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Homework 3 - Solutions

1 Problem 6-4 (Dally and Poulton)

Capacitive Cross Talk to Dynamic Circuits:

Consider the 3-mm-long on-chip bus from Exercise 6-3. In this case, however, you are precharging the
bus and selectively discharging each bit with the circuit shown Figure 6-30(a). (a) What happens to the
voltage on bit 2 if, after precharging, adjacent bits 1 and 3 are pulled low whereas bit 2 is allowed to float
(draw a dimensional sketch). Assume that the selected pulldown chain can be modeled by a 1-kf) resistor
and ignore the capacitance of the pulldown chains. What happens if bit 2 is pulled up with a “keeper,” as
shown in Figuer 6-30(b), which you can model as a 2-k{2 resistor? Draw a second sketch.

(a) For this problem we have a 3-mm-long on-chip bus. We derive our capacitance values from Table 6-2:
The coupling capacitance between each of the bitlines is:

il x 3mm = 90fF

C.=0.03—
pm

The capacitance to other wires, the wires above and below the bit lines is:

F F
¢, =2 x 00325 + 2 x 0.012E)) x 3mm = 3007 F
m m

The fringing field (0.01f—£) is multiplied by 2 for fringing from each side of the bit line. The entire
parallel plate capacitance, tﬁe capacitance inside the parantheses, is multiplied by 2 to account for the wires
above and below the current plane.

So, we model our bitlines as follows:

[0}
bit 1
C.—
bit 2
Co— = Co
bit 3

Note: We are ignoring the coupling capacitance to other neighboring and non-adjacent bit-lines.
Initially all of the bitlines are precharged to a value of 1 V. We then pull bits 1 and 3 down with the
pull-down circuit shown, which we model as a 1 k{2 resistor. Constructing an equivalent circuit, we have:
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bit 1

Rearranging for clarity, we have:

bit 1 bit 3

KO c= ——c.=—

I T 1 T

A4

ﬂj

Since the voltages on lines 1 & 3 will be exactly the same, we draw an equivalent circuit as:

We now solve for the equivalent resistance that the 500-2 pull-down chain sees:

20.C, B
Ceq =200 + 50 = 600fF + 112.5fF = T12.5fF

Thus, the RC time constant of our circuit is:

7 = 500Q * 712.5f F = 356ps
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bits 1 & 3

500Q $ —=—=2C,==2C,

bit 2

2

v v

Solving for the voltage for bits 1 and 3 we get:

_t __t
Vhits1&3(t) = e 7 = e 356ws

The capacitors act as voltage dividers between the bits1&3 lines and the bit 2 line. So, the voltage lost
by the bit 2 line is:

2C,

m X A%it51&3 = 0375 X _].V = _0375V

Thus, the final voltage on the bit 2 line will be 1V - 0.375 V = 0.625V. The resulting equation for the
voltage on bit line 2 is:

Vhirz (t) = 0.625 + 0.375¢ 3569

Below are the waveforms of the voltages seen on bit-lines 1&3 and on bit-line 2 as described by the
equations above.

Note: we achieve this exact same solution using KCL anc KVL and solving the differential equations in
the s-domain.

(b) Now we add a 2-kQ pull-up “keeper” on bit-line 2. With this configuration, we have the pull-down
circuit pulling down the voltage on bit-line 2 and the “keeper” circuit pulling up the voltage on bit-line 2.
We can approach this problem in two ways: (1) Assume the time constant of the pull-up circuit is larger
than the time constant of the pull-down circuit, or (2) Solve for the exact solution in the s-domain. In the
first option we de-couple the effects of the pull-up and pull-down circuit. The following is the solution using
the assumptions of option 1.

If we assume the time constant of the pull-down network, 356ps, is significantly smaller than the time
constant of the pull-up “keeper”, we can say that bit-lines 1&3 reach their final value, 0 V, well before the
pull-up network takes effect.

