mean value. Assuming that these values are independent and 
normally distributed, the standard deviation of the ensemble 
average measurements reported below is M 0.1% of the mean 
value. 

A. Throughput 
Throughput is measured by applying to each network input 

a saturation source that injects a new packet into the network 
whenever a lane is available on its input channel. Throughput 
is given as a fraction of network capacity. A uniformly loaded 
network is operating at capacity if the most heavily loaded 
channel is used 100% of the time. 
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Fig. 13. Comparison of predicted (solid line) and measured (points) through- 
put for radix-2 eight stage networks. 

Fig. 13 compares the throughput predicted by the analytic 
model of Section IV with measurements from the simulator. 
The figure shows the throughput of 2-ary 8-fly networks with 
a single flit buffer per virtual channel as the number of virtual 
channels (lanes) per physical channel are varied. There is close 
agreement between the predicted and measured data. 

To compare the effect of adding lanes to the network with 
adding depth to each lane, networks with equal storage were 
simulated. Each network simulated has 16 flits of storage per 
physical channel. The number of lanes per channel was varied 
from 1 (conventional network) to 16 in powers of two. The 
results of these simulations are shown in Fig. 14. The figure 
shows the saturation throughput versus the number of lanes per 
channel for radix-2 multistage networks (2-ary n-flys). Data 
are shown for networks with dimensions of 4, 6, 8, and 10. 
The data show that given a fixed amount of storage, adding 
lanes gives a far greater throughput improvement than does 
increasing the total amount of buffering with a single lane 
(see [21]). 

B. Latency 

Latency is measured by applying a constant rate source with 
exponentially distributed interarrival times to each input and 
measuring the time from packet creation until the last flit of 
the packet is accepted at the destination. Source queueing time 
is included in the latency measurement. 

Fig. 15 compares the latency predicted by the model of 
Section IV with measurements from the simulator. The figure 
shows the latency of a 2-ary 8-fly network with four virtual 
channels per physical channel. Each virtual channel has a 
single flit buffer. As with the throughput comparison shown 
in Fig. 13, the latency measurements are in close agreement 
with the value predicted by analysis. 

Fig. 16 shows latency results for 2-ary 8-fly networks with 
equal storage. Each network simulated has 16 flits of storage 
per physical channel. The number of lanes per node was varied 
from 1 to 16 in powers of two. As with the throughput results, 
Fig. 16 shows that adding lanes to a network is a more effective 
use of storage than adding depth to a lane. However, with 
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Fig. 14. Throughput verpus number of lanes for radix-2 multistage networks 
holding the amount of storage per physical channel constant at 16 flits. 
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Fig. 15. Comparison of predicted (solid line) and measured (points) latency 
for a 2-ary %fly network with four lanes. 

storage held constant, there is a small latency penalty (as much 
as 7%) at mid to high traffic rates associated with the shorter 
buffers that result when more virtual channels are used. For 
example, the curve for eight lanes drops below the curve for 
16 lanes until it nears its saturation throughput. 

Adding lanes is more effective in increasing throughput than 
adding depth for two reasons. First, adding lanes reduces the 
channel blocking probability exponentially, (4), while adding 
depth has a very small effect on blocking probability. Second, 
adding a single flit virtual channel buffer allows one packet to 
pass another. This has an effect on waiting time comparable 
to increasing the depth of a buffer by the packet length. 

C. Scheduling Algorithm 

Fig. 17 shows the effect of the channel scheduling algorithm 
on latency. The figure shows two latency histograms, one for 
a random assignment of channel bandwidth to packets, and 
the other for oldest-packet-first channel bandwidth allocation 
(deadline scheduling). Both curves are for 2-ary 6-fly networks 
with random traffic operating at 50% capacity. The histograms 
have been truncated at 140 cycles latency. 
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Fig. 16. Simulated latency versus offered traffic for 2-ary 8-fly networks Fig. 18. Latency histogram for a 2-arY 6-flY network with random traffic at 
50% capacity where 10% of the traffic is marked high-priority and scheduled 
by age. 80% of the high-priority traffic is delivered with the minimum latency. 

with 16 flits of storage per physical channel. 
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Fig. 17. Latency histogram for a 2-ary 6-fly network with random traffic at 
50% capacity using deadline (oldest first) and random scheduling of physical 
channels. The histogram for deadline scheduling has a very sharp peak at 24 
and a broad peak at 57. The curve for random scheduling shows a peak at 44. 

The use of deadline scheduling reduced the average packet 
latency from 75.1 cycles to 62.2 cycles and reduced the 
standard deviation of packet latency by a factor of two. The 
deadline curve shows a sharp peak at 24 cycles latency, the 
minimum latency required to traverse the network, and a broad 
peak at 57 cycles. The random curve shows peaks at 44 and 84 
cycles. The data suggest that deadline scheduling can be useful 
in reducing average message latency and in making message 
latency more predictable. 