Thus, the effective capacitance seen by the 2-kQ2 pull-up circuit will be 2C, in parallel with C,:

[Ceys =20.+ C, = 180fF + 300/ F = 480/ F

So, our time constant for the pull-up network, using the assumptions stated above, will be:

|7 = RC.sy = 2kQ x 480/ F = 960ps |
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Weve Symbol * waveform for problem 3-16 winter quarter 2002
D0:AO(D13) Y—
po:AGv(b2) O-—

Choosing our constants to obtain the correct response, the voltage seen on bit-line 2 will be:

Viitz () = 1 — (0.6e 5555 — 0.6¢ 55677

capacitor
1 P e T T
-7 - = Voie
— Vhltsl&a L
1 1 1 1 1 1 1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time X 10*3
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Below is the actual response of the circuit.

Wave _ Symbol

D0AON(BD) X - -
DO:AOV(b13) H-—+

*waveform for problem 3-16 winter quarter 2002

)
&
E

I

Voltages (lin

2 n an
Time (in) (TIME)

A comparison between the actual voltage waveform on bit-line 2 and our estimated waveform on bit-line
2 shows that the estimation used in the first option gave us a close approximation to the actual behavior.

2 Problem 6-6 (Dally and Poulton)

Transmission-Line Cross Talk Using Propagation Modes:

Another way to analyze cross talk is to consider the differential and common-mode impedances of a
coupled pair of lines. Putting a unit step into line 1 while holding line 2 at a steady value, Vi = U(t), V2
= 0, is the equivalent of sending a differential voltage of Vp = -0.5 AV = -0.5 U(t), and a common-mode
voltage of Vo = 0.5U(t) into the quiet line, line 2. The cross talk can then be calculated as the superposition
of the even and odd mode responses of the quiet line.

Using Egs. (3-59) and (3-60), calculate the differential and common-mode impedances of the coupled
line assuming the geometry from the second line of Table 6-3. Compute the differential and common-mode
response of the quiet line to a step on the driven line assuming a source impedance and a termination
impedance of Z,. From these responses compute the near-end and far-end coupling coefficients.

We are given the first 2 entries in the following table and we obtain the following 5 entries from table 6-3
in the book. We will derive the rest of the values in the table.
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Coupled length | 1 m

tr 500 ps

C 137 22

Cm 3 2L

L 240 21

M 18.5 »L

Z, 42 Q

ke 0.021

kix 0.077

kyz -0.028

k,z 0.025
VelOCitYeven 1.70 x 1078%
Velocityoqa 1.80 x10~3™
VelOCityoverall 1.74 x 1078%
Tiine(even) 5.89 ns
Tiine(odd) 5.57 ns
Tline(overall) 5.73 ns

We begin by calculating the even and odd mode impedances:

[L+M 24028 4 1850
ZEVEN = c_cC. = \/ 13,’7”£ — SE’“ =1{43.90
[L—M 2402H _ 18.52H
Zopp = ciC = \/ 13;”£ +3£m =1{39.80
m m

We now calculate the even and odd mode signals of A, the aggressor line, and Q, the quiet line as shown
below.

ZC’UC'H 43.9Q
=1V x =2 1V x —— = |0.511
Vateven) =V X o0 Zovem 120+ 4390
_ Zoad 39.80
Vatea) =WV X B0+ Zoag 1 X B0+ 3080 LB
_ Zeven 43.90
VQ(even) — ].V X m — ].V X m — 0511V

Zodd 39.80
— MV x —Zedd gy P00 _[Tgy
VQ(oda) VX 50+ Zom VX 30+ 3980 0.487V

Now we calculate the total signal seen on lines A and Q.
Vatotal) = Vaeven) + Va(oaa) = 0-511V + 0.487V =

VQ(total) = VQ(even) + VQ(odd) = 0.511V — 0.487V =0.024V
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Thus, our reverse cross-talk, k., is:

0.0V

= 0.024
v 0.0

kT‘$

This compares well with the value given in the book and the value we calculate from the inductance and

impedance,
C. C. 3pF
koo = == =0.021
Cs+C. C 137pF 0.0219
M  18.5nH
ki, = T = 2d0nH - 0.0771
Thus, we get:
L Z Mz _ . 0247

Similarly, from our calculations, we find that kg, is as given below. We will verify this forward cross-talk

coefficient in the following analysis.

kcaf: - k x
kfo = Tt = —0.0276

We solve for our forward cross-talk coefficient, kf,, and verify the number calculated above. First we
solve for the magnitude of the even and odd mode voltages at the far-end of the line using the telegrapher’s

equation.

420 — 39.8Q

VQfar—end(odd) = VQnear—end(odd) X (1 + kfar—end(odd)) = —0.487V x (1 + M) =|-05V

420 — 43.90Q

VQfar—end(even) = VQneaT—end(even) X (1 + kfar—end(even)) = 0.511V x (1 + 420 + 43 QQ) =

We calculate the the velocity of the even and odd mode waves:

/ 1 1 m

even — = =1 1 8 —
Y LevenCeven \/(L + M)(C - Cm) 70> 10 S
1 1 m

odd = 1/ = =|1.80 x 10°—
Vodd LoaaCodd \/(L — M)(C + Cm) S

1 1 m
== _|17max108™
Voverall \/; \/240nH x 137pF X s

We find the time it takes for the even and the odd mode waves to travel down the line:




Handout #5

Length Im -
Te,ven = T = = .
velocityepen  1.70 x 10872 9.89ns

Length 1m
Toaa = = =[5.57
odd velocityoqq  1.80 x 1082

Length 1m
ToveTall = J m

velocityoperall T 174 x 1082

Thus, we get the following waveforms for the even and odd signals at the far-end of the quiet line:

VQfar-end(odd) oV 5.:57ns

6.07ns 0.5V

6.39ns 0.5V

\Y,

Qfar-end(even) ov 5.89n

So our total voltage at the far-end of line Q is as shown on the following page:

VQfar-end(odd) ov 5.57ns 63 gy

V,

Qfar-end(even) ov -0.5Vv

VQfar-end(totaI) ov 5~|57n5 6.39ns Oy

5.89ns 6.07,

-0.317v

With the equation from the Figure 6-12, page 274, repeated here for convenience, we get:

kgt
Vvaa.r—endeE = ftz: “
r
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Rearranging, we have:

Vorar—endmastr —0.317 x 500ps
ks = mar = =1 —-0.0276
s . s

which is exactly the value we obtained empirically above.

3 Problem 6-13 (Dally and Poulton)

Worst-Case Noise Analysis:

(a) With the given parameters, our signaling system won’t work. We have a signal swing, AV, of 500
mV. Thus, our gross margin, Vg = ATV = 250mV.

To evaluate our system, we want the highest signal-to-noise ratio, SNR, and equivalently, the highest
margin ratio, MR, as defined below:

_ Vtswing
SNE =5 Ty
VN :
MR = ——,whereVyy = NetMargin =Vgy — Vi
Vem

Using the Margin Ratio and the SNR is a much more robust way of evaluating noise in our system than
just looking at the noise margin, V.

Accounting for our fixed noise sources in the order they were given in the problem, we compute the total
bounded noise as follows:

Vi =Vt + Kn X Vawing = 100mV + 100mV + 100mV + 0.2(500mV) + 0.1(500mV) = [450mV

This value is 200mV greater than Vgas and will leave us with a negative net margin, Vs, of -200mV,
a signal-to-noise ratio, SNR, of ;290mV_ — and a margin ration, MR, of 2221V — —(0.8. With the
net margin greater than our gross margin and the SNR less than 1, our system won’t pass a worst-case

noise analysis.