Fig. 18 shows how virtual channel scheduling can be used 
to provide different classes of service. The figures shows the 
result of an experiment where a network was loaded with 90% 
standard traffic and 10% priority traffic. The standard traffic 
was scheduled randomly, the priority traffic took precedence 
over standard traffic and was scheduled by age-oldest packet 
first. The figure shows that 80% of the priority traffic is 
delivered with the minimum latency (24 cycles). This type 
of scheduling would be useful, for example, in a switch that 
handles both voice and data where the voice traffic has a tight 
deadline and should be dropped if it cannot make its deadline. 
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Fig. 19. Latency versus offered traffic for 16-ary 2-cube mesh networks 
under random traffic. As with the butterfly networks, adding lanes to a network 
has little effect on latency below the saturation throughput for a single lane. 
Adding a lane dramatically increases throughput at first with diminishing 
returns for 8 and 16 lanes. 

D. k-ary n-cube Simulations 

Fig. 19 shows average packet latency as a function of 
offered traffic for radix-16, dimension-2 mesh networks (16- 
ary 2-cubes). Each network simulated has 32 flits of storage 
per physical channel. The number of lanes per channel was 
varied from 1 to 16 in powers of two. The simulated network 
uses deterministic dimension-order routing. 

The figure shows that adding lanes has little effect on 
latency below the saturation throughput for a single lane 
while it greatly increases the saturation throughput of the 
network. With a single lane, the network saturates at 50% 
capacity while with 16-lanes throughputs of 90% capacity are 
achievable. Most of the throughput gain is realized with four 
lanes. Adding additional lanes yields diminishing returns and 
actually increases latency by as much as 20%. As with the IC- 
ary n-fly, latency in the mid to high traffic range is increased 
slightly by adding lanes. We suspect that this increase occurs 
because adding lanes while holding storage constant increases 
buffer utilization. 
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Direct, k-ary n-cube, networks using dimension-order rout- 
ing require fewer virtual channels than multistage networks be- 
cause most contention in these -networks occurs when packets 
enter a new dimension. For purposes of analyzing contention, 
each dimension of a direct network is analogous to a stage of 
a multistage network. With few dimensions, there are fewer 
opportunities for blocking and fewer lanes are required to pass 
blocked packets. 

VI. CONCLUSION 

The performance of interconnection networks can be im- 
proved by organizing the buffers associated with each network 
channel into several lanes or virtual channels rather than 
a single FIFO queue. Associating several lanes with each 
physical channel decouples the allocation of virtual channels to 
packets from the allocation of physical channel bandwidth to 
flits. This decoupling allows active messages to pass blocked 
messages dramatically improving network throughput. 

The use of virtual channel flow control also allows flexibility 
in allocating physical channel bandwidth. By decoupling re- 
source allocation, a channel’s bandwidth need not be allocated 
to the “next packet in line.” Instead, this bandwidth may be 
allocated on the basis of packet type, age, or deadline. The 
use of deadline scheduling may be particularly important in 
networks where one class of packets must be delivered in a 
bounded amount of time. 

This paper has developed a model for the performance 
of k-ary n-fly networks with virtual channels. This model 
can be used to calculate the latency and throughput of these 
networks. The model shows that adding virtual channels to a 
network greatly improves network throughput with little effect 
on latency at low traffic rates. For a 2-ary 10-fly network (1024 
input butterfly), the throughput with 16 lanes per channel is 
4 times the throughput with a single lane. The use uf virtual 
channels also reduces the dependence of throughput on the 
number of stages in a network. Without virtual channels, 
throughput asymptotically varies as the inverse of the number 
of stages [ 181. With virtual channels, throughput remains 
relatively constant as stages are added. 

Several indirect (k-ary n-fly) and direct (k-ary n-cube) 
networks have been simulated to validate our model and 
to study networks not covered by the model. Simulation 
results agree closely with the values predicted by our model. 
Simulations also show that with the total amount of buffer 
storage per node held constant, adding lanes to a network is a 
significantly more effective use of storage than adding depth 
to a channel FIFO. The use of deadline scheduling reduces 
average latency by a small amount and makes latency much 
more predictable. 

The critical resources in an interconnection network are 
wire bandwidth and buffer memory. Virtual channel flow 
control is a method for allocating these critical resources in 
a more efficient manner. With network switches constructed 
using VLSI circuits, the cost of adding the small amount of 
control state and logic required to implement multiple lanes 
per channel is well worth the cost. 
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