(b) Now we must choose 2 of the 5 given options to enable our system to pass a worst-case analysis.
We can run an exhaustive search over each pair of algorithms to find the combination of two options that
gives us the highest SNR (and MR).

Sys | 1&2 | 1&3 | 2&3 | 3&4 | 1&5 | 2&5 | 3&5 | 1&4 | 2&4 | 4&5
Signal Swing 05 |10 | 1.0 |05 0.5 1.0 0.5 | 0.5 1.0 0.5 0.5
Rec Offset 01 |001]01 |001 |O.1 0.1 0.01 ] 0.1 0.1 0.01 | 0.1
Rec Sens 01 |001}01 001 |O.1 0.1 0.01 ] 0.1 0.1 0.01 | 0.1
Transm Offset | 0.1 | 0.1 | 0.1 | 0.1 0.1 0.03 | 003|003 |0.1 0.1 0.03
Vi 03 |012]03 |012 |03 0.23 | 005023 | 0.3 0.12 | 0.23
X-talk Coeff 02 |02 |0.06 005 |005 |0.2 0.2 | 005 |02 0.2 0.2
ISI 01 |01 |01 |01 0.025 | 0.1 01 |01 0.025 | 0.025 | 0.025
K. 03 (03 015|015 |0.075| .3 0.3 | 0.15 | 0.225 | 0.225 | 0.225
Noise V, 0.45 | 042 | 0.45 | 0.195 | 0.338 | 0.530 | 0.2 | 0.305 | 0.525 | 0.233 | 0.343
SNR 0.56 | 1.19 | 1.11 | 1.28 | 0.74 | 094 | 1.25|0.82 | 095 | 1.07 | 0.73
MR -0.8 | 0.16 | 0.10 | 0.22 | -0.35 | -0.06 | 0.2 | -0.22 | -0.05 | 0.07 | -0.37




Handout #5 10

We choose options 2&3 since, as shown above, the combination of options 2 and option 3 gives us the
highest SNR, (and MR).

We could also approach this problem in this manner: We notice that in our original system, the independent
noise sources (300mV) dominate the proportional noise sources (150mV). So, reducing the noise due to the
independent noise sources is necessary.

Of the two independent noise source reductions, options 2 and 5, we would choose option 2 (V,,; =
120mV vs. 270mV of option 5). Now our proportional noise sources (150mV) dominate our independent
noise sources (120mV). So, we have a choice of reducing our proportional noise sources or increasing the
signal swing.

Of the two proportional noise source reductions, options 3 and 4, we would choose option 3 (K, = 0.15
vs. 0.225 of option 4).

However, since the voltage swing affects these proportional noise sources and our overall margin, we must
take option 1 as a possibility as well. Now we compare our 3 possibilities:

options2&3 : Viy = 120mV + 0.15(500mV) = 195mV,SNR = 1.28, MR = 0.22
optionsl&3 : Vy = 120mV + 0.3(1V) = 420mV,SNR = 1.19, MR = 0.16

options1&2 : Viy = 300mV + 0.15(1V) = 450mV, SNR = 1.11, MR = 0.1

We choose options 2 and 3, as before, which has the largest SNR and MR.

4 Problem 6-14 (Dally and Poulton)

Statistical Noise Analysis: Consider a system with AV = 500mV. The signal is corrupted by fixed-noise
sources with total Vy; = 100mV and Ky = 0.2. In addition, there is additive Gaussian noise with a
magnitude of 10mV rms. Calculate the BER for this system.

Our gross margin, Vg is A2—V = 250mV. And our total bounded noise is:

VN = V1 + KnVs = 100mV + 0.2(500mV) = 200mV

Our Voltage Signal to Noise Ratio, VSNR, is:

8 —Vy _ 50mV _

NR = = =
VENE Vims 10mV

5

Thus, our Bit Error Rate, BER is:

SNR?

P(error) =e 2" =|3.73x 10 ® = BER